
i116: Basic of Programming

3. Built-in data structures

Kazuhiro Ogata, Canh Minh Do

Roadmap

• Strings

• Tuples

• Lists

• Dictionaries (or Maps)

• A billing program

2i116 Basic of Programming - 3. Built-in data structures

Strings

• What is enclosed with single quotes '....'.

• Let s be 'JAIST'.
– s[0] returns 'J'.

– s[1] returns 'A'.

– s[5] raises an exception called IndexError.

• + is used to concatenates strings.
– Let s1, s2, s3, s4, s5, s6, and s7 be 'Japan ', 'Advanced ',

'Institute ', 'of ', 'Science ', 'and ', and 'Technology'.

– s1+s2+s3+s4+s5+s6+s7 returns the following:

‘Japan Advanced Institute of Science and Technology'

i116 Basic of Programming - 3. Built-in data structures 3

Strings

• Writing a long string, we may want to use
multiple lines.

• When this is the case, we need to use a backslash
\ just before each carriage return (CR), e.g.,
'Japan '\
'Adcanced '\
'Institute '\
'of '\
'Science '\
'and '\
'Technology'

i116 Basic of Programming - 3. Built-in data structures 4

Strings

• A tab can be used in a string and should be
written as \t in it.
'Japan\tAdvaneced\tInstitute\tof\tScience\tand\tTechnology'

• When you would like to use a single quote,
you should write a backslash \ just before it.
'Japan Advanced Institute of \'Science\' and \'Technology\''

i116 Basic of Programming - 3. Built-in data structures 5

A backslash, a single quote, and a single quote.

Strings

i116 Basic of Programming - 3. Built-in data structures 6

s = 'JAIST'
print(s[0])
print(s[1])
try:

print(s[5])
except IndexError as em:

print(em)
s1 = 'Japn '
s2 = 'Advanced '
s3 = 'Institute '
s4 = 'of '
s5 = 'Science '
s6 = 'and '
s7 = 'Technology'
print(s1+s2+s3+s4+s5+s6+s7)

Strings

i116 Basic of Programming - 3. Built-in data structures 7

jaist = 'Japn '\
'Advanced '\
'Institute '\
'of '\
'Science '\
'and '\
'Technology'
print(jaist)
print('Japn\tAdvanced\tInstitute\tof\tScience\tand\tTechnology')
print('Japn Advanced Institute of \'Science\' and \'Technology\'')

Tuples

i116 Basic of Programming - 3. Built-in data structures 8

ሺ𝑒, 𝑒ଵ, … , 𝑒, … , 𝑒ேሻ

• A collection of data; the order is relevant.
• The final comma must be written when 𝑁 ൌ 0; e.g.,

('zero',) is a tuple, but ('zero') is not and a string, the
same as 'zero'.

• The final comma must not be written when you would
like to write the empty tuple (); (,) cannot be accepted.

• Can consists of different types; e.g., (0, 'zero', 0.0)
consists of the three elements whose types are int,
string and float.

• When 𝑁 ൌ 1, it is a pair 𝑒, 𝑒ଵ ; when 𝑁 ൌ 2, it is a
triple ሺ𝑒, 𝑒ଵ, 𝑒ଶሻ.

ሺ𝑒, 𝑒ଵ, … , 𝑒, … , 𝑒ே, ሻor

Tuples

i116 Basic of Programming - 3. Built-in data structures 9

Let tpl be ሺ𝑒, 𝑒ଵ, … , 𝑒, … , 𝑒ேሻ.

• tpl[i] returns 𝑒.
For example, tpl[0] and tpl[1] return 𝑒 and 𝑒ଵ.

• tpl[-j] returns the jth element from the bottom.

For example, tpl[-1] and tpl[-2] return 𝑒ே and
𝑒ேିଵ.

• If k is out of the range, such as 𝑁 1, tpl[k]
raises an exception called IndexError.

Tuples

i116 Basic of Programming - 3. Built-in data structures 10

Let tpl be ሺ𝑒, 𝑒ଵ, … , 𝑒, … , 𝑒ேሻ.

• tpl[i] cannot be updated with an assignment.

tpl[i] = 𝑒′ causes an exception called TypeError.

• If you really want to change 𝑒 to 𝑒′, one possible
way to do is as follows:

tpl = (tpl[0], tpl[1], …, 𝑒′, …, tpl[N])

making a new tuple all of whose elements are the
same as those in (the old version of) tpl except for
the 𝑖th one.

Tuples

i116 Basic of Programming - 3. Built-in data structures 11

aTuple = (0, 'zero', 0.0)
print(aTuple)
print((), ' is the empty tuple.')
print(('zero',), ' is the tuple that only consists of \'zero\'.')
print('(\'zero\') is not a tuple but a string, the same as \'zero\'.')
print('(\'zero\') == \'zero\' returns ', ('zero') == 'zero', '.')
print('(\'zero\',) == \'zero\' returns ', ('zero',) == 'zero', '.')
print(aTuple[0])
print(aTuple[1])
print(aTuple[-1])
print(aTuple[-2])

Tuples

i116 Basic of Programming - 3. Built-in data structures 12

try:
aTuple[2] = 1.41421356

except TypeError as em:
print('If we try to do aTuple[2] = 1.41421356, the following message is written:')

print(em)

try:
aTuple[3]

except IndexError as em:
print('If we try to do aTuple[3], the following message is written:')
print(em)

aTuple = (aTuple[0], aTuple[1], 1.41421356)
print(aTuple)

Lists

i116 Basic of Programming - 3. Built-in data structures 13

ሾ𝑒, 𝑒ଵ, … , 𝑒, … , 𝑒ேሿ

• A collection of data; the order is relevant.

• Can consists of different types; e.g., [0, 'zero', 0.0]
consists of the three elements whose types are
int, string and float.

• It would be, however, better to have values of
one type in a list, such as [0, 1, 2, 3].

• When you want to use a collection of data whose
types are different, you should use a tuple.

Lists

i116 Basic of Programming - 3. Built-in data structures 14

Let lst be ሾ𝑒, 𝑒ଵ, … , 𝑒, … , 𝑒ேሿ.

• lst[i] returns 𝑒.
For example, lst[0] and lst[1] return 𝑒 and 𝑒ଵ.

• lst[-j] returns the jth element from the bottom.

For example, lst[-1] and lst[-2] return 𝑒ே and 𝑒ேିଵ.

• If k is out of the range, such as 𝑁 1, lst[k] raises
an exception called IndexError.

• lst[i] = 𝑒′ updates the 𝑖th element to 𝑒′ from 𝑒.

Lists

i116 Basic of Programming - 3. Built-in data structures 15

aList = [0,1,2,3,4]
print(aList)
print(aList[0])
print(aList[1])
print(aList[-1])
print(aList[-2])
aList[2] = 10
print(aList) # aList[2] = 10 changes aList.

try:
aList[5]

except IndexError as em:
print('If we try to do aList[5], the following message is written:')
print(em)

Lists

• lst[x:y] extracts a sub-list from lst (or slices lst).
– If lst is ሾ𝑒, … , 𝑒௫, … , 𝑒௬ିଵ, 𝑒௬, … , 𝑒ேሿ,

lst[x:y] is ሾ𝑒௫, … , 𝑒௬ିଵሿ, and lst[y:x] is [].

• lst[x:] also extracts a sub-list from lst, and so does
lst[:y].
– If lst is ሾ𝑒, … , 𝑒௫, … , 𝑒௬ିଵ, 𝑒௬, … , 𝑒ேሿ, lst[x:] is
ሾ𝑒௫, … , 𝑒௬, … , 𝑒ேሿ and lst[:y] is ሾ𝑒, … , 𝑒௫, … , 𝑒௬ିଵ].

• lst[x:y], lst[x:] and lst[:y] do NOT alter lst.

• Let lst2 be a list as well; lst + lst2 is the list obtained
by concatenating the two lists in this order; lst +
lst2 does NOT alter lst nor lst2.

i116 Basic of Programming - 3. Built-in data structures 16

Lists

i116 Basic of Programming - 3. Built-in data structures 17

print(aList[1:4])
print(aList[2:1])
print(aList[1:]) # deleting the top element
print(aList[:-1]) # deleting the bottom element
print(aList[100:])
print(aList[:-100])
print(aList) # aList[1:4] ... do not change aList.
print(aList[-100:100]) # seems strange but returns the list stored in aList

print(aList + aList)
print(aList) # + does not change aList.
print([-1] + aList)
print(aList + [5])

Lists

i116 Basic of Programming - 3. Built-in data structures 18

[4, 7, 5, 1, 0, 3, 6, 2]

Based on 4, the list is partitioned.

[2, 3, 0, 1] [6, 5, 7][4]+ (+)

[1, 0] [3][2]+ (+) [5] [7][6]+ (+)

[0] [][1]+ (+)

[0, 1, 2, 3, 4, 5, 6, 7]

Sorting with Quicksort

Lists

i116 Basic of Programming - 3. Built-in data structures 19

def qsort(lst):
if len(lst) <= 1:

return lst
else:

pair = partition(lst[0],lst[1:])
return qsort(pair[0]) + [lst[0]] + qsort(pair[1])

Lists

i116 Basic of Programming - 3. Built-in data structures 20

def partition(pvt,lst):
pair = ([], [])
for e in lst:

if e < pvt:
pair = ([e] + pair[0], pair[1])

else:
pair = (pair[0], [e] + pair[1])

return pair

lst = [4,7,5,1,0,3,6,2]
print('Input: ', lst)
print('Output: ', qsort(lst))

Lists

i116 Basic of Programming - 3. Built-in data structures 21

[4, 7, 5, 1, 0, 3, 6, 2]

[0, 1, 2, 3, 4, 5, 6, 7]

Soring with Mergesort

[6, 0, 5, 4] [2, 3, 1, 7]

[5, 6] [4, 0] [1, 2] [7, 3]

[5] [6] [4] [0] [1] [2] [7] [3]

[5, 6] [0, 4]

[0, 4, 5, 6]

[1, 2] [3, 7]

[1, 2, 3, 7]

Split

Merge

Lists

i116 Basic of Programming - 3. Built-in data structures 22

def msort(lst):
if len(lst) <= 1:

return lst
else:

pair = split(lst,[],[])
return merge(msort(pair[0]),msort(pair[1]))

def split(lst,l1,l2):
if len(lst) == 0:

return (l1,l2)
else:

return split(lst[1:],l2,[lst[0]]+l1)

Lists

i116 Basic of Programming - 3. Built-in data structures 23

def merge(l1,l2):
if len(l1) == 0:

return l2
elif len(l2) == 0:

return l1
else:

if l1[0] < l2[0]:
return [l1[0]] + merge(l1[1:],l2)

else:
return [l2[0]] + merge(l1,l2[1:])

lst = [4,7,5,1,0,3,6,2]
print('Input: ', lst)
print('Output: ', msort(lst))

Dictionaries

• Terminology “association list” or “a-list” used
in AI.

• Terminology “map” used in Java, etc.

• Terminology “dictionary” used in Smalltalk,
Python, etc.

• Basically, a collection of (key, value)-pairs such
that the value associated with a key can be
retrieved.

i116 Basic of Programming - 3. Built-in data structures 24

Dictionaries

i116 Basic of Programming - 3. Built-in data structures 25

• 𝑘 is a key and 𝑣 is the value associated with 𝑘.
• The order is not relevant; e.g., {'x':1.41,'z':1.73} and

{'z':1.73, 'x':1.41} are the same.
Let aDict be the dictionary.
• aDict[𝑘] returns 𝑣 if 𝑘 is registered; otherwise, it

raises an exception called KeyError.
• aDict[𝑘] = 𝑣′ updates the value associated with 𝑘

if 𝑘 is registered; otherwise, it adds 𝑘 and 𝑣′ to
aDict.

ሼ𝑘: 𝑣, 𝑘ଵ: 𝑣ଵ, … , 𝑘: 𝑣, … , 𝑘ே: 𝑣ேሽ

Dictionaries

i116 Basic of Programming - 3. Built-in data structures 26

aDict = {'x':1.41, 'y':3.14, 'z':1.73}
aDict2 = {'y':3.14, 'z':1.73, 'x':1.41}
print(aDict)
print(aDict2)
print(aDict, ' == ', aDict2, ' returns ', aDict == aDict2, '.')
print(aDict['x'])
print(aDict['z'])

try:
print(aDict['a'])

except KeyError as em:
print('If we do aDict[\'a\'], we have the follwing message:')
print(em)

Dictionaries

i116 Basic of Programming - 3. Built-in data structures 27

aDict['a'] = 2.71
print(aDict)
print(aDict['a'])
aDict['x'] = 2.23
print(aDict)

Dictionaries

i116 Basic of Programming - 3. Built-in data structures 28

aDict = {'x':1.41, 'y':3.14, 'z':1.73}
aDict2 = {'y':3.14, 'z':1.73, 'x':1.41}
print(aDict)
print(aDict2)
print(aDict, ' == ', aDict2, ' returns ', aDict == aDict2, '.')

x = 0
for k in aDict:

x = x + 1
if k == 'z':

break
print('x = ', x)

x = 0
for k in aDict2:

x = x + 1
if k == 'z':

break
print('x = ', x)

aDict equals aDict2 as dictionaries, but may make the program
behavior different.

A billing program

i116 Basic of Programming - 3. Built-in data structures 29

{'mp':('MacPro', 5000000), 'im':('iMac', 400000),
'mbp':('MacBook Pro', 500000), 'am':('AirMac', 200000)}

A catalog

[('am', 4), ('mbp', 2), ('mp',1), ('am', 3), ('mp', 1)]A cart

([('AirMac', 7, 1400000), ('MacBook Pro', 2,
1000000), ('MacPro', 2, 10000000)], 12400000)

A bill

We will be creating a program that makes a bill
from a catalog and a cart.

A billing program

i116 Basic of Programming - 3. Built-in data structures 30

catalog ={'mp':('MacPro', 5000000), 'im':('iMac', 400000), 'mbp':('MacBook
Pro', 500000), 'am':('AirMac', 200000)}
cart = [('am', 4), ('mbp', 2), ('mp',1), ('am', 3), ('mp', 1)]

def normCart(c):
tc = []
flg = True
for i in range(len(c)):

for j in range(len(tc)):
if (c[i])[0] == (tc[j])[0]:

tc[j] = ((tc[j])[0], (c[i])[1] + (tc[j])[1])
flg = False
break

if flg:
tc = tc + [c[i]]

flg = True
return tc

A billing program

i116 Basic of Programming - 3. Built-in data structures 31

print(normCart(cart))

def mkBillItemLst(cat,nc):
bil = []
for i in range(len(nc)):

try:
ip = cat[(nc[i])[0]]
bil = bil + [(ip[0], (nc[i])[1], ip[1] * (nc[i])[1])]

except KeyError:
return []

return bil

print(mkBillItemLst(catalog,normCart(cart)))

A billing program

i116 Basic of Programming - 3. Built-in data structures 32

def mkBill(cat,c):
bil = mkBillItemLst(cat,normCart(c))
ttl = 0
for bi in bil:

ttl = ttl + bi[2]
return (bil, ttl)

print(mkBill(catalog,cart))

A billing program

i116 Basic of Programming - 3. Built-in data structures 33

def printBill(bll):
bil = bll[0]
ttl = bll[1]
print('************** Billing **************')
print('item ordered\t#items\tsub-total')
for bi in bil:

print(bi[0], '\t', bi[1], '\t', bi[2])
print('*********** total amount ***********')
print(ttl, ' Japanese Yen')

printBill(mkBill(catalog,cart))

