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Introduction

Based on rewriting logic

• Because of its logical basis and its initial model semantics, a Maude
module defines a precise mathematical model.

• This means that Maude and its formal tool environment can be used
in three, mutually reinforcing ways:

• as a declarative programming language,
• as an executable formal specification language, and
• as a formal verification system.

• The Maude system, its documentation, and related papers and
applications are available from the Maude website

http://maude.cs.uiuc.edu.
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Introduction

The Maude formal environment

• Besides the built-in support for verifying invariants and LTL
formulas, the following tools are also available as part of the Maude
formal environment:

• the Church-Rosser Checker (CRC) can be used to check the
Church-Rosser property of functional modules;

• the Maude Termination Tool (MTT) can be used to prove
termination of system modules;

• the Coherence Checker (ChC) can be used to check the
coherence (or ground coherence) of system modules; and

• the Inductive Theorem Prover (ITP) can be used to verify
inductive properties of functional modules;

• the Sufficient Completeness Checker (SCC) can be used to
check that defined functions have been fully defined in terms of
constructors.
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Introduction

Developers

• Many researches have contributed in one way or another to the
tools. This list includes the main developers of each of the tools:

• ITP: M. Clavel, J. Hendrix, and J. Meseguer
• MTT: F. Durán, S. Lucas and J. Meseguer
• CRC: F. Durán and J. Meseguer
• ChC: F. Durán and J. Meseguer
• SCC: J. Hendrix and J. Meseguer

• Maude team:

• Manuel Clavel
• Francisco Durán
• Steven Eker
• Pat Lincoln
• Narciso Mart́ı-Oliet
• José Meseguer
• Carolyn Talcott
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Introduction

Construction of the tools

• Full Maude, an extension of Maude, written in Maude itself, has
played a key role in the construction of some of these tools.

• The ITP is a Maude program. It comprises over 8000 lines of Maude
code that make extensive use of the reflective capabilities of Maude.

• The MTT tool implementation distinguishes two parts:

• a family of theory transformations written in Maude, and
• a Java application connects Maude to back-end termination

tools and provides a graphical user interface.

• The CRC and ChC tools are written in Maude, and are in fact
executable specifications of the formal inference systems that they
implement. A complete execution environment for the tools has
been integrated within Full Maude.

• The SCC is written in Maude, and internally constructs propositional
tree automatons. Their emtiness check is performed by a C++ tree
automata library named CETA.
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The Church-Rosser checker Basic notions

Equational simplification

Let T = (Σ, E) be an OS equational theory. We say that the equations in
E are admissible as equational simplification rules if each equation
(∀X) t = t′ ⇐ u1 = v1 ∧ . . . ∧ un = vn in E satisfies the following two
properties:

• fewer variables on the right side and condition, that is, the families
of variables vars(t′), vars(ui), and vars(vi), 1 ≤ i ≤ n, are all
contained in vars(t) = X, where, vars(t) denotes the family of
variables actually appearing in t.
• sort decreasingness, that is, for any substitution θ : X −→ TΣ(Y),

and any s ∈ S, if θ(t) ∈ TΣ(Y)s, then θ(t′) ∈ TΣ(Y)s.
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The Church-Rosser checker Basic notions

Confluence
Suppose we have a theory T = (Σ, E) whose equations are admissible as
equational simplification rules. Then we can do sound inference by
equational simplification with E, but the equations E may still be quite
unusable, because depending on the order and place of equation
application we may get different results, or even no result at all.

In general, equational simplification can be nondeterministic.

The minimum requirement to make equational simplification
deterministic is confluence.

We say that E is confluent iff whenever we have

t ∗−→E t1 and t ∗−→E t2, then t1 ↓E t2.

t

∗
E !!!!

!!
!!

!!

∗
E

"""
""

""
""

"

t1

∗
E

""

t2

∗
E

!!
t′

We call E ground confluent iff the above property is guaranteed only for
terms without variables t ∈ TΣ.
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The Church-Rosser checker Basic notions

Termination

• Terminating equational programs are obtained when the rewriting
relation is terminating.

• We say that the equations E are terminating as simplification rules
when there is no infinite chain of rewrites

t −→E t1 −→E t2 . . . tn−1 −→E tn −→ . . .

Francisco Durán (UMA) The Maude Formal Tool Environment JAIST-FSSV, March 2010 11 / 80



The Church-Rosser checker Basic notions

The Church-Rosser property

• The (ground) Church-Rosser property, together with termination, is
essential for an equational specification to have good executability
conditions, and also for having a complete agreement between the
specification’s initial algebra, mathematical semantics, and its
operational semantics by rewriting.

• If specifications are ground-Church-Rosser and terminating, then
equations can be used from left to right as simplification rules.

• The result of evaluating an expression is then the canonical form
that stands as a unique representative for the equivalence class of
terms equal to the original term according to the equations.

• For order-sorted specifications, being Church-Rosser and terminating
means not only confluence—so that a unique normal form will be
reached—but also a descent property ensuring that the normal form
will have the least possible sort among those of all other equivalent
terms.
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The Church-Rosser checker Use

CRC: a Church-Rosser checker for Maude specifications

• Under the assumption of termination, the Church-Roser Checker
tries to check the confluence property.

• The tool

• may succeed, in which case it responds with a confirmation that
the module is confluent, or

• it may fail to check it, in which case it responds with a set of
proof obligations required to ensure that the specification is
ground confluent.

• The present CRC tool accepts order-sorted conditional
specifications, where each of the operation symbols has either no
equational attributes, or any combination of
associativity/commutativity/identity. Furthermore, it is assumed
that such specifications

• do not contain any built-in function,
• do not use the owise attribute, and
• that they have already been proved (operationally) terminating.
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The Church-Rosser checker Use

Confluence and ground confluence

• The specification can often be ground-confluent without being
confluent for arbitrary terms with variables.

