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• Binary trees

• Enumeration types

• User-defined exceptions
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(1) Leaf is a binary tree.

(2) If v is a value and lt & rt are binary trees, then 
Node(v,lt,rt) is a binary tree.
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Inductively defined as follows:
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class Tree(object):
def isLeaf(self):
pass

def __str__(self):
pass

class Leaf(Tree):
def isLeaf(self):
return True

def __str__(self):
return 'leaf'

Binary trees
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class Node(Tree):
def isLeaf(self):
return False

def __str__(self):
return '(val: ' + str(self.val) + ') (left: ' + str(self.left) + ') (right: ' + str(self.right) + ')'

def __init__(self,v,lt,rt):
self.val = v
self.left = lt
self.right = rt



Binary trees
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n1 = Node(1,Leaf(),Leaf())
n2 = Node(2,Leaf(),Leaf())
n3 = Node(3,n1,n2)
n4 = Node(4,Leaf(),Leaf())
n5 = Node(5,Leaf(),Leaf())
n6 = Node(6,n4,n5)
n7 = Node(7,n3,n6)
n8 = Node(8,Leaf(),Leaf())
n9 = Node(9,Leaf(),Leaf())
n10 = Node(10,n8,n9)
n11 = Node(11,n7,n10)
print(str(n11))

Binary trees

• How to search a binary tree for something (or 
value) can be classified into two ways:
– Depth-first search
– Breadth-first search

• Depth-first search: For each path from the root to 
each leaf, search is carried out.

• Breadth-first search: Search starts with the 
shallowest depth that only consists of the root; all 
nodes located at the same depth are checked, 
and if nothing is found, the search moves to the 
next depth.
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def dfSearch(tree,x):
if tree.isLeaf():
return tree

if x == tree.val:
return tree

tmp = dfSearch(tree.left,x)
if not tmp.isLeaf():
return tmp

return dfSearch(tree.right,x)

n1 = Node(1,Leaf(),Leaf())
n2 = Node(2,Leaf(),Leaf())
n3 = Node(3,n1,n2)
n4 = Node(4,Leaf(),Leaf())
n5 = Node(5,Leaf(),Leaf())
n6 = Node(6,n4,n5)
n7 = Node(7,n3,n6)
n8 = Node(8,Leaf(),Leaf())
n9 = Node(9,Leaf(),Leaf())
n10 = Node(10,n8,n9)
n11 = Node(11,n7,n10)
print(n11.str())
r = dfSearch(n11,2)
print(str(r))
r = dfSearch(n11,0)
print(str(r))
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def bfSearch(tree,x):
qu = Queue()
qu.enqueue(tree)
while not qu.isEmpty():

node = qu.top()
qu.dequeue()
if node.isLeaf():
continue

if x == node.val:
return node

qu.enqueue(node.left)
qu.enqueue(node.right)

return Leaf()

n1 = Node(1,Leaf(),Leaf())
n2 = Node(2,Leaf(),Leaf())
n3 = Node(3,n1,n2)
n4 = Node(4,Leaf(),Leaf())
n5 = Node(5,Leaf(),Leaf())
n6 = Node(6,n4,n5)
n7 = Node(7,n3,n6)
n8 = Node(8,Leaf(),Leaf())
n9 = Node(9,Leaf(),Leaf())
n10 = Node(10,n8,n9)
n11 = Node(11,n7,n10)
print(n11.str())
r = bfSearch(n11,2)
print(str(r))
r = bfSearch(n11,0)
print(str(r))

Binary trees

• Why do we need to have both depth-first search 
and breadth-first search for (binary) trees?

• In most cases, depth-first search is more efficient 
than breadth-first search for conventional 
computers.

• This is because we need to use a queue to 
implement breadth-first search for conventional 
computers.

• When should we use breadth-first search?
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Enumeration types

• You could use integers, strings, etc., to 
distinguish several different cases.

• We may want to name such cases and then 
integers are not very adequate.

• Strings may be OK but need more spaces than 
integers.

• Enumeration types should be used to 
distinguish several different cases.
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from enum import *

class Thing(Enum):
Gold = auto()
Silver = auto()
Stone = auto()
Poison = auto()
Nothing = auto()

def __str__(self):
if self == Thing.Gold:
return 'Gold'

elif self == Thing.Silver:
return 'Silver'

elif self == Thing.Stone:
return 'Stone'

elif self == Thing.Poison:
return 'Poison'

elif self == Thing.Nothing:
return 'Nothing'

else:
return 'Error'

print(Thing.Gold)
print(Thing.Silver)
print(Thing.Stone)
print(Thing.Poison)
print(Thing.Nothing)

Enum is a class.
An enumeration type, such as Thing,  
is defined as a sub-class of Enum.

Different values 
are automatically 
generated by 
auto().

Enumeration types
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n1 = Node(Thing.Poison,Leaf(),Leaf())
n2 = Node(Thing.Stone,Leaf(),Leaf())
n3 = Node(Thing.Stone,n1,n2)
n4 = Node(Thing.Silver,Leaf(),Leaf())
n5 = Node(Thing.Gold,Leaf(),Leaf())
n6 = Node(Thing.Stone,n4,n5)
n8 = Node(Thing.Silver,n3,n6)
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Enumeration types

• Let’s make a game as follows:
– A tree that has Gold, Silver, Stone and Poison is 

searched in a random way;

– If you find Gold, you win;

– If you find Poison, you lose; etc.

• How do we do “search in a random way?”

• It is based on Breadth-first search for trees.
– The queue used is shuffled somehow from time to 

time.
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Enumeration types
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import random
class Queue(object):

elements = []
…

def shuffle(self):
size = len(self.elements)
t = size // 2
while t > 0:

i = random.randrange(size)
j = random.randrange(size)
self.swap(i,j)
t = t – 1

The module random is imported.
Note that 
import random 
is basically the same as 
from random import *

An integer 𝑥 such that 0  𝑥  𝑠𝑖𝑧𝑒
is randomly generated.
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def swap(self,i,j):
if i >= 0 and j >= 0 and i < len(self.elements) and j < len(self.elements) and i != j:

tmp = self.elements[i]
self.elements[i] = self.elements[j]
self.elements[j] = tmp

…

q = Queue()
q.enqueue(1)
q.enqueue(2)
q.enqueue(3)
q.enqueue(4)
q.enqueue(5)
q.enqueue(6)

q.enqueue(7)
q.enqueue(8)
q.enqueue(9)
q.enqueue(10)
print(q.str())
q.shuffle()
print(q.str())

Enumeration types
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from queue import *
from thing import *

def rSearch(tree,x):
qu = Queue()
qu.enqueue(tree)
while not qu.isEmpty():

node = qu.top()
qu.dequeue()
if isinstance(node, Node):

print(node.val)

if node.isLeaf():
continue

if x == node.val:
return node

qu.enqueue(node.left)
qu.enqueue(node.right)
qu.shuffle()

return Leaf()
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n1 = Node(Thing.Stone,Leaf(),Leaf())
n2 = Node(Thing.Poison,Leaf(),Leaf())
n3 = Node(Thing.Stone,n1,n2)
n4 = Node(Thing.Silver,Leaf(),Leaf())
n5 = Node(Thing.Silver,Leaf(),Leaf())
n6 = Node(Thing.Stone,n4,n5)
n7 = Node(Thing.Stone,n3,n6)
…
n11 = Node(Thing.Stone,n7,n8)
…
n17 = Node(Thing.Stone,n15,n16)

r = rSearch(n17,Thing.Gold)
print(str(r))  

This piece of code is available 
from the course website.

Enumeration types
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def gameSearch(tree,x,times):
qu = Queue()
qu.enqueue(tree)
while not qu.isEmpty():
if times <= 0:

print('Failure!')
print('You are exhausted.')
return

times = times - 1
node = qu.top()
qu.dequeue()
if node.isLeaf():
continue

if node.val == Thing.Poison:
print('Failure!')
print('You found Poison.')
return

if x == node.val:
print('Success!')
print('You found ', node.val, '.')
return

qu.enqueue(node.left)
qu.enqueue(node.right)
qu.shuffle()

print('Failure!')
print('Nothing was found.')

Search bound
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n1 = Node(Thing.Stone,Leaf(),Leaf())
n2 = Node(Thing.Poison,Leaf(),Leaf())
n3 = Node(Thing.Stone,n1,n2)
n4 = Node(Thing.Silver,Leaf(),Leaf())
n5 = Node(Thing.Silver,Leaf(),Leaf())
n6 = Node(Thing.Stone,n4,n5)
n7 = Node(Thing.Stone,n3,n6)
…
n11 = Node(Thing.Stone,n7,n8)
…
n17 = Node(Thing.Stone,n15,n16)

gameSearch(n17,Thing.Gold,25)

This piece of code is available 
from the course website.

User-defined exceptions

• You may want to distinguish several different 
exceptions so that you can handle each 
exception adequately.

• You can define your own exceptions to make it 
doable.
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class Poison(Exception):
pass

class Exhausted(Exception):
pass

class NotFound(Exception):
pass

Three exceptions Poison, Exhausted, and NotFound, are 
defined as follows:

Exception is a class, and 
so are user-defined 
exceptions.
User-defined exceptions 
are sub-classes of 
Exception.

User-defined exceptions

• gameSearch will be revised such that when 
you find Poison, an exception “Poison” is 
raised, when you exceed the search bound, an 
exception “Exhausted” is raised, and when 
you do not find Gold, an exception 
“NotFound” is raised.  
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def revGameSearch(tree,x,times):
qu = