
Model Checking Verification in Maude

José Meseguer

Computer Science Department

University of Illinois at Urbana-Champaign

1

LTL Verification of Declarative Concurrent Programs

Proving that a Maude system module satisfies a property ϕ

means proving that the corresponding initial model does:

TR |= ϕ.

Invariants can be verified with the search command. But

properties that talk about infinite behavior (e.g., fairness)

require a richer logic, such as Linear Temporal Logic (LTL).

Because in LTL we have a “next” operator © which talks

not just about what is reachable in general, but what is

reachable in one step, we will need a tighter notion of

model than TR. This is provided by the Kripke structure

K(R, k)Π associated to the rewrite theory R with state

predicates Π. So our satisfaction problem will be recast as:

K(R, k)Π, [t] |= ϕ.

2

The Syntax of LTL(AP)

Given a set AP of atomic propositions, we define the

formulae of the propositional linear temporal logic LTL(AP)

inductively as follows:

• True: ⊤ ∈ LTL(AP).

• Atomic propositions: If p ∈ AP , then p ∈ LTL(AP).

• Next operator: If ϕ ∈ LTL(AP), then ©ϕ ∈ LTL(AP).

• Until operator: If ϕ, ψ ∈ LTL(AP), then

ϕ U ψ ∈ LTL(AP).

• Boolean connectives: If ϕ, ψ ∈ LTL(AP), then the

formulae ¬ϕ, and ϕ ∨ ψ are in LTL(AP).

3

The Syntax of LTL(AP) (II)

Other LTL connectives can be defined in terms of the

above minimal set of connectives as follows:

• Other Boolean connectives:

◦ False: ⊥ = ¬⊤

◦ Conjunction: ϕ ∧ ψ = ¬((¬ϕ) ∨ (¬ψ))

◦ Implication: ϕ→ ψ = (¬ϕ) ∨ ψ.

4

• Other temporal operators:

◦ Eventually: 3ϕ = ⊤ U ϕ

◦ Henceforth: 2ϕ = ¬3¬ϕ

◦ Release: ϕ R ψ = ¬((¬ϕ) U (¬ψ))

◦ Unless: ϕW ψ = (ϕ U ψ) ∨ (2ϕ)

◦ Leads-to: ϕ ; ψ = 2(ϕ→ (3ψ))

◦ Strong implication: ϕ⇒ ψ = 2(ϕ→ ψ)

◦ Strong equivalence: ϕ⇔ ψ = 2(ϕ↔ ψ).

5

Kripke Structures

Kripke structures are the natural models for propositional

temporal logic. Essentially, a Kripke structure is a (total)

unlabeled transition system to which we have added a

collection of unary state predicates on its set of states.

A binary relation R ⊆ A×A on a set A is called total iff for

each a ∈ A there is at least one a′ ∈ A such that (a, a′) ∈ R.

If R is not total, it can be made total by defining

R• = R ∪ {(a, a) ∈ A2 |6 ∃a′ ∈ A (a, a′) ∈ R}.

6

Kripke Structures (II)

A Kripke structure is a triple A = (A,→A, L) such that A is a

set, called the set of states, →A is a total binary relation on

A, called the transition relation, and L : A −→ P(AP) is a

function, called the labeling function, associating to each

state a ∈ A the set L(a) of those atomic propositions in AP

that hold in the state a.

How can we associate a Kripke structure to a rewrite theory

R = (Σ, E, φ,R)? We just need to make explicit two things:

(1) the intended kind k of states in the signature Σ; and (2)

the relevant state predicates, that is, the relevant set AP of

atomic propositions. Having fixed k, our associated Kripke

structure has as set of states those of kind k in the initial

model, that is, TΣ/E.

7

Kripke Structures (III)

The corresponding transition relation will the totalization

(→1
R

)• of the one-step rewrite relation →1
R

on TΣ/E,k, where,

by definition, [t] →1
R

[t′] iff there are terms u ∈ [t] and u′ ∈ [t′]

and a proof R ⊢′ u→1
R
u′.

If R satisfies the usual executability requirements we have

an isomorphism TR ∼= CR and our desired Kripke structure

has a much more intiuitive equivalent representation: its set

of states is the set of canonical terms CΣ/E,k, and its

transition relation is the totalization (→1
CR

)• of the one-step

transition relation →1
CR

.

We will explain later in this lecture how the remaining part

of the Kripke structure, namely the labeling function

specifying the state predicates, can also be defined.

8

The Semantics of LTL(AP)

The semantics of the temporal logic LTL is defined by

means of a satisfaction relation

A, a |= ϕ

between a Kripke structure A having AP as its atomic

propositions, a state a ∈ A, and an LTL formula

ϕ ∈ LTL(AP). Specifically, A, a |= ϕ holds iff for each path

π ∈ Path(A)a the path satisfaction relation

A, π |= ϕ

holds, where we define the set Path(A)a of computation

paths starting at state a as the set of functions of the form

π : IN −→ A such that π(0) = a and, for each n ∈ IN, we have

π(n) →A π(n+ 1).

9

The Semantics of LTL(AP) (II)

We can define the path satisfaction relation (for any path,

beginning at any state) inductively as follows:

• We always have A, π |=LTL ⊤.

• For p ∈ AP ,

A, π |=LTL p ⇔ p ∈ L(π(0)).

• For ©ϕ ∈ LTL(A),

A, π |=LTL ©ϕ ⇔ A, s;π |=LTL ϕ,

where s : IN −→ IN is the successor function.

10

• For ϕ U ψ ∈ LTL(A),

A, π |=LTL ϕ U ψ ⇔

(∃n ∈ IN) ((A, sn;π |=LTL ψ)∧((∀m ∈ IN) m < n ⇒ A, sm;π |=LTL ϕ)).

• For ¬ϕ ∈ LTL(AP),

A, π |=LTL ¬ϕ ⇔ A, π 6|=LTL ϕ.

• For ϕ ∨ ψ ∈ LTL(AP),

A, π |=LTL ϕ ∨ ψ ⇔

A, π |=LTL ϕ or A, π |=LTL ψ.

11

The LTL Module

The LTL syntax, in a typewriter approximation of the

mathematical syntax, is supported in Maude by the

following LTL functional module (in the file

model-checker.maude).

mod LTL is

protecting BOOL .

sort Formula .

*** primitive LTL operators

ops True False : -> Formula [ctor format (g o)] .

op ~_ : Formula -> Formula [ctor prec 53 format (r o d)] .

op _/_ : Formula Formula -> Formula [comm ctor gather (E e)

prec 55 format (d r o d)] .

op _\/_ : Formula Formula -> Formula [comm ctor gather (E e)

prec 59 format (d r o d)] .

12

op O_ : Formula -> Formula [ctor prec 53 format (r o d)] .

op _U_ : Formula Formula -> Formula [ctor prec 63 format (d r o d)] .

op _R_ : Formula Formula -> Formula [ctor prec 63 format (d r o d)] .

*** defined LTL operators

op _->_ : Formula Formula -> Formula [gather (e E) prec 65

format (d r o d)] .

op _<->_ : Formula Formula -> Formula [prec 65 format (d r o d)] .

op <>_ : Formula -> Formula [prec 53 format (r o d)] .

op []_ : Formula -> Formula [prec 53 format (r d o d)] .

op _W_ : Formula Formula -> Formula [prec 63 format (d r o d)] .

op _|->_ : Formula Formula -> Formula [prec 63 format (d r o d)] .

