
i116: Basic of Programming

2. Some program constructs (2)

Kazuhiro Ogata, Canh Minh Do

Roadmap

• Procedures (or functions)

• Module (or file) importation

• Exception handling

• Some more examples

2i116 Basic of Programming - 2. Some program constructs (2)

Procedures (or functions)

• In addition to 5!, we would like to calculate 𝑛!
for some 𝑛.

• We may want to calculate 5! more than once
in a program.

• We can name a piece of code as a procedure.

• A procedure may have parameters.

i116 Basic of Programming - 2. Some program constructs (2) 3

Procedures (or functions)

i116 Basic of Programming - 2. Some program constructs (2) 4

def :proc(p1, …, pn)

A piece of code

The name of the procedure
A sequence of parameters,
where n may be 0

Procedures (or functions)

i116 Basic of Programming - 2. Some program constructs (2) 5

def factLoop(n):
redBox = 1
blueBox = 1
while blueBox < n or blueBox == n:

redBox = redBox * blueBox
blueBox = blueBox + 1

return redBox

Procedures (or functions)

i116 Basic of Programming - 2. Some program constructs (2) 6

print('5! = ', factLoop(5))
print('0! = ', factLoop(0))
print('10! = ', factLoop(10))
print('100! = ', factLoop(100))

Recursive calls

• A procedure can call itself in its piece of code.

• Recursive procedures can be defined, or
recursive calls are doable.

i116 Basic of Programming - 2. Some program constructs (2) 7

def :proc(p1, …, pn)

… proc(…) …

Recursive calls

i116 Basic of Programming - 2. Some program constructs (2) 8

def factRecur(n):
if n == 0:

return 1
else:

return n * factRecur(n-1)

n! =
1 if n = 0

n * (n-1)! otherwise

Recursive calls

i116 Basic of Programming - 2. Some program constructs (2) 9

print('5! = ', factRecur(5))
print('0! = ', factRecur(0))
print('10! = ', factRecur(10))
print('100! = ', factRecur(100))

Module importation

• Let us suppose that factRecur is written in a
file whose name is factRecur.py.

• To use factRecur in another program written
in another file, we should write the following
in the other file before use of factRecur:

i116 Basic of Programming - 2. Some program constructs (2) 10

from factRecur import *

File (or module) name
Makes it possible to use all defined in
the file (or module), such as procedures

import factRecur

or

Module importation

i116 Basic of Programming - 2. Some program constructs (2) 11

from factRecur import *

print('n! is calculated.')
s = input('Please input n: ')
n = int(s)
print(n, '! = ', factRecur(n)) A string is converted into an integer,

provided that the string only consists
of numbers (or digits).

A user is asked to input something,
which is treated as a string.

Exception handling

• What if a user inputs -1?

• factRecur(-1) is calculated, which never
terminates.

• In real, the maximum recursion depth exceeds
and then Python complains it.

• So, we will first revise factRecur(…) to avoid
the exceeding of the maximum recursion
depth.

i116 Basic of Programming - 2. Some program constructs (2) 12

Exception handling

i116 Basic of Programming - 2. Some program constructs (2) 13

def revFactRecur(n):
if n < 0:

raise Exception('The argument must be a natural number, such as 0, 1 and 2!')
elif n == 0:

return 1
else:

return n * revFactRecur(n-1)

An exception is raised and the warning or error
message is displayed.

Exception handling

i116 Basic of Programming - 2. Some program constructs (2) 14

try:

block1 (or fragment1)

except :Exception

block2 (or fragment2)

Whenever an exception is raised in block1, the control goes to
block2, meaning block2 is done.

Exception handling

i116 Basic of Programming - 2. Some program constructs (2) 15

from revFactRecur import *

print('n! is calculated.')
while True:

try:
s = input('Please input n: ')
n = int(s)
print(n, '! = ', revFactRecur(n))
break

except Exception:
pass

If we write nothing in a block,
a fragment or a piece of code,
we should write pass.

Exception handling

i116 Basic of Programming - 2. Some program constructs (2) 16

try:

block1 (or fragment1)

except as em:Exception

block2 (or fragment2)

em refers to the warning or error message when an exception is raised
in block1 (or fragment1) and can be used in block2 (or fragment2)

Exception handling

i116 Basic of Programming - 2. Some program constructs (2) 17

from revFactRecur import *

print('n! is calculated.')
while True:

try:
s = input('Please input n: ')
n = int(s)
print(n, '! = ', revFactRecur(n))
break

except Exception as em:
print(em)

Exception handling

• What if a user inputs -1?
• The following message is displayed and a user is

prompted to input another:

i116 Basic of Programming - 2. Some program constructs (2) 18

Please input n: -1
The argument must be a natural number, such as 0, 1 and 2!
Please input n:

Exception handling

• What if a user inputs abc?
• Another exception is raised by int(…) and handled

by the program.
• The following message is displayed and a user is

prompted to input another:

i116 Basic of Programming - 2. Some program constructs (2) 19

Please input n: abc
invalid literal for int() with base 10: 'abc'
Please input n:

Exception handling

• What if a user inputs 1000?
• The maximum recursion depth exceeds, yet

another exception is raised by Python and
handled by the program.

• The following message is displayed and a user is
prompted to input another:

i116 Basic of Programming - 2. Some program constructs (2) 20

Please input n: 1000
maximum recursion depth exceeded
Please input n:

Some more examples

i116 Basic of Programming - 2. Some program constructs (2) 21

def srByLinearSearch(v0):
for i in range(v0):

if i * i > v0:
return i - 1

print('The square root of ', 200000000, ' is ',
srByLinearSearch(200000000), '.')
print('The square root of ',
20000000000000000, ' is ',
srByLinearSearch(20000000000000000), '.')

Some more examples

i116 Basic of Programming - 2. Some program constructs (2) 22

def srByBinarySearch(v0):
v1 = 0
v2 = v0
while v1 != v2:

if (v2-v1)%2 == 0:
v3 = v1+(v2-v1)//2

else:
v3 = v1+(v2-v1)//2+1

if v3*v3 > v0:
v2 = v3-1

else:
v1 = v3

return v1

Some more examples

i116 Basic of Programming - 2. Some program constructs (2) 23

print('The square root of ', 200000000, ' is ',
srByBinarySearch(200000000), '.')
print('The square root of ',
20000000000000000, ' is ',
srByBinarySearch(20000000000000000), '.')

Some more examples

i116 Basic of Programming - 2. Some program constructs (2) 24

def f(x):
return (4 - x**2)**(1/2)

2

2

i

f(i)

a**b means 𝑎௕.

Some more examples

i116 Basic of Programming - 2. Some program constructs (2) 25

def h(i,n):
return f(i*(2/n)) * (2/n)

def g(i,n):
return (f(i*(2/n)) + f((i+1)*(2/n))) * (2/n) * (1/2)

2

2

𝑛 divisions

2
𝑛

…

2ሺ𝑖 ൅ 1ሻ
𝑛

2𝑖
𝑛

h(i) is the space of
the rectangle.

… …

2

2

𝑛 divisions

2
𝑛

…

2ሺ𝑖 ൅ 1ሻ
𝑛

2𝑖
𝑛

g(i) is the space of
the trapezoid.

Some more examples

i116 Basic of Programming - 2. Some program constructs (2) 26

def piWithRectangle(e):
n = 1
v1 = 0
v2 = e+1
while abs(v1 - v2) > e:

n = 2 * n
v1 = v2
v2 = 0
for i in range(n):

v2 = v2 + h(i,n)
return v2

Some more examples

i116 Basic of Programming - 2. Some program constructs (2) 27

print('pi is ', piWithRectangle(0.001), ', where e is 0.001.')
print('pi is ', piWithRectangle(0.00001), ', where e is 0.00001.')
print('pi is ', piWithRectangle(0.0000001), ', where e is 0.0000001.')

Some more examples

i116 Basic of Programming - 2. Some program constructs (2) 28

def piWithTrapezoido(e):
n = 1
v1 = 0
v2 = e+1

while abs(v1 - v2) > e:
n = 2 * n
v1 = v2
v2 = 0
for i in range(n):

v2 = v2 + g(i,n)
return v2

Some more examples

i116 Basic of Programming - 2. Some program constructs (2) 29

print('pi is ', piWithTrapezoido(0.001), ', where e is 0.001.')
print('pi is ', piWithTrapezoido(0.00001), ', where e is 0.00001.')
print('pi is ', piWithTrapezoido(0.0000001), ', where e is 0.0000001.')