• If we submit to the tool a module fmod(Σ, E)endfm (satisfying the
previous restrictions) and such that the equations E are
unconditional, then if the equations E are indeed sort-decreasing and
confluent, the checker tool will succeed.

• Failure to pass the check may mean one of three things:

• (Σ, E) is ground confluent, but not confluent;
• (Σ, E) is confluent, but further reasoning is needed, because

some of the equations in E are conditional;
• (Σ, E) fails to be ground confluent.
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The Church-Rosser checker Use

Confluence and ground confluence

• Blindly applying a completion procedure that is trying to establish
the Church-Rosser property for arbitrary terms may be both

• quite hopeless and
• even unnecessary.

• Our tool attempts to establish the ground-Church-Rosser property
modulo the equational axioms specified by checking a sufficient
condition.

• The tool’s output consists of a set of critical pairs and a set of
membership assertions that must be shown, resp., ground-joinable,
and ground-rewritable to a term with the required sort.

• User interaction is essential, completion is not attempted.

• Instead, proof obligations are generated and are given back to the
user.
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The Church-Rosser checker Confluence by example

In summary

• What the Church-Rosser Checker does is:

• it checks that the equations E are sort-decreasing;
• it forms all the critical pairs for the equations E and tries to join

them;
• it returns as proof obligations those equation specializations

that it could not prove sort-decreasing, and those simplified
critical pairs that it could not join.

• In case the check fails, the proof obligations returned can be very
useful for further analysis, either to establish the property, or to find
a conterexample.
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The Church-Rosser checker Confluence by example

Example: a Church-Rosser one

Maude> (fmod CNAT is

sort Natural .

op 0 : -> Natural [ctor] .

op s_ : Natural -> Natural [ctor] .

op _+_ : Natural Natural -> Natural .

vars N M : Natural .

eq N + 0 = N .

eq N + s M = s(N + M) .

endfm)

Maude> (check Church-Rosser .)

Church-Rosser checking of CNAT

Checking solution:

All critical pairs have been joined.

The specification is locally-confluent.

The specification is sort-decreasing.
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The Church-Rosser checker Confluence by example

Ground confluent but not confluent

• Quite often, a module will not pass the check, not because there is
any real problem with its equations, but simply because it is ground
confluent but not confluent.

• In such a case, the tool will return a set of critical pairs as proof
obligations. Such critical pairs are equations (∀X) t = t′ such that:

• E ` (∀X) t = t′,
• the tool failed to establish t ↓E t′.

• Furthermore, as we shall see, they are sufficient, as proof obligations,
to establish ground confluence. That is, if we can show θ(t) ↓E θ(t′)
for each ground substitution θ, then E is indeed ground confluent
(assuming termination).
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The Church-Rosser checker Confluence by example

A ground-confluent but not confluent specification

Maude> (fmod CNAT-2 is

sorts Zero Natural .

subsort Zero < Natural .

op 0 : -> Zero .

op s_ : Natural -> Natural .

ops _+_ _*_ : Natural Natural -> Natural [comm] .

vars N M : Natural .

eq [nat01] : 0 + N = N .

eq [nat02] : s N + M = s (N + M) .

eq [nat03] : 0 * N = 0 .

eq [nat04] : s N * M = M + (N * M) .

endfm)

Introduced module CNAT-2

Maude> (check Church-Rosser .)

Church-Rosser checking of CNAT-2

Checking solution:

The following critical pairs cannot be joined:

cp for nat04 and nat04

s(N:Natural + (#2:Natural + (N:Natural * #2:Natural)))

= s(#2:Natural + (N:Natural + (N:Natural * #2:Natural))) .

The specification is sort-decreasing.
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The Church-Rosser checker Confluence by example

A ground-confluent but not confluent specification (II)

• This critical pair comes from applying the equation

eq [nat04] : s N * M = M + (N * M) .

modulo commutativity to the term s N * s M in two different ways
yielding terms that, after further simplification, cannot be further
simplified, and therefore cannot be joined, showing that the
equations are not confluent.

s N * s M

wwooooooooooo

''OOOOOOOOOOO

s N + (M * s N)

*

��

s M + (N * s M)

*

��
s (N + (M + (N * M))) s (M + (N + (N * M)))

• However, every ground instance can be joined.
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The Church-Rosser checker Confluence by example

A ground-confluent but not confluent specification (II)

• What to do?

1 use the critical pair as useful information to transform the
equations into equivalent equations that are confluent; or

2 attempt an automatic transformation into confluent equations
using Maude’s Knuth-Bendix Completion tool; or

3 prove an inductive theorem about the rewriting relation −→E
itself, not about equality!, showing that for each ground
instance the pair can be joined; or

4 find a conterexample disproving ground confluence.
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The Church-Rosser checker Confluence by example

A ground-confluent but not confluent specification (III)
In our example, alternative (1) yields a transformed module, by realizing
that the equation nat04 is in a sense too general.

eq [nat04] : s N * M = M + (N * M) .

Maude> (fmod CNAT-3 is

sorts Zero Natural .

subsort Zero < Natural .

op 0 : -> Zero .

op s_ : Natural -> Natural .

ops _+_ _*_ : Natural Natural -> Natural [comm] .

vars N M : Natural .

eq [nat01] : 0 + N = N .

eq [nat02] : s N + M = s (N + M) .

eq [nat03] : 0 * N = 0 .

eq [nat04’]: s N * s M = s((N + M) + (N * M)) .

endfm)

Maude> (check Church-Rosser CNAT-3 .)

Church-Rosser checking of CNAT-3

Checking solution:

All critical pairs have been joined.

The specification is locally-confluent.

The specification is sort-decreasing.
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The Church-Rosser checker Confluence by example

A ground-confluent but not confluent specification (IV)
Alternatively, we can join the critical pair by making _*_ associative.

s(M + (N + (N * M))) = s(N + (M + (N * M)))

Maude> (fmod CNAT-4 is

sorts Nat Zero .

subsorts Zero < Nat .

op 0 : -> Zero .

op s : Nat -> Nat .

op + : Nat Nat -> Nat [comm assoc] .

op * : Nat Nat -> Nat [comm] .

vars N M : Nat .

eq [nat01] : 0 + N = N .

eq [nat02] : s N + M = s (N + M) .

eq [nat03] : 0 * N = 0 .

eq [nat04] : s N * M = M + (N * M) .

endfm)

Maude> (check Church-Rosser CNAT-4 .)

Church-Rosser checking of CNAT-4

Checking solution:

All critical pairs have been joined.

The specification is locally-confluent.

The specification is sort-decreasing.
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The Church-Rosser checker Descent

Descent

• Given a specification of natural numbers and integers with the
typical operations and definitions, and in particular a square
operation defined as

op square : Int -> Nat .

eq square(I:Int) = I:Int * I:Int .

this equation gives rise to a membership assertion, because the least
sort of the term square(I:Int) is Nat, but it is Int for the term in
the righthand side.

• The proof obligation generated by the tool is

mb I:Int * I:Int : Nat .

• This membership assertion must be proved inductively. That is, we
have to treat it as the proof obligation that has to be satisfied in
order to be able to assert that the specification is ground-decreasing.

• In this case, we have to prove INT `ind (∀I) I * I : Nat.
• This can be done using the ITP.
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The Church-Rosser checker An unordered communication channel

An unordered communication channel
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The Church-Rosser checker An unordered communication channel

In-order communication in an unordered channel
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The Church-Rosser checker An unordered communication channel

Communication channel’s structure

fmod UNORDERED-CHANNEL-EQ is

sorts Natural List Msg Conf State .

subsort Msg < Conf .

op 0 : -> Natural [ctor] .

op s : Natural -> Natural [ctor] .

op nil : -> List [ctor] .

op _;_ : Natural List -> List [ctor] . *** list constructor

op _@_ : List List -> List . *** list append

op [_,_] : Natural Natural -> Msg [ctor] .

op ack : Natural -> Msg [ctor] .

op null : -> Conf [ctor] .

op __ : Conf Conf -> Conf [ctor assoc comm id: null] .

op {_,_|_|_,_} : List Natural Conf List Natural -> State [ctor] .

vars N M J K : Natural . vars L P Q : List . var C : Conf .

eq nil @ L = L .

eq (N ; L) @ P = N ; (L @ P) .

endfm
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The Church-Rosser checker An unordered communication channel

Communication channel’s dynamics

mod UNORDERED-CHANNEL is

pr UNORDERED-CHANNEL-EQ .

vars N M J K : Natural .

vars L P Q : List .

var C : Conf .

rl [snd]: {N ; L, M | C | P, K} => {N ; L, M | [N, M] C | P, K} .

rl [rec]: {L, M | [N, J] C | P, J}

=> {L, M | ack(J) C | P @ (N ; nil), s(J)} .

rl [rec-ack]: {N ; L, J | ack(J) C | P, M} => {L, s(J) | C | P, M} .

endm
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The Church-Rosser checker An unordered communication channel

Church-Rosser property

Maude> (check Church-Rosser UNORDERED-CHANNEL .)

Church-Rosser checking of UNORDERED-CHANNEL

Checking solution:

All critical pairs have been joined.

The specification is locally-confluent.

The specification is sort-decreasing.
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The Church-Rosser checker Justification of the CRC

Conditional critical pairs

lσ

l′σ

p

��������� ?????????







 444444

if C′σ
''OOOOOOif Cσ

wwoooooo

rσ

��������� ?????????

lσ

r′σ

p

��������� ?????????







 444444

Definition

Given an OS equational specification R = (Σ, R∪A), with Σ
A-preregular and R A-coherent, and given rewrite rules l→ r if C and
l′ → r′ if C′ in R such that vars(l, r, C) ∩ vars(l′, r′, C′) = ∅ and
l|pσ =A l′σ, for some nonvariable position p ∈ P(l) and A-unifier σ, then
the triple

C σ ∧ C′σ⇒ lσ[r′σ]p = rσ

is called a (conditional) critical pair.
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The Church-Rosser checker Justification of the CRC

A sufficient condition for confluence

Definition

Let R = (Σ, A, R) be a deterministic rewrite theory that is
quasi-reductive w.r.t. an A-compatible well-founded relation �, and let
C⇒ s = t be a critical pair resulting from li → ri if Ci for i = 1, 2, and
σ ∈ UnifA(l1|p, l2). We call C⇒ s = t unfeasible if there is some u→ v
in C such that u→R∪C,A w1, u→R∪C,A w2, and UnifA(w1, w2) = ∅ and
w1 and w2 are strongly irreducible with R modulo A. We call C⇒ s = t
context-joinable if s↓R∪Ct.

Theorem

Let R = (Σ, A, R) be a strongly deterministic rewrite theory that is
quasi-reductive w.r.t. an A-compatible well-founded relation �. If every
critical pair C⇒ s = t of R is either unfeasible or context-joinable, then
R is confluent.
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The Maude Termination Tool

MTT: a Termination Tool for Maude Specifications

• A remarkable development in the theory of termination

• AProVE,
• TTT,
• MU-TERM,
• ...
• . . .

• They consider restrictive specifications

• untyped, unconditional, ...

• High-level (equational) languages

• ASF-SDF, CafeOBJ, Maude, ...

with advanced features

• conditional equations and rules,
• types and subtypes,
• (possibly programmable) strategies for controlling execution,
• matching modulo axioms,
• ...
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The Maude Termination Tool

Termination tools for high-level languages

• based on rewriting and membership equational logics

• with equations, rules, and membership axioms
• with types, subtypes, and kinds
• with matching modulo A, C, U, and its combinations
• with local strategies

• Haskell
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The Maude Termination Tool

A transformational aproach

k
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The Maude Termination Tool

On the implementation of the tool
• transformations written in Maude

• Java GUI

• the termination competition

• the TPDB syntax
• interaction with the tools

• interaction with the tools

• local
• remote via web services
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The Maude Termination Tool

UNORDERED-CHANNEL-EQ terminating
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The Coherence Checker

Coherence

• Given a rewrite theory R = (Σ, E∪A, φ, R), and assuming E
confluent (resp. ground confluent), sort-decreasing and terminating
modulo A, we say that the rules R are coherent (resp. ground
coherent) with E modulo A relative to φ if for each Σ-term t (resp.
ground Σ-term t) such that t→E,A u, and t→Rφ ,A v

t
Rφ ,A

//

E,A ��

v

∗
E,A

&&u

∗E,A ��

w
A

w′

u′
Rφ ,A

// u′′

∗
E,A

99
(C)
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The Coherence Checker

Local coherence

R is called locally coherent (resp. ground locally coherent) iff for each
Σ-term t (resp. ground Σ-term t) such that t→E,A u, and t→Rφ ,A v

t
Rφ ,A

//

E,A ��

v

∗
E,A

&&u

!E,A ��

w
A

w′

u′
Rφ ,A

// u′′

∗
E,A

99
(LC)

Theorem

R is coherent (resp. ground coherent) iff R is locally coherent (resp.
locally ground coherent).
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The Coherence Checker Use of the tool

Context of use

• The user has already developed an executable specification with an
initial model semantics which has already been

• checked to have confluent and terminating equations and
• tested with examples,

so that the user is in fact confident that the specification is
ground-coherent, and wants only to check this property with the
tool.

• The tool can only guarantee success when the user’s specification is
unconditional and coherent, and not just ground-coherent: not
generating any proof obligations is only a sufficient condition.
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The Coherence Checker Use of the tool

Use of the tool

• User interaction will typically be quite essential, coherence
completion is not attempted.

• The specification may be ground coherent, but not coherent, so that
a collection of critical pairs will be returned by the tool as proof
obligations.

• The feedback of the tool should instead be used as a guide for
careful analysis about one’s specification.

• The Maude ITP can be enlisted to prove some of these proof
obligations.

• The user may in fact have to modify the original specification
by carefully considering the information conveyed by the proof
obligations.
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The Coherence Checker Coherence of the unordered channel example

fmod UNORDERED-CHANNEL-EQ is

sorts Natural List Msg Conf State .

subsort Msg < Conf .

op 0 : -> Natural [ctor] .

op s : Natural -> Natural [ctor] .

op nil : -> List [ctor] .

op _;_ : Natural List -> List [ctor] . *** list constructor

op _@_ : List List -> List . *** list append

op [_,_] : Natural Natural -> Msg [ctor] .

op ack : Natural -> Msg [ctor] .

op null : -> Conf [ctor] .

op __ : Conf Conf -> Conf [ctor assoc comm id: null] .

op {_,_|_|_,_} : List Natural Conf List Natural -> State [ctor] .

vars N M J K : Natural . vars L P Q : List . var C : Conf .

eq nil @ L = L .

eq (N ; L) @ P = N ; (L @ P) .

endfm

mod UNORDERED-CHANNEL is

pr UNORDERED-CHANNEL-EQ .

vars N M J K : Natural . vars L P Q : List . var C : Conf .

rl [snd]: {N ; L, M | C | P, K} => {N ; L, M | [N, M] C | P, K} .

rl [rec]: {L, M | [N, J] C | P, J}

=> {L, M | ack(J) C | P @ (N ; nil), s(J)} .

rl [rec-ack]: {N ; L, J | ack(J) C | P, M} => {L, s(J) | C | P, M} .

endm
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The Coherence Checker Coherence of the unordered channel example

Ground coherence of UNORDERED-CHANNEL

Maude> (check ground coherence UNORDERED-CHANNEL .)

Coherence checking of UNORDERED-CHANNEL

Coherence checking solution:

All critical pairs have been rewritten and all equations are non-constructor.

The specification is ground coherent.

Francisco Durán (UMA) The Maude Formal Tool Environment JAIST-FSSV, March 2010 42 / 80



The Coherence Checker Coherence of the unordered channel example

UNORDERED-CHANNEL-ABSTRACTION

mod UNORDERED-CHANNEL-ABSTRACTION-EQ is

including UNORDERED-CHANNEL-EQ .

vars M N P K : Natural .

vars L L’ L’’ : List .

var C : Conf .

eq [A1]: {L, M | [N, P] [N, P] C | L’, K} = {L, M | [N, P] C | L’, K} .

endm

mod UNORDERED-CHANNEL-ABSTRACTION is

including UNORDERED-CHANNEL-ABSTRACTION-EQ .

including UNORDERED-CHANNEL .

endm
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The Coherence Checker Coherence of the unordered channel example

Coherence of UNORDERED-CHANNEL-ABSTRACTION

Maude> (check ground coherence UNORDERED-CHANNEL-ABSTRACTION .)

Coherence checking of UNORDERED-CHANNEL-ABSTRACTION

Coherence checking solution:

The following critical pairs cannot be rewritten:

cp for A1 and rec

{L:List, M:Natural | #3:Conf [N:Natural, J:Natural] | P:List, J:Natural}
=> {L:List, M:Natural |

#3:Conf ack(J:Natural) [N:Natural, J:Natural] |

P:List @ N:Natural ; nil, s(J:Natural)}.
cp for A1 and rec

{L:List, M:Natural | [N:Natural, J:Natural] | P:List, J:Natural}
=> {L:List, M:Natural |

ack(J:Natural) [N:Natural, J:Natural] |

P:List @ N:Natural ; nil, s(J:Natural)}.
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The Coherence Checker Coherence of the unordered channel example

UNORDERED-CHANNEL-ABSTRACTION-2

These critical pairs indicate that a rule is missing.

mod UNORDERED-CHANNEL-ABSTRACTION-2-EQ is

extending UNORDERED-CHANNEL-ABSTRACTION-EQ .

endm

mod UNORDERED-CHANNEL-ABSTRACTION-2 is

extending UNORDERED-CHANNEL-ABSTRACTION-2-EQ .

extending UNORDERED-CHANNEL-ABSTRACTION .

vars M N P K : Natural .

vars L L’ L’’ : List .

var C : Conf .

rl [rec2]: {L, M | [N, K] C | L’, K}
=> {L, M | [N, K] ack(K) C | L’ @ N ; nil, s(K)} .

endm

Francisco Durán (UMA) The Maude Formal Tool Environment JAIST-FSSV, March 2010 45 / 80



The Coherence Checker Coherence of the unordered channel example

Coherence of UNORDERED-CHANNEL-ABSTRACTION-2

Maude> (check ground coherence UNORDERED-CHANNEL-ABSTRACTION-2 .)

Coherence checking of UNORDERED-CHANNEL-ABSTRACTION-2

Coherence checking solution:

All critical pairs have been rewritten, and no rule can be applied

below non-frozen and non-linear variables of equations.

The specification is ground coherent.
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The Coherence Checker Coherence of the unordered channel example

Church-Rosser property of
UNORDERED-CHANNEL-ABSTRACTION-2

Maude> (check Church-Rosser UNORDERED-CHANNEL-ABSTRACTION-2 .)

Church-Rosser checking of UNORDERED-CHANNEL-ABSTRACTION-2

Checking solution:

All critical pairs have been joined.

The specification is locally-confluent.

The specification is sort-decreasing.
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The Coherence Checker Coherence of the unordered channel example

UNORDERED-CHANNEL-ABSTRACTION-2-EQ terminating
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The Coherence Checker Justification of the tool

Conditional critical pairs modulo A

Given rewrite rules with disjoint variables l→ r if C in R and l′ → r′ if C′

in E, their set of conditional critical pairs modulo A is defined as usual:
Either we find a non-variable position p in l such that α ∈ Unif A(l|p, l′)

α(C) ∧ α(C′) ⇒ α(l[l′]p)
E ��

A
α(l)

R
// α(r)

α(l[r′]p)
(I)

or a non-variable and nonfrozen position p′ in l′ with α ∈ Unif A(l
′|p′ , l)

α(C) ∧ α(C′) ⇒ α(l′)
E ��

A
α(l′[l]p′) R

// α(l′[r]p′)

α(r′)
(II)
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The Coherence Checker Justification of the tool

Sufficient condition for coherence

Theorem

Given R as above, then if:

(i) all conditional critical pairs are joinable and

(ii) for any equation l′ → r′ if C′ in E, for each x ∈ vars(l′) such that x
is non-frozen in l′, then either

(a) x is such that x 6∈ vars(C′), x is also non-frozen in r′, and x is linear
in both l′ and r′, or

(b) the sort s of x is such that no rewriting with →R,A is possible for
terms of such sort s,

then R is coherent.
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The Coherence Checker Justification of the tool

Context joinability of conditional critical pairs

Given a rewrite theory R = (Σ, E∪A, R), a non-joinable conditional
critical pair C⇒ u→ v is context-joinable if and only if in the extended
rewrite theory RC = (Σ ∪X, E∪ C∪A, R) we have:

u

!E∪C,A ��

v

∗
E∪C,A

'' w
A

w′

u′ R,A
// u′′

∗

E∪C,A

99
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The Coherence Checker Justification of the tool

Context joinability of conditional critical pairs

Lemma

If the conditional critical pair C⇒ u→ v is context joinable, then for all
substitutions σ such that σC holds we have

σu

∗E∪C,A ��

σv

∗
E∪C,A

((
σw

A

σw′

σu′ R,A
// σu′′

∗

E∪C,A

77

and therefore, the coherence property holds for the conditional critical

pair C⇒
t

E,A ����
R,A��<<

u v
.

Francisco Durán (UMA) The Maude Formal Tool Environment JAIST-FSSV, March 2010 52 / 80



The ITP: an Inductive Theorem Prover

The ITP: an Inductive Theorem Prover

• The Maude Inductive Theorem Prover tool (ITP) is a
theorem-proving assistant.

• It can be used to interactively verify inductive properties of
membership equational specifications, or, more precisely, for proving
properties of the initial algebra TE of a MEL specification E written
in Maude.

• It supports proofs by

• structural induction, and
• coverset induction.

• It is a program written in Maude by M. Clavel and J. Hendrix in
which one can:

• load in Maude the functional module or modules one wants to
reason about,

• enter named goals to be proved by the ITP, and
• give commands, corresponding to proof steps, to prove that

property.
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The ITP: an Inductive Theorem Prover Mathematical proof

Mathematical Proof of Associativity of Addition

• We want to prove that the addition operation in the module

fmod NATURAL is

sort Natural .

op 0 : -> Natural [ctor] .

op s : Natural -> Natural [ctor] .

op _+_ : Natural Natural -> Natural .

vars N M : Natural .

eq N + 0 = N .

eq N + s(M) = s(N + M) .

endfm

satisfies the associativity property,

(∀N, M, L) N + (M + L) = (N + M) + L.

• We can prove the property by induction on L. That is, we prove it
for L = 0 (base case) and then assuming that it holds for L, we
prove it for s(L) (induction step).
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The ITP: an Inductive Theorem Prover Mathematical proof

• Base Case: We need to show,

(∀N, M) N + (M + 0) = (N + M) + 0.

We can do this trivially, by simplification with the equation

eq N + 0 = N .
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The ITP: an Inductive Theorem Prover Mathematical proof

• Induction Step: We think of L as a generic constant and assume
that the associativity equation (induction hypothesis (IH))

(∀N, M) N + (M + L) = (N + M) + L

holds for that constant. Then we try to prove the equation,

(∀N, M) N + (M + s(L)) = (N + M) + s(L)

using the induction hypothesis. Again, we can do this by
simplification with the equations E in NAT, and the induction
hypothesis IH equation, since we have,

N + (M + s(L)) −→E N + s(M + L)

−→E s(N + (M + L))

−→IH s((N + M) + L)

and

(N + M) + s(L) −→E s((N + M) + L).

q.e.d
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The ITP: an Inductive Theorem Prover Machine-assisted proof with Maude’s ITP

Machine-assisted proof of associativity of addition
We first load into Maude the module, say,

fmod NATURAL is

sort Natural .

op 0 : -> Natural [ctor] .

op s : Natural -> Natural [ctor] .

op _+_ : Natural Natural -> Natural .

vars N M : Natural .

eq N + 0 = N .

eq N + s(M) = s(N + M) .

endfm

We then enter our associativity goal

Maude> (goal assoc : NATURAL |- A{N:Natural ; M:Natural ; L:Natural}
((N + (M + L)) = ((N + M) + L)) .)

=================================

label-sel: assoc@0

=================================

A{N:Natural ; M:Natural ; L:Natural}
N:Natural + (M:Natural + L:Natural) = (N:Natural + M:Natural) + L:Natural

+++++++++++++++++++++++++++++++++
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The ITP: an Inductive Theorem Prover Machine-assisted proof with Maude’s ITP

We can then try to prove goal assoc@0 by induction on L:Natural:

Maude> (ind on L:Natural .)

=================================

label-sel: assoc@1.0

=================================

A{N:Natural ; M:Natural}
N:Natural + (M:Natural + 0) = (N:Natural + M:Natural) + 0

=================================

label: assoc@2.0

=================================

A{V0#0:Natural}
(A{N:Natural ; M:Natural}
N:Natural + (M:Natural + V0#0:Natural)

= (N:Natural + M:Natural) + V0#0:Natural)

==>

(A{N:Natural ; M:Natural}
N:Natural + (M:Natural + s(V0#0:Natural))

= (N:Natural + M:Natural) + s(V0#0:Natural))

+++++++++++++++++++++++++++++++++
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The ITP: an Inductive Theorem Prover Machine-assisted proof with Maude’s ITP

We can then try prove the above “base case” subgoal by using the ITP’s
auto tactic that—after turning the variables into constants by the
constants lemma (more on this later) and doing implication elimination if
necessary—tries to simplify the goal by applying equations in the module,
until hopefully reaching an identity.

Maude> (auto .)

=================================

label-sel: assoc@2.0

=================================

A{V0#0:Natural}
(A{N:Natural ; M:Natural}
N:Natural + (M:Natural + V0#0:Natural)

= (N:Natural + M:Natural) + V0#0:Natural)

==>

(A{N:Natural ; M:Natural}
N:Natural + (M:Natural + s(V0#0:Natural))

= (N:Natural + M:Natural) + s(V0#0:Natural))

+++++++++++++++++++++++++++++++++
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The ITP: an Inductive Theorem Prover Machine-assisted proof with Maude’s ITP

We can likewise apply the auto tactic to the second goal, thus proving
the associativity theorem.

Maude> (auto .)

q.e.d

+++++++++++++++++++++++++++++++++

Note that, in this case, both the constants lemma and implication
elimination had to be invoked by auto before being able to simplify both
sides of the conclusion using the induction hypothesis.
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The ITP: an Inductive Theorem Prover Machine-assisted proof with Maude’s ITP

Using Lemmas

• Often, attempts at simplification using the auto tactic do not
succeed.

• However, they suggest lemmas to be proved.

• Consider the following goal of proving commutativity of addition in
our NATURAL module:

Maude> (goal comm : NATURAL |- A{N:Natural ; M:Natural}
((N + M) = (M + N)) .)

=================================

label-sel: comm@0

=================================

A N:Natural ; M:Natural N:Natural + M:Natural = M:Natural + N:Natural

+++++++++++++++++++++++++++++++++
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The ITP: an Inductive Theorem Prover Machine-assisted proof with Maude’s ITP

We can try to prove it by induction on M:Nat

Maude> (ind on M:Natural .)

=================================

label-sel: comm@1.0

=================================

A {N:Natural} N:Natural + 0 = 0 + N:Natural

=================================

label: comm@2.0

=================================

A {V0#0:Natural}
(A {N:Natural}
N:Natural + V0#0:Natural = V0#0:Natural + N:Natural)

==>

(A {N:Natural} N:Natural + s(V0#0:Natural) = s(V0#0:Natural) + N:Natural)
+++++++++++++++++++++++++++++++++
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The ITP: an Inductive Theorem Prover Machine-assisted proof with Maude’s ITP

When we apply the auto tactic to this first goal we get,

Maude> (auto .)

=================================

label-sel: comm@1.0

=================================

N*Natural = 0 + N*Natural

+++++++++++++++++++++++++++++++++
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The ITP: an Inductive Theorem Prover Machine-assisted proof with Maude’s ITP

What we can do is to assume the unsimplified equation yielded by auto
as a lemma in the proof of our main goal.

Maude> (lem 0-comm : A N:Natural ((0 + N) = (N)) .)

=================================

label-sel: 0-comm@0

=================================

A {N:Natural} 0 + N:Natural = N:Natural

=================================

label: comm@1.0

=================================

N*Natural = 0 + N*Natural

=================================

label: comm@2.0

=================================

A {V0#0:Natural}
(A {N:Natural} N:Natural + V0#0:Natural = V0#0:Natural + N:Natural)
==>

(A {N:Natural} N:Natural + s(V0#0:Natural) = s(V0#0:Natural) + N:Natural)
+++++++++++++++++++++++++++++++++
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The ITP: an Inductive Theorem Prover Machine-assisted proof with Maude’s ITP

Maude> (ind on N:Natural .)

=================================

label-sel: 0-comm@1.0

=================================

0 + 0 = 0

=================================

label: 0-comm@2.0

=================================

A {V1#0:Natural}
0 + V1#0:Natural = V1#0:Natural ==> 0 + s(V1#0:Natural) = s(V1#0:Natural)

=================================

label: comm@1.0

=================================

N*Natural = 0 + N*Natural

=================================

label: comm@2.0

=================================

A{V0#0:Natural}
(A{N:Natural} N:Natural + V0#0:Natural = V0#0:Natural + N:Natural)
==>

(A{N:Natural} N:Natural + s(V0#0:Natural) = s(V0#0:Natural)+ N:Natural)
+++++++++++++++++++++++++++++++++
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The ITP: an Inductive Theorem Prover Machine-assisted proof with Maude’s ITP

Maude> (auto .)

=================================

label-sel: 0-comm@2.0

=================================

A{V1#0:Natural}
0 + V1#0:Natural = V1#0:Natural

==>

0 + s(V1#0:Natural) = s(V1#0:Natural)

+++++++++++++++++++++++++++++++++

Maude> (auto .)

=================================

label-sel: comm@1.0

=================================

N*Natural = 0 + N*Natural

+++++++++++++++++++++++++++++++++
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The ITP: an Inductive Theorem Prover Machine-assisted proof with Maude’s ITP

Proving now our first original subgoal becomes automatic (because of the
lemma) but we are then faced with the second original subgoal:

Maude> (auto .)

=================================

label-sel: comm@2.0

=================================

A {V0#0:Natural}
(A {N:Natural} N:Natural + V0#0:Natural = V0#0:Natural + N:Natural)
==>

(A {N:Natural} N:Natural + s(V0#0:Natural) = s(V0#0:Natural)+ N:Natural)
+++++++++++++++++++++++++++++++++
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The ITP: an Inductive Theorem Prover Machine-assisted proof with Maude’s ITP

We can apply also the auto tactic to the remaining goal comm@2.0, but,
again, we get an unproved equality that we can use as a suggestion for a
new lemma.

Maude> (auto .)

=================================

label-sel: comm@2.0

=================================

s(V0#0*Natural + N*Natural) = s(V0#0*Natural)+ N*Natural

+++++++++++++++++++++++++++++++++

Maude> (lem s-comm : AN:Natural ; M:Natural ((s(M) + N) = (s(M + N))) .)

=================================

label: comm@2.0

=================================

s(V0#0*Natural + N*Natural) = s(V0#0*Natural)+ N*Natural

=================================

label-sel: s-comm@0

=================================

A{N:Natural ; M:Natural} s(M:Natural) + N:Natural = s(M:Natural + N:Natural)
+++++++++++++++++++++++++++++++++
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The ITP: an Inductive Theorem Prover Machine-assisted proof with Maude’s ITP

We can again enter and prove this lemma by induction on N:Natural
and two applications of the auto tactic, which brings us back to our last
unproved subgoal, which we can discharge with a last auto command.

Maude> (ind on N:Natural .)

=================================

label: comm@2.0

=================================

s(V0#0*Natural + N*Natural) = s(V0#0*Natural) + N*Natural

=================================

label-sel: s-comm@1.0

=================================

A{M:Natural} s(M:Natural) + 0 = s(M:Natural + 0)

=================================

label: s-comm@2.0

=================================

A {V1#0:Natural}
(A {M:Natural} s(M:Natural) + V1#0:Natural = s(M:Natural + V1#0:Natural))
==>

(A {M:Natural} s(M:Natural) + s(V1#0:Natural) = s(M:Natural + s(V1#0:Natural)))
+++++++++++++++++++++++++++++++++
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The ITP: an Inductive Theorem Prover Machine-assisted proof with Maude’s ITP

Maude> (auto .)

=================================

label-sel: s-comm@2.0

=================================

A{V1#0:Natural}
(A{M:Natural} s(M:Natural)+ V1#0:Natural = s(M:Natural + V1#0:Natural))
==>

(A{M:Natural} s(M:Natural)+ s(V1#0:Natural) = s(M:Natural + s(V1#0:Natural)))
+++++++++++++++++++++++++++++++++

Maude> (auto .)

=================================

label-sel: comm@2.0

=================================

s(V0#0*Natural + N*Natural) = s(V0#0*Natural) + N*Natural

+++++++++++++++++++++++++++++++++

Maude> (auto .)

q.e.d

+++++++++++++++++++++++++++++++++
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The ITP: an Inductive Theorem Prover The ITP Inference Rules

The ITP inference rules

• In the ITP we reason backwards, replacing the main goal G we want
to prove by subgoals, G1, . . . , Gn, such that if we prove each of the
subgoals, then we have proved the main goal.

G
G1 . . . Gn
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The ITP: an Inductive Theorem Prover The ITP Inference Rules

The cns inference rule

• The lemma of constants converts universally quantified variables in a
goal into constants.

• The fact that this is a semantically valid inference is based on the
Constants Lemma, which states the equivalence between
satisfiability of a quantified equation, and of the same equation with
the variables transformed into generic constants,

E |=Σ (∀X) t = t′ ⇔ E |=Σ(X) (∀∅) t = t′.

• Thanks to the completeness of equational reasoning, this is
expressed in the ITP as the cns rule,

E `Σ (∀X) t = t′

E `Σ(X) (∀∅) t = t′
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The ITP: an Inductive Theorem Prover The ITP Inference Rules

Reasoning by cases: the split rule

• Given an unquantified goal without variables and given a
Boolean-valued expression involving some of those generic
constants, the split rule splits a given goal into two:

• one assuming the expression true, and
• another assuming it false.

• Applications of split should protect BOOL.
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The ITP: an Inductive Theorem Prover The ITP Inference Rules

Structural induction: the ind rule
Given a specification with a subsignature Ω of constructors, proving an
inductive property of the form (∀x : s) P(x) consists in proving:

• Base Case. For any constant a : −→ s′ in Ω with s′ ≤ s, the
subgoal P(x/a).
• Induction Step. For each constructor f : s1 . . . sn −→ s′ in Ω with

s′ ≤ s, where the sorts si1 , . . . , sik are those among the s1 . . . sn such
that sij ≤ s, 1 ≤ j ≤ k, the subgoal,

(∀x1 : s1, . . . , xn : sn) P(x/xi1)∧ . . .∧P(x/xik)⇒ P(x/f (x1, . . . , xn)).

This becomes an inductive inference rule of the form,

(∀x : s) P(x)∧
i P(x/ai) ∧

∧
j(∀x : s) P(x/xi1) ∧ . . . ∧ P(x/xik)⇒ P(x/fj(x1, . . . , xnj))

where the ai and the fj include all the constructor constants and
operators meeting the properties specified above, and where (∀x : s)
abbreviates (∀x1 : s1, . . . , xnj : snj).
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The ITP: an Inductive Theorem Prover The ITP Inference Rules

Need to check sufficient completeness

• The declared subsignature of constructors must be correct.

• We need to check that it is sufficiently complete, ... for example
using the SCC tool.
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The Sufficient Completeness Checker

SCC: a sufficient completeness checker for Maude specs

• We need methods to check that an equational theory (Σ, E) is
sufficiently complete.

• For arbitrary equational theories sufficient completeness is in general
undecidable.

• We may have to do some inductive theorem proving.

• Sufficient completeness is decidable for a very broad class of
order-sorted theories, namely, unconditional theories of the form
(Σ, E∪A) with A a set of axioms for operators allowing any
combination of associativity/commutativity/identity, except
associativity alone, or associativity and identity alone, and E:

1 left-linear;
2 ground confluent and sort-decreasing; and
3 weakly terminating.

• If (1)-(3) are satisfied, sufficient completeness becomes decidable in
practice if A includes operators that are only A, or AU, for many
specifications of interest using specialized heuristic algorithms.
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The Sufficient Completeness Checker

The Maude SCC tool

• The Maude Sufficient Completeness Checker (SCC) is a tool
developed by Joseph Hendrix at UIUC.

• It uses a library of tree automata modulo A operations also
developed by him, called CETA, and reduces the sufficient
completeness problem of specification (Σ, E∪A) satisfying
conditions (1)–(3) to the emptiness problem for the tree automaton
ADs−(Red∪Cs) for each sort s in Σ.

• It outputs either “success” or a set of counterexample terms.
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The Sufficient Completeness Checker

An example of use

Maude> fmod NATURAL is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

vars X Y : Nat .

eq X + 0 = X .

eq X + s(Y) = s(X + Y) .

endfm

Maude> select SCC-LOOP .

Maude> loop init-scc .

Maude> (scc NATURAL .)

Checking sufficient completeness of NATURAL ...

Success: NATURAL is sufficiently complete under the

assumption that it is weakly-normalizing, confluent,

and sort-decreasing.
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The Sufficient Completeness Checker

Counterexample in case of failure

Maude> fmod MY-LIST is

protecting NAT .

sorts NzList List .

subsorts Nat < NzList < List .

op _;_ : List List -> List [assoc] .

op _;_ : NzList NzList -> NzList [assoc ctor] .

op nil : -> List [ctor] .

op rev : List -> List .

eq rev(nil) = nil .

eq rev(N:Nat) = N:Nat .

eq rev(N:Nat ; L:List) = rev(L:List) ; N:Nat .

endfm

Maude> select SCC-LOOP .

Maude> loop init-scc .

Maude> (scc MY-LIST .)

Checking sufficient completeness of MY-LIST ...

Failure: The term 0 ; nil is a counterexample as it is a

irreducible term with sort List in MY-LIST that does

not have sort List in the constructor subsignature.
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A revised version of MY-LIST
Maude> fmod MY-LIST2 is

protecting NAT .

sorts NzList List .

subsorts Nat < NzList < List .

op ; : List List -> List [assoc] .

op ; : NzList NzList -> NzList [assoc ctor] .

op nil : -> List [ctor] .

op rev : List -> List .

eq rev(nil) = nil .

eq rev(N:Nat) = N:Nat .

eq rev(N:Nat ; L:List) = rev(L:List) ; N:Nat .

eq nil ; L:List = L:List .

eq L:List ; nil = L:List .

endfm

Maude> select SCC-LOOP .

Maude> loop init-scc .

Maude> (scc MY-LIST2 .)

Checking sufficient completeness of MY-LIST2 ...

Success: MY-LIST2 is sufficiently complete under the assumption

that it is weakly-normalizing, confluent, and sort-decreasing.
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