*** leads-to

op _=>_ : Formula Formula -> Formula [gather (e E) prec 65

format (d r o d)] .

op _<=>_ : Formula Formula -> Formula [prec 65 format (d r o d)] .

vars f g : Formula .

eq f -> g = ~ f \/ g .

eq f <-> g = (f -> g) /\ (g -> f) .

13

eq <> f = True U f .

eq [] f = False R f .

eq f W g = (f U g) \/ [] f .

eq f |-> g = [](f -> (<> g)) .

eq f => g = [] (f -> g) .

eq f <=> g = [] (f <-> g) .

*** negative normal form

eq ~ True = False .

eq ~ False = True .

eq ~ ~ f = f .

eq ~ (f \/ g) = ~ f /\ ~ g .

eq ~ (f /\ g) = ~ f \/ ~ g .

eq ~ O f = O ~ f .

eq ~(f U g) = (~ f) R (~ g) .

eq ~(f R g) = (~ f) U (~ g) .

endfm

14

The LTL Module (II)

Note that, for the moment, no set AP of atomic

propositions has been specified in the LTL module. We will

explain in what follows how such atomic propositions are

defined for a given system module M, and how they are

added to the LTL module as a subsort Prop of Formula.

Note that the nonconstructor connectives have been defined

in terms of more basic constructor connectives in the first

set of equations. But since there are good reasons to put

an LTL formula in negative normal form by pushing the

negations next to the atomic propositions (this is specified

by the second set of equations) we need to consider also

the duals of the basic connectives ⊤, ©, U , and ∨ as

constructors. That is, we need to also have as constructors

the dual connectives: ⊥, R, and ∧ (note that © is self-dual).

15

Associating Kripke structures to Rewrite Theories

Since the models of temporal logic are Kripke structures, we

need to explain how we can associate a Kripke structure to

the rewrite theory specified by a Maude system module M.

Indeed, we associate a Kripke structure to the rewrite theory

R = (Σ, E, φ,R) specified by a Maude system module M by

making explicit two things: (1) the intended kind k of states

in the signature Σ; and (2) the relevant state predicates,

that is, the relevant set AP of atomic propositions.

In general, the state predicates need not be part of the

system specification and therefore they need not be

specified in our system module M. They are typically part of

the property specification.

16

Associating Kripke structures to Rewrite Theories (II)

This is because the state predicates need not be related to

the operational semantics of M: they are just certain

predicates about the states of the system specified by M

that are needed to specify some properties.

Therefore, after choosing a given kind, say [Foo], in M as

our kind for states we can specify the relevant state

predicates in a module M-PREDS which is a protecting

extension of M according to the following general pattern:

mod M-PREDS is protecting M .

including SATISFACTION .

subsort Foo < State .

...

endm

17

Associating Kripke structures to Rewrite Theories (III)

Where the dots ‘...’ indicate the part in which the syntax

and semantics of the relevant state predicates is specified,

as further explained in what follows. The module

SATISFACTION (which is contained in the file

model-checker.maude) is very simple, and has the following

specification:

fmod SATISFACTION is

protecting BOOL

sorts State Prop .

op _|=_ : State Prop -> Bool [frozen] .

endfm

where the sort State is unspecified. However, by importing

SATISFACTION into M-PREDS and giving the subsort declaration

18

Associating Kripke structures to Rewrite Theories (IV)

subsort Foo < State .

all terms of sort Foo in M are also made terms of sort State.

Note that we then have the kind identity, [Foo]=[State].

The operator

op _|=_ : State Prop -> Bool [frozen] .

is crucial to define the semantics of the relevant state

predicates in M-PREDS. Each such state predicate is declared

as an operator of sort Prop.

In standard LTL propositional logic the set AP of atomic

propositions is assumed to be a set of constants.

19

Associating Kripke structures to Rewrite Theories (V)

In Maude we can define parametric state predicates, that is,

operators of sort Prop which need not be constants, but

may have one or more sorts as parameter arguments. We

then define the semantics of such state predicates (when

the predicate holds) by appropriate equations.

We can illustrate all this by means of a simple mutual

exclusion example. Suppose that our original system

module M is the following module MUTEX, in which two

processes, one named a and another named b, can be either

waiting or in their critical section, and take turns accessing

their critical section by passing each other a different token

(either $ or *).

20

Associating Kripke structures to Rewrite Theories (VI)

mod MUTEX is

sorts Name Mode Proc Token Conf .

subsorts Token Proc < Conf .

op none : -> Conf .

op __ : Conf Conf -> Conf [assoc comm id: none] .

ops a b : -> Name .

ops wait critical : -> Mode .

op [_,_] : Name Mode -> Proc .

ops * $: -> Token .

rl [a-enter] : $ [a,wait] => [a,critical] .

rl [b-enter] : * [b,wait] => [b,critical] .

rl [a-exit] : [a,critical] => [a,wait] * .

rl [b-exit] : [b,critical] => [b,wait] $.

endm

21

Associating Kripke structures to Rewrite Theories (VII)

Our obvious kind for states is the kind [Conf] of

configurations. In order to state the desired safety and

liveness properties we need state predicates telling us

whether a process is waiting or is in its critical section. We

can make these predicates parametric on the name of the

process and define their semantics as follows:

mod MUTEX-PREDS is protecting MUTEX . including SATISFACTION .

subsort Conf < State .

ops crit wait : Name -> Prop .

var N : Name .

var C : Conf .

eq [N,critical] C |= crit(N) = true .

eq C |= crit(N) = false [owise] .

eq [N,wait] C |= wait(N) = true .

eq C |= wait(N) = false [owise] .

endm

22

Associating Kripke structures to Rewrite Theories (VIII)

The above example illustrates a general method by which

desired state predicates for a module M are defined in a

protecting extension, say M-PREDS, of M which imports

SATISFACTION.

One specifies the desired states by choosing a sort in M and

declaring it as a subsort of State. One then defines the

syntax of the desired state predicates as operators of sort

Prop, and defines their semantics by means of a set of

equations that specify for what states a given state

predicate evaluates to true.

We assume that those equations, when added to those of M,

are (ground) Church-Rosser and terminating.

23

Associating Kripke structures to Rewrite Theories (IX)

Since we should protect BOOL, it is important to make sure

that satisfaction of state predicates is fully defined. This

can be checked with Maude’s SCC tool.

This means that we should give equations for when the

predicates are true and when they are false. In practice,

however, this often reduces to specifying when a predicate

is true by means of (possibly conditional) equations of the

general form,

t |= p(v1, . . . , vn) = true if C

because we can cover all the remaining cases, when it is

false, with an equation

x : State |= p(y1, . . . , yn) = false [owise] .

24

Associating Kripke structures to Rewrite Theories (X)

In other cases, however —for example because we want to

perform further reasoning using formal tools— we may fully

define the true and false cases of a predicate not by using

the [owise] attribute, but by explicit (possibly conditional)

equations of the more general form,

t |= p(v1, . . . , vn) = bexp if C,

where bexp is an arbitrary Boolean expression.

We can now associate to a system module M specifying a

rewrite theory R = (Σ, E, φ,R) (with a selected kind k of

states and with state predicates Π defined by means of

equations D in a protecting extension M-PREDS of M) a Kripke

structure whose atomic predicates are specified by the set

25

Associating Kripke structures to Rewrite Theories (XI)

APΠ = {θ(p) | p ∈ Π, θ ground substitution},

where, by convention, we use the simplified notation θ(p) to

denote the ground term θ(p(x1, . . . , xn)).

This defines a labeling function LΠ on the set of states

TΣ/E,k assigning to each [t] ∈ TΣ/E,k the set of atomic

propositions,

LΠ([t]) = {θ(p) ∈ APΠ | (E ∪D) ⊢ (∀ ∅) t |= θ(p) = true}.

The Kripke structure we are interested in is then

K(R, k)Π = (TΣ/E,k, (→
1
R)•, LΠ)

26

Associating Kripke structures to Rewrite Theories (XII)

If R satisfies the usual executability requirements we have

the isomorphism TR ∼= CR, and K(R, k)Π has an isomorphic

representation as the Kripke structure (CΣ/E,k, (→
1
CR

)•, LC
Π),

where, by definition, for each t ∈ CΣ/E,k we have,

LC
Π(t) = {θ(p) ∈ APΠ | canE∪D(t |= θ(p)) = true}.

This is the most intituitive and computable representation

for our desired Kripke structure, and indeed the one used by

Maude for LTL model checking purposes. Therefore, to

ensure correctness of LTL model checking in Maude it is

essential to check that R satisfies the usual executability

requirements.

27

Decidability of Propositional LTL

It is well-known that, for any computable Kripke structure

A = (A,→A, L), any state a ∈ A such that the set

ReachA(a) = {x ∈ A | ∃π ∈ Path(A) ∃n ∈ IN s.t. π(0) = a∧π(n) = x}

of states reachable from a in A is finite, and any LTL

formula ϕ ∈ LTL(AP), where L : A −→ P(AP), there is a

decision procedure that can effectively decide the

satisfaction relation,

A, a |=LTL ϕ.

Furthermore, if A, a 6|=LTL ϕ, the decision procedure will

exhibit a counterexample, that is, a path not satisfying ϕ.

28

Decidability of Propositional LTL (II)

A decision procedure of this kind is called a model checking

algorithm, since it checks whether ϕ holds in the model A

with initial state a. Detailed discussion of such algorithms

for a variety of temporal logics such as LTL,CTL, and CTL∗

is beyond the scope of this lecture; see the excellent text

“Model Checking” by Clark, Grumberg, and Peled. There

are two rough classes of model checking algorithms:

• explicit-state model checking algorithms, that explicitly

search the state space of A to find a counterexample;

• symbolic model checking algoritms, that use a symbolic

representation of sets of states (BDDs or other

representations) to compute the fixpoint of the

transition relation, i.e., the set ReachA(a).

29

The Maude Model Checker

Suppose that, given a system module M specifying a rewrite

theory R = (Σ, E, φ,R), we have:

• chosen a kind k in M as our kind of states;

• defined some state predicates Π and their semantics in

a module, say M-PREDS, protecting M by the method

already explained in this lecture.

Then, as explained earlier, this defines a Kripke structure

K(R, k)Π on the set of atomic propositions APΠ. Given an

initial state [t] ∈ TΣ/E,k and an LTL formula ϕ ∈ LTL(APΠ)

we would like to have a procedure to decide the satisfaction

relation,

30

The Maude Model Checker (II)

K(R, k)Π, [t] |= ϕ.

By applying the general LTL decidability results to our

Kripke structure K(R, k)Π, this satisfaction relation becomes

decidable if two conditions hold:

1. The set of states in TΣ/E,k that are reachable from [t]

by rewriting is finite.

2. The rewrite theory R = (Σ, E, φ,R) specified by M plus

the equations D defining the predicates Π are such that:

31

The Maude Model Checker (III)

• both E and E ∪D are (ground) Church-Rosser and

terminating, perhaps modulo some axioms A, and

• R is (ground) coherent relative to E (again, perhaps

modulo some axioms A).

Under these assumptions, both the state predicates Π and

the transition relation →1
R

are computable and, given the

finite reachability assumption, we can then settle the above

satisfaction problem using a model checking procedure.

Specifically, Maude uses an on-the-fly LTL model checking

procedure of the style described by Clark, Grumberg, and

Peled.

32

The Maude Model Checker (III)

The basis of this procedure is the following. Each LTL

formula ϕ has an associated Büchi automaton Bϕ whose

acceptance ω-language is exactly that of the behaviors

satisfying ϕ. We can then reduce the satisfaction problem

K(R, k)Π, [t] |= ϕ

to the emptiness problem of the language accepted by the

synchronous product of B¬ϕ and (the Büchi automaton

associated to) (K(R, k)Π, [t]). The formula ϕ is satisfied iff

such a language is empty. The model checking procedure

checks emptiness by looking for a counterexample, that is,

an infinite computation belonging to the language

recognized by the synchronous product.

33

The Maude Model Checker (IV)

This makes clear our interest in obtaining the negative

normal form of a formula ¬ϕ, since we need it to build the

Büchi automaton B¬ϕ.

For efficiency purposes we need to make B¬ϕ as small as

possible. The following module LTL-SIMPLIFIER (also in the

model-checker.maude file) tries to further simplify the

negative normal form of the formula ¬ϕ in the hope of

generating a smaller Büchi automaton B¬ϕ. This module is

optional (the user may choose to include it or not when

doing model checking) but tends to help building a smaller

B¬ϕ.

34

The Maude Model Checker (V)

fmod LTL-SIMPLIFIER is

including LTL .

*** The simplifier is based on:

*** Kousha Etessami and Gerard J. Holzman,

*** "Optimizing Buchi Automata", p153-167, CONCUR 2000, LNCS 1877.

*** We use the Maude sort system to do much of the work.

sorts TrueFormula FalseFormula PureFormula PE-Formula PU-Formula .

subsort TrueFormula FalseFormula < PureFormula <

PE-Formula PU-Formula < Formula .

op True : -> TrueFormula [ctor ditto] .

op False : -> FalseFormula [ctor ditto] .

op _/_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .

op _/_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .

op _/_ : PureFormula PureFormula -> PureFormula [ctor ditto] .

35

op _\/_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .

op _\/_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .

op _\/_ : PureFormula PureFormula -> PureFormula [ctor ditto] .

op O_ : PE-Formula -> PE-Formula [ctor ditto] .

op O_ : PU-Formula -> PU-Formula [ctor ditto] .

op O_ : PureFormula -> PureFormula [ctor ditto] .

op _U_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .

op _U_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .

op _U_ : PureFormula PureFormula -> PureFormula [ctor ditto] .

op _U_ : TrueFormula Formula -> PE-Formula [ctor ditto] .

op _U_ : TrueFormula PU-Formula -> PureFormula [ctor ditto] .

op _R_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .

op _R_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .

op _R_ : PureFormula PureFormula -> PureFormula [ctor ditto] .

op _R_ : FalseFormula Formula -> PU-Formula [ctor ditto] .

op _R_ : FalseFormula PE-Formula -> PureFormula [ctor ditto] .

vars p q r s : Formula .

var pe : PE-Formula .

var pu : PU-Formula .

var pr : PureFormula .

36

*** Rules 1, 2 and 3; each with its dual.

eq (p U r) /\ (q U r) = (p /\ q) U r .

eq (p R r) \/ (q R r) = (p \/ q) R r .

eq (p U q) \/ (p U r) = p U (q \/ r) .

eq (p R q) /\ (p R r) = p R (q /\ r) .

eq True U (p U q) = True U q .

eq False R (p R q) = False R q .

*** Rules 4 and 5 do most of the work.

eq p U pe = pe .

eq p R pu = pu .

*** An extra rule in the same style.

eq O pr = pr .

*** We also use the rules from:

*** Fabio Somenzi and Roderick Bloem,

*** "Efficient Buchi Automata from LTL Formulae",

*** p247-263, CAV 2000, LNCS 1633.

*** that are not subsumed by the previous system.

37

*** Four pairs of duals.

eq O p /\ O q = O (p /\ q) .

eq O p \/ O q = O (p \/ q) .

eq O p U O q = O (p U q) .

eq O p R O q = O (p R q) .

eq True U O p = O (True U p) .

eq False R O p = O (False R p) .

eq (False R (True U p)) \/ (False R (True U q)) =

False R (True U (p \/ q)) .

eq (True U (False R p)) /\ (True U (False R q)) =

True U (False R (p /\ q)) .

*** <= relation on formula

op _<=_ : Formula Formula -> Bool [prec 75] .

eq p <= p = true .

eq False <= p = true .

eq p <= True = true .

ceq p <= (q /\ r) = true if (p <= q) /\ (p <= r) .

ceq p <= (q \/ r) = true if p <= q .

38

ceq (p /\ q) <= r = true if p <= r .

ceq (p \/ q) <= r = true if (p <= r) /\ (q <= r) .

ceq p <= (q U r) = true if p <= r .

ceq (p R q) <= r = true if q <= r .

ceq (p U q) <= r = true if (p <= r) /\ (q <= r) .

ceq p <= (q R r) = true if (p <= q) /\ (p <= r) .

ceq (p U q) <= (r U s) = true if (p <= r) /\ (q <= s) .

ceq (p R q) <= (r R s) = true if (p <= r) /\ (q <= s) .

*** condition rules depending on <= relation

ceq p /\ q = p if p <= q .

ceq p \/ q = q if p <= q .

ceq p /\ q = False if p <= ~ q .

ceq p \/ q = True if ~ p <= q .

ceq p U q = q if p <= q .

ceq p R q = q if q <= p .

ceq p U q = True U q if p =/= True /\ ~ q <= p .

ceq p R q = False R q if p =/= False /\ q <= ~ p .

ceq p U (q U r) = q U r if p <= q .

ceq p R (q R r) = q R r if q <= p .

endfm

39

The Maude Model Checker (VI)

Suppose that all the requirements listed above to perform

model checking are satisfied. How do we then model check

a given LTL formula in Maude for a given initial state [t] in

a module M? We define a new module, say M-CHECK,

according to the following pattern:

mod M-CHECK is

protecting M-PREDS .

including MODEL-CHECKER .

including LTL-SIMPLIFIER . *** optional

op init : -> k . *** optional

eq init = t . *** optional

endm

The declaration of a constant init of the kind of states is

not necessary: it is a matter of convenience, since the initial

state t may be a large term.

40

The Maude Model Checker (VII)

The module MODEL-CHECKER is as follows.

fmod MODEL-CHECKER is protecting QID . including SATISFACTION .

including LTL .

subsort Prop < Formula .

*** transitions and results

sorts RuleName Transition TransitionList ModelCheckResult .

subsort Qid < RuleName .

subsort Transition < TransitionList .

subsort Bool < ModelCheckResult .

ops unlabeled deadlock : -> RuleName .

op {_,_} : State RuleName -> Transition [ctor] .

op nil : -> TransitionList [ctor] .

op __ : TransitionList TransitionList -> TransitionList [ctor assoc id: nil] .

op counterexample : TransitionList TransitionList -> ModelCheckResult [ctor] .

op modelCheck : State Formula ~> ModelCheckResult [special (...)] .

endfm

41

The Maude Model Checker (VIII)

Its key operator is modelCheck (whose special attribute has

been omitted here), which takes a state and an LTL

formula and returns either the Boolean true if the formula

is satisfied, or a counterexample when it is not satisfied.

Let us illustrate the use of this operator with our MUTEX

example. Following the pattern described above, we can

define the module

mod MUTEX-CHECK is

protecting MUTEX-PREDS .

including MODEL-CHECKER .

including LTL-SIMPLIFIER .

ops initial1 initial2 : -> Conf .

eq initial1 = $ [a,wait] [b,wait] .

eq initial2 = * [a,wait] [b,wait] .

endm

42

The Maude Model Checker (X)

We are then ready to model check different LTL properties

of MUTEX. The first obvious property to check is mutual

exclusion:

Maude> red modelCheck(initial1,[] ~(crit(a) /\ crit(b))) .

reduce in MUTEX-CHECK : modelCheck(initial1, []~ (crit(a) /\ crit(b))) .

rewrites: 18 in 10ms cpu (10ms real) (1800 rewrites/second)

result Bool: true

Maude> red modelCheck(initial2,[] ~(crit(a) /\ crit(b))) .

reduce in MUTEX-CHECK : modelCheck(initial2, []~ (crit(a) /\ crit(b))) .

rewrites: 12 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

43

The Maude Model Checker (XII)

We can also model check the strong liveness property that

if a process waits infinitely often, then it is in its critical

section infinitely often:

Maude> red modelCheck(initial1,([] <> wait(a)) -> ([] <> crit(a))) .

reduce in MUTEX-CHECK : modelCheck(initial1, []<> wait(a) -> []<> crit(a)) .

rewrites: 76 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

Maude> red modelCheck(initial1,([] <> wait(b)) -> ([] <> crit(b))) .

reduce in MUTEX-CHECK : modelCheck(initial1, []<> wait(b) -> []<> crit(b)) .

rewrites: 76 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

Maude> red modelCheck(initial2,([] <> wait(a)) -> ([] <> crit(a))) .

reduce in MUTEX-CHECK : modelCheck(initial2, []<> wait(a) -> []<> crit(a)) .

rewrites: 68 in 10ms cpu (10ms real) (6800 rewrites/second)

44

result Bool: true

Maude> red modelCheck(initial2,([] <> wait(b)) -> ([] <> crit(b))) .

reduce in MUTEX-CHECK : modelCheck(initial2, []<> wait(b) -> []<> crit(b)) .

rewrites: 68 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

45

The Maude Model Checker (XIII)

Of course, not all properties are true. Therefore, instead of

a success we can get a counterexample showing why a

property fails. Suppose that we want to check whether,

beginning in the state initial1, process b will always be

waiting. We then get the counterexample:

Maude> red modelCheck(initial1,[] wait(b)) .

reduce in MUTEX-CHECK : modelCheck(initial1, []wait(b)) .

rewrites: 14 in 10ms cpu (10ms real) (1400 rewrites/second)

result ModelCheckResult:

counterexample({$ [a,wait] [b,wait],’a-enter}

{[a,critical] [b,wait],’a-exit}

{* [a,wait] [b,wait],’b-enter},

{[a,wait] [b,critical],’b-exit}

{$ [a,wait] [b,wait],’a-enter}

{[a,critical] [b,wait],’a-exit}

{* [a,wait] [b,wait],’b-enter})

46

The Maude Model Checker (XIV)

The main counterexample term constructors are:

op {_,_} : State RuleName -> Transition .

op nil : -> TransitionList [ctor] .

op __ : TransitionList TransitionList -> TransitionList [ctor assoc id: nil]

op counterexample : TransitionList TransitionList -> ModelCheckResult [ctor]

A counterexample is a pair consisting of two lists of

transitions: the first is a finite path beginning in the initial

state, and the second describes a loop. This is because, if

an LTL formula ϕ is not satisfied by a finite Kripke

structure, it is always possible to find a counterexample for

ϕ having the form of a path of transitions followed by a

cycle. Note that each transition is represented as a pair,

consisting of a state and the label of the rule applied to

reach the next state.

47

Model Checking TOK-RING

Consider the following TOK-RING module,

(fth NZNAT* is

protecting NAT .

op * : -> NzNat .

endfth)

(fmod NAT/{N :: NZNAT*} is

sort Nat/{N} .

op ‘[_‘] : Nat -> Nat/{N} .

op _+_ : Nat/{N} Nat/{N} -> Nat/{N} .

op _*_ : Nat/{N} Nat/{N} -> Nat/{N} .

vars I J : Nat .

ceq [I] = [I rem *] if I >= * .

eq [I] + [J] = [I + J] .

eq [I] * [J] = [I * J] .

endfm)

48

(omod TOK-RING{N :: NZNAT*) is

protecting NAT/{N} .

sort Mode .

subsort Nat/{N} < Oid .

ops wait critical : -> Mode .

msg tok : Nat/{N} -> Msg .

op init : -> Configuration .

op make-init : Nat/{N} -> Configuration .

class Proc | mode : Mode .

var I : Nat .

ceq init = tok([0]) make-init([I]) if s(I) := * .

ceq make-init([s(I)])

= < [s(I)] : Proc | mode : wait > make-init([I])

if I < * .

eq make-init([0]) = < [0] : Proc | mode : wait > .

rl [enter] : tok([I]) < [I] : Proc | mode : wait >

=> < [I] : Proc | mode : critical > .

rl [exit] : < [I] : Proc | mode : critical >

=> < [I] : Proc | mode : wait > tok([s(I)]) .

endom)

49

Model Checking TOK-RING (II)

The TOK-RING module satisfies the following two properties:

• mutual exclusion, and

• guaranteed reentrance, that is:

◦ each process eventually reaches its critical section,

and

◦ it does so again after 2 × n steps.

There isn’t a single LTL formula stating each of these

properties: they are parametric on n. However, in Full

Maude we can specify these properties by parametic formula

definitions as follows:

50

Model Checking TOK-RING (III)

(omod CHECK-TOK-RING{N :: NZNAT*} is

inc TOK-RING{N} .

inc MODEL-CHECKER .

subsort Configuration < State .

op inCrit : Nat/{N} -> Prop .

op twoInCrit : -> Prop .

var I : Nat .

vars X Y : Nat/{N} .

var C : Configuration .

var F : Formula .

eq < X : Proc | mode : critical > C |= inCrit(X) = true .

eq < X : Proc | mode : critical > < Y : Proc | mode : critical > C

|= twoInCrit = true .

51

op guaranteedReentrance : -> Formula .

op allProcessesReenter : Nat -> Formula .

op nextIter_ : Formula -> Formula .

op nextIterAux : Nat Formula -> Formula .

ceq guaranteedReentrance = allProcessesReenter(I) if s(I) := * .

eq allProcessesReenter(s(I))

= (<> inCrit([s(I)])) /\

[] (inCrit([s(I)]) -> (nextIter inCrit([s(I)]))) /\

allProcessesReenter(I) .

eq allProcessesReenter(0) = (<> inCrit([0])) /\

[] (inCrit([0]) -> (nextIter inCrit([0]))) .

eq nextIter F = nextIterAux(2 * *, F) .

eq nextIterAux(s I, F) = O nextIterAux(I, F) .

eq nextIterAux(0, F) = F .

endom)

52

Model Checking TOK-RING (IV)

We cannot model check these properties directly in their

parameterized form. However, for each nozero value n we

can check the corresponding instance of these properties.

For example, for n = 5 we define in Full Maude the view,

(view 5 from NZNAT* to NAT is

op * to term 5 .

endv)

Then we can model check the mutual exclusion property for

5 processes as follows:

(red in CHECK-TOK-RING{5} : modelCheck(init,[] ~ twoInCrit) .)

result Bool :

true

53

Model Checking TOK-RING (V)

In the same way, we can model check the guaranteed

reentrance property for n = 5 by giving to Full Maude the

command,

(red in CHECK-TOK-RING(5) : modelCheck(init,[] guaranteedReentrance) .)

result Bool :

true

54

Simulations

Given two Kripke structures A = (A,→A, LA), and

B = (B,→B, LB), both having the same set AP of atomic

propositions, an AP -simulation H : A −→ B of A by B is a

binary relation H ⊆ A×B such that, denoting pairs (a, b) ∈ H

by aHb, we have:

• if a→A a′ and aHb, then there is a b′ ∈ B such that

b→B b
′ and a′Hb′, and

• (∀ a ∈ A)(∀ b ∈ B) aHb ⇒ LB(b) = LA(a).

If the relation H is a function, then we call H an

AP -simulation map. If both H and H−1 are AP -simulations,

then we call H a bisimulation.

55

Simulations (II)

Note that (exercise) AP -simulations (resp. AP -simulation

maps, resp. AP -bisimulations) compose. That is, if we have

AP -simulations (resp. AP -simulation maps, resp.

AP -bisimulations)

H : A −→ B G : B −→ C

then H;G : A −→ C is also an AP -simulation (resp.

AP -simulation map, resp. AP -bisimulation).

Note also that the identity function 1A is trivially an

AP -simulation 1A : A −→ A, and also an AP -simulation map

and an AP -bisimulation.

56

Simulations Reflect Satisfaction of LTL Formulae

We say that an AP -simulation H : A −→ B reflects the

satisfaction of an LTL formula ϕ iff B, b |= ϕ and aHb imply

A, a |= ϕ.

A fundamental result, allowing us to prove the satisfaction

of an LTL formula ϕ in an infinite-state system A by

proving the same satisfaction in a finite-state system B that

simulates it is the following,

Theorem: AP -simulations always reflect satisfaction of

LTL(AP) formulae.

57

Simulations Reflect Satisfaction of LTL Formulae (II)

Proof: First of all, note that we can extend H to a binary

relation Ĥ : Path(A) −→ Path(B), where,

πĤρ ⇔ ∀ n ∈ IN π(n)Hρ(n).

Lemma1: If aHb, than for each π ∈ Path(A) such that

π(0) = a there is a ρ ∈ Path(B) such that ρ(0) = b and πĤρ.

Proof of Lemma1: The proof amounts to an inductive

argument that, if we have built the first n stages of ρ, then

we can always build the n+ 1 stage. So, assume that we

have ρ defined for 0 ≤ i ≤ n with ρ(0) = b, and with:

58

Simulations Reflect Satisfaction of LTL Formulae (III)

• π(i)Hρ(i), 0 ≤ i ≤ n, and

• ρ(i) →B ρ(i+ 1), 0 ≤ i < n.

Then, since H is a simulation, and since π(n) →A π(n+ 1),

we can find a b′ ∈ B such that ρ(n) →B b
′, and π(n+ 1)Hb′.

Therefore, we can define ρ(n+ 1) = b′ and extend ρ to n+ 1

steps. q.e.d.

We will be essentially done if we prove the following,

Lemma2: For each aHb, π ∈ Path(A) such that π(0) = a,

ρ ∈ Path(B) such that ρ(0) = b and πĤρ; and for each

ϕ ∈ LTL(AP) we have,

B, b, ρ |= ϕ ⇒ A, a, π |= ϕ.

59

Simulations Reflect Satisfaction of LTL Formulae (IV)

Proof of Lemma2: The proof is by structural induction on

the structure of LTL formulae. We prove the base case and

the case ϕ = ©ψ, and leave the rest as an exercise.

For p ∈ AP we have, B, b, ρ |= p iff p ∈ LB(b), which by H

simulation and aHb is equivalent to p ∈ LA(a), which is itself

equivalent to, A, a, π |= ϕ.

Assume that the result holds for ψ. Let us then show that

it holds for ϕ = ©ψ. We have, B, b, ρ |= ©ψ iff

B, ρ(1), s; ρ |= ψ. But note that if πĤρ, then for any n ∈ IN we

have, sn;πĤsn; ρ. Therefore, by the induction hypothesis we

can conclude that, A, π(1), s;π |= ψ, which is equivalent to,

A, a, π |= ©ψ. q.e.d.

60

Simulations Reflect Satisfaction of LTL Formulae (V)

We are now essentially done. Suppose B, b |= ϕ and aHb.

Then we have, B, b, ρ |= ϕ for any ρ ∈ Path(B) such that

ρ(0) = b. To prove A, a |= ϕ, we have to show that for each

π ∈ Path(A) with π(0) = a we have, A, a, π |= ϕ. But, by

Lemma1, for each such π we have a ρ such that, ρ(0) = b,

and πĤρ. Then, by Lemma2, we have, A, a, π |= ϕ. q.e.d.

We say that an AP -simulation H : A −→ B preserves the

satisfaction of an LTL formula ϕ iff A, a |= ϕ and aHb imply

B, b |= ϕ.

Corollary: AP -bisimulations always reflect and preserve

satisfaction of LTL(AP) formulae.

61

Abstraction Methods

To prove that a, possibly infinite-state, Kripke structure A

and initial state a satisfy an LTL formula ϕ, with, say, AP

the set of atomic propositions actually appearing in ϕ, it is

enough to find an AP -simulation H : A −→ B and an initial

state b ∈ B such that aHb and:

• the set of states reachable from b in B is finite, and

• B, b |= ϕ.

Then, we can model check the property B, b |= ϕ to prove

A, a |= ϕ. Methods to find such an H are called abstraction

methods. What follows describes abstraction methods

developed in joint work with Narciso Mart́ı-Oliet and Miguel

Palomino for systems specified by rewrite theories.

62

Quotient Abstractions

Let A = (A,→A, LA) be a Kripke structure on AP . We call

an equivalence relation ≡ on A label-preserving if

a ≡ a′ ⇒ LA(a) = LA(a′). We can use a label-preserving

equivalence relation ≡ to define a new Kripke structure,

(A/ ≡) = (A/ ≡,→A/≡, LA/≡), where:

• [a1] →A/≡ [a2] iff ∃ a′1 ∈ [a1] ∃ a
′
2 ∈ [a2] s.t. a′1 →A a′2.

• LA/≡([a]) = LA(a)

It is then trivial to check that the projection map to

equivalence classes q≡ : a 7→ [a] is an AP -simulation map

q≡ : A −→ A/ ≡, which we call the quotient abstraction

defined by ≡.

63

Equational Quotient Abstractions

We are of course particularly interested in abstraction

methods for systems specified by rewrite theories. Recall

that, given a rewrite theory R = (Σ, E, φ,R) plus equations D

defining state predicates Π in a kind k of states, we have

associated to it the Kripke structure,

K(R, k)Π = (TΣ/E,k, (→
1
R)•, LΠ)

This Kripke structure may be infinite-state, so that we

cannot use an LTL model checker to verify its properties; or

it can have a finite state space too big to make model

checking feasible. We are therefore interested in defining

quotient abstractions of Kripke structures of this kind.

64

Equational Quotient Abstractions (II)

It is enough to focus on those state predicates actually

occurring in a particular formula ϕ, which we may assume

have been defined by the general method described when

explaining the Maude LTL model checker.

Given R = (Σ, E, φ,R), we assume that (Σ′, E ∪D) protects

both (Σ, E) and BOOL. For the atomic predicates

APΠ = {θ(p) | p ∈ Π, θ canonical ground substitution} we

then have a labeling function,

LΠ([t]) = {θ(p) ∈ APΠ | E ∪D ⊢ t|=θ(p) = true}.

We are then interested in the Kripke structure,

K(R, k)Π = (TΣ/E,k, (→
1
R

)•, LΠ).

65

Equational Quotient Abstractions (III)

Then, a quite general method for defining quotient

abstractions of the Kripke structure

K(R, k)Π = (TΣ/E,k, (→
1
R

)•, LΠ) is to add to E a set G of

equations such that (Σ′, E ∪G ∪D) also protects BOOL, and

consider the rewrite theory R/G = (Σ, E ∪G, φ,R), which has

an associated Kripke structure

K(R/G, k)Π = (TΣ/E∪G,k, (→
1
R/G)•, LΠ/G), with

LΠ/G([t]E∪G) = {θ(p) ∈ APΠ | E ∪G ∪D ⊢ t|=θ(p) = true}.

Note that we have an equivalence relation ≡G on TΣ/E,k,

namely,

[t]E ≡G [t′]E ⇔ E ∪G ⊢ (∀∅) t = t′ ⇔ [t]E∪G = [t′]E∪G.

66

Equational Quotient Abstractions (IV)

And of course we have a bijection TΣ/E,k/ ≡G
∼= TΣ/E∪G,k.

The key question now is: under what conditions is the map

q≡G
: [t]E 7→ [t]E∪G a quotient abstraction of Kripke structures

q≡G
: K(R, k)Π −→ K(R/G, k)Π

If it is so, we will call K(R/G, k)Π = (TΣ/E∪G,k, (→
1
R/G)•, LΠ/G)

the equational quotient abstraction of K(R, k)Π defined by

G.

Of course, to use R/G as a system module in Maude to

model check LTL properties of R, we will also need to

require that R/G satisfies the usual executability conditions.

67

Equational Quotient Abstractions (IV)

Let k be a kind in a rewrite theory, R is k-deadlock-free if

we have the following identity of binary relations on TΣ/E,k:

(→1
R)• = (→1

R)

Intutively this means that no states in TΣ/E,k are deadlock

states, so the relation (→1
R

) is already total.

How restrictive is the requirement that R is k-deadlock-free?

There is no real loss of generality. To a theory R satisfying

the usual executability assumptions and having equational

conditions we can always associate a semantically

equivalent (from the LTL point of view) theory Rk
d.f. which

is k-deadlock-free (see book “All About Maude”).

Our main theorem is then the following:

68

Equational Quotient Abstractions (V)

Theorem 2. Let R = (Σ, E, φ,R) be a k-deadlock free

rewrite theory, and let D be equations defining (possibly

parametric) state predicates Π fully defined for all states of

kind k as either true or false, and assume that (Σ′, E ∪D)

protects BOOL. Let then G be a set of Σ-equations such that

(Σ′, E ∪G ∪D) also protects BOOL. Then the map

q≡G
: [t]E 7→ [t]E∪G is a quotient abstraction of Kripke

structures

q≡G
: K(R, k)Π −→ K(R/G, k)Π.

Proof: Since R is k-deadlock free, it is trivial to check that

R/G is also k-deadlock free and that therefore we have

(→1
R/G)• = (→1

R/G) = (→1
R)•/ ≡G .

69

Equational Quotient Abstractions (VI)

The only remaining thing to check is that ≡G is

label-preserving. This is equivalent to proving the following

equivalences for each p ∈ Π and ground substitution θ:

E ∪D ⊢ t|=θ(p) = true ⇔ E ∪G ∪D ⊢ t|=θ(p) = true

E ∪D ⊢ t|=θ(p) = false ⇔ E ∪G ∪D ⊢ t|=θ(p) = false

The (⇒) follow by monotonicity of equational reasoning.

The (⇐) follow from the protecting BOOL assumption, since

we can reason by contradiction. Suppose, for example, that

E ∪G ∪D ⊢ t|=θ(p) = true but E ∪D ⊢ t|=θ(p) 6= true. By the

protecting BOOL assumption this forces

E ∪D ⊢ t|=θ(p) = false, which implies

E ∪G ∪D ⊢ t|=θ(p) = false, contradicting the protection of

BOOL. q.e.d.

70

Executability of Equational Quotient Abstractions

For Theorem 2 to be useful in practice, for example to use

Maude to prove LTL such properties of R by model

checking R/G, we need to ensure the following executability

requirements:

• (Σ, E ∪G) and (Σ′, E ∪G ∪D) should be ground

confluent, sort-decreasing and terminating.

• The rules R should be ground coherent relative to

E ∪G.

These requirements can be checked using Maude’s CRC,

MTT, and ChC tools. Similarly, the protecting BOOL

requirements can be checked using Maude’s CRC, MTT,

and SCC tools.

71

Executability of Equational Quotient Abstractions (II)

The checks for executability may be positive or negative.

But if, say, the equations E ∪G are not ground confluent,

we may be able to complete them to get a semantically

equivalent set of equations, say E′ which is ground

confluent, sort-decreasing, and terminating. Similarly, if the

rules R are not ground coherent, we may be able to

complete them to get an equivalent set R′ of rules that is

ground coherent. In this way we would obtain a rewrite

theory R′ = (Σ, E′, φ, R′) semantically equivalent to R/G.

Therefore we would have an isomorphism of a Kripke

structures K(R′, k)Π ∼= K(R/G, k)Π, but now with the crucial

propety that R′ is executable, so we can use R′ to verify our

desired LTL properties about R.

72

An Unordered Communication Protocol

Consider a communication channel in which messages can

get out of order. There is a sender and a receiver. The

sender is sending a sequence of data items, for example

numbers. The receiver is supposed to get the sequence in

the exact same order in which they were in the sender’s

sequence.

To achieve this in-order communication in spite of the

unordered nature of the channel, the sender sends each

data item in a message together with a sequence number;

and the receiver sends back an ack indicating that has

received the item. The specification in Maude of the

protocol is as follows.

73

An Unordered Communication Protocol (II)

mod UNORDERED-CHANNEL is

sorts Natural List Msg Conf State .

subsort Msg < Conf .

op 0 : -> Natural [ctor] . op s : Natural -> Natural [ctor] .

op nil : -> List [ctor] .

op _;_ : Natural List -> List [ctor] . *** list constructor

op _@_ : List List -> List . *** list append

op [_,_] : Natural Natural -> Msg [ctor] .

op ack : Natural -> Msg [ctor] .

op null : -> Conf [ctor] .

op __ : Conf Conf -> Conf [ctor assoc comm id: null] .

op {_,_|_|_,_} : List Natural Conf List Natural -> State [ctor] .

vars N M J K : Natural . vars L P Q : List . var C : Conf .

eq nil @ L = L .

eq (N ; L) @ P = N ; (L @ P) .

rl [snd]: {N ; L, M | C | P, K} => {N ; L, M | [N, M] C | P, K} .

rl [rec]: {L, M | [N, J] C | P, J} => {L, M | ack(J) C | P @ (N ; nil), s(J)} .

rl [rec-ack]: {N ; L, J | ack(J) C | P, M} => {L, s(J) | C | P, M} .

endm

74

An Unordered Communication Protocol (III)

The contents of the unordered channel is modeled as a

multiset of messages of sort Conf. The entire system state

is a 5-tuple of sort State, where the components are:

• a buffer with the items to be sent

• a counter for the acknowledged items

• the contents of the unordered channel

• a buffer with the items received, and

• a counter for the items received.

75

An Unordered Communication Protocol (IV)

We will always assume that all initial states are of the form:

{n1 ; ... ; nk ; nil , 0 | null | nil , 0}

That is, the sender’s buffer contains a list of numbers n1 ;

... ; nk ; nil and has the counter set to 0, the channel

is empty, and the receiver’s buffer is also empty. Also, the

receiver’s counter is initially set to 0.

One essential property that we would like to verify of this

protocol is of course that it achieves in-order

communication in spite of the unordered channel.

Another property is that the list is eventually received under

some fairness assumptions.

76

An Unordered Communication Protocol (V)

Since, due to the snd rule, the set of states reachable from

an initial state is infinite, we should model check these

properties using an abstraction. We can define the

abstraction by adding to the equations of

UNORDERED-CHANNEL a set G of additional equations defining a

quotient of the set of states. We can do so in the following

module extending UNORDERED-CHANNEL by equations and

leaving the rules unchanged:

77

An Unordered Communication Protocol (VI)

mod UNORDERED-CHANNEL-ABSTRACTION is

including UNORDERED-CHANNEL .

vars M N P K : Natural .

vars L L’ L’’ : List .

var C : Conf .

eq [A1]: {L, M | [N, P] [N, P] C | L’, K} = {L, M | [N, P] C | L’, K} .

endm

Three key questions are: (1) is the set of states rechable

from an initial state now finite? (2) does this abstraction

correspond to a rewrite theory whose equations are ground

confluent, sort-decreasing and terminating? (3) are the

rules still ground coherent?

Question (1) is clear, since a reachable channel can only

contain at most one ack message at any time, and now it

cannot contain repeated copies of sent messages.

78

An Unordered Communication Protocol (VI)

The lecture by Durán has already shown that
UNORDERED-CHANNEL-ABSTRACTION is not ground coherent, but
that it can be made so by adding one extra rule in the
module:

mod UNORDERED-CHANNEL-ABSTRACTION-2 is

extending UNORDERED-CHANNEL-ABSTRACTION .

vars M N P K : Natural . vars L L L : List . var C : Conf .

rl [snd2]: {L, M | [N, K] C | L, K}

=> {L, M | [N, K] ack(K) C | L @ N ; nil, s(K)}.

endm

Furthermore, Duran’s lecture showed that

UNORDERED-CHANNEL-ABSTRACTION-2 is confluent,

sort-decreasing, terminating, and ground coherent.

79

An Unordered Communication Protocol (VII)

What about state predicates? Are they preserved by the

abstraction? In order to specify the desired safety and

liveness properties, it is enough to specify in Maude the

following state predicates:

80

An Unordered Communication Protocol (VIII)

mod UNORDERED-CHANNEL-PREDS is pr UNORDERED-CHANNEL . inc TRUTH-VALUE .

sort Proposition .

op _~_ : Natural Natural -> Bool . op _~_ : List List -> Bool .

op _/_ : Bool Bool -> Bool [assoc comm id: true] . *** conjunction

op _|=_ : State Proposition -> Bool [frozen] .

vars M N K P : Natural . vars L L’ L’’ : List . var C : Conf . var B : Bool .

eq 0 ~ 0 = true . eq 0 ~ s(N) = false . eq s(N) ~ 0 = false .

eq s(N) ~ s(M) = N ~ M .

eq nil ~ nil = true . eq nil ~ N ; L = false . eq N ; L ~ nil = false .

eq N ; L ~ M ; L’ = (N ~ M) /\ (L ~ L’) .

eq false /\ false = false .

ops prefix rec-q : List -> Proposition [ctor] .

eq [I1]: {L’, N | C | K ; L’’, P} |= prefix(M ; L)

= (M ~ K) /\ {L’, N | C | L’’, P} |= prefix(L) .

eq [I3]: {L’, N | C | nil, K} |= prefix(L) = true .

eq [I4]: {L’, N | C | M ; L’’, K} |= prefix(nil) = false .

eq [I5]: {L’, N | C | L’’, K} |= rec-q(L) = L ~ L’’ .

endm

81

These predicates are then imported without change,

together with UNORDERED-CHANNEL-ABSTRACTION-2, in the

module:

mod UNORDERED-CHANNEL-ABSTRACTION-2-PREDS is

including UNORDERED-CHANNEL-PREDS .

including UNORDERED-CHANNEL-ABSTRACTION-2 .

endm

By the second part of the proof of Theorem 2 (which does

not use the deadlock-freedom assumption), the preservation

of these state predicates can be guaranteed if we show that

both UNORDERED-CHANNEL-PREDS and

UNORDERED-CHANNEL-ABSTRACTION-2-PREDS protect

TRUTH-VALUE. This follows from the absence of any equations

having true or false in their lefthand sides plus the

following facts, all of which are checked by Maude tools:

82

1. both UNORDERED-CHANNEL-PREDS and

UNORDERED-CHANNEL-ABSTRACTION-2-PREDS are sufficiently

complete;

2. both UNORDERED-CHANNEL-PREDS and

UNORDERED-CHANNEL-ABSTRACTION-2-PREDS are locally

confluent and sort-decreasing;

3. both UNORDERED-CHANNEL-PREDS and

UNORDERED-CHANNEL-ABSTRACTION-2-PREDS are

terminating.

The SCC tool checks fact (1):

Checking sufficient completeness of UNORDERED-CHANNEL-PREDS ...

Success: UNORDERED-CHANNEL-PREDS is sufficiently complete under the assumption

that it is ground weakly-normalizing, confluent, and ground

83

sort-decreasing.

Checking sufficient completeness of UNORDERED-CHANNEL-ABSTRACTION-2-PREDS ...

Warning: This module has equations that are not left-linear which will be

ignored when checking.

Success: UNORDERED-CHANNEL-ABSTRACTION-2-PREDS is sufficiently complete under the

assumption that it is ground weakly-normalizing, confluent, and ground

sort-decreasing.

84

The CRC tool checks fact (2):

Church-Rosser checking of UNORDERED-CHANNEL-PREDS

Checking solution:

All critical pairs have been joined.

The specification is locally-confluent.

The specification is sort-decreasing.

Church-Rosser checking of UNORDERED-CHANNEL-ABSTRACTION-2-PREDS

Checking solution:

All critical pairs have been joined.

The specification is locally-confluent.

The specification is sort-decreasing.

85

All we have left is checking termination of the equations in

UNORDERED-CHANNEL-PREDS and

UNORDERED-CHANNEL-ABSTRACTION-PREDS that is, fact (3). But

since the equations in UNORDERED-CHANNEL-ABSTRACTION-PREDS

are precisely the union of those in

UNORDERED-CHANNEL-ABSTRACTION and

UNORDERED-CHANNEL-PREDS, it is enough to check that

UNORDERED-CHANNEL-ABSTRACTION-PREDS is terminating. This

check succeeds with the Maude Termination Tool (MTT).

86

This finishes all the checks of correctness and executability.

The only remaining issue is deadlock freedom, which is

required for the correctness of the abstraction. To ensure

deadlock freedom we can perform the automatic module

transformation described in Section 15.3 of the Maude

Book, that preserves all the desired executability properties

to obtain a semantically equivalent, deadlock-free version.

However, since in this example a state in UNORDERED-CHANNEL

is a deadock state iff its canonical form in

UNORDERED-CHANNEL-ABSTRACTION is a deadlock state, in this

case we do not need to perform this extra transformation.

87

We can now verify our safety property of

in-order-communication as follows:

mod UNORDERED-CHANNEL-ABSTRACTION-CHECK is

extending UNORDERED-CHANNEL-ABSTRACTION-2 .

including UNORDERED-CHANNEL-PREDS .

extending MODEL-CHECKER .

subsort Proposition < Prop .

op init : -> State .

eq init = {0 ; s(0) ; s(s(0)) ; nil , 0 | null | nil , 0} .

endm

reduce in UNORDERED-CHANNEL-ABSTRACTION-CHECK :

modelCheck(init, []prefix(0 ; s(0) ; s(s(0)) ; nil)) .

rewrites: 361 in 41ms cpu (42ms real) (8780 rewrites/second)

result Bool: true

88

The Need for the Temporal Logic of Rewriting

The other important property we would like to verify about

the unordered channel is the liveness property that the list

initially in the sender buffer eventually gets delivered in its

entirety to the receiver buffer.

It is obvious that this property does not hold without some

extra assumptions, because one possible behavior is just for

the snd rule to keep resending a given element forever. So,

if L is the list in the sender buffer of the initial state, the

property we would like to verify is the following:

(3 rec − q(L)) ∨ (32 snd)

89

The Need for the Temporal Logic of Rewriting (II)

That is, either the entire list eventually arrives to the

receiver buffer, or after some time, all the protocol does is

to resend the same data item forever. Since this second

behavior is totally unreasonable, we then will have verified

that, under very reasonable assumptions, the protocol

terminates with the expected result.

The problem, however, is that snd is not a state predicate

but a rule label. Furthermore, without modifying the

protocol there is no way to specify the snd action as a state

predicate.

90

The Need for the Temporal Logic of Rewriting (III)

This is where the Linear Temporal Logic of Rewriting

(LTLR) comes in: it adds to the standard linear temporal

logic (LTL) action patterns, including simple patterns such

as rule labels, and more complex spatial action patterns. Its

semantics is interpreted not just over sequences of states

but about computations κ of the form

t0
γ0

→ t1
γ1

→ t2
γ2

→ t3 . . .
γn

→ tn+1 . . .

where the γi are proofs of one-step rewrites. In particular,

for l a rule label, its semantics for a rewrite theory R is

defined for the above computation κ by: R, κ |= l iff the rule

applied in γ0 has label l.

91

Verification in the Maude LTLR Model Checker

Our liveness property for the unordered channel cannot be

verified in LTL without modifying the protocol

specification. However, it can be verified in Maude’s LTLR

Model Checker, developed by Kyungmin Bae, as follows:

Maude> red

modelCheck(init, (<> rec-q(0 ; s(0) ; s(s(0)) ; nil)) \/ (<>[] {’snd})) .

result Bool: true

92

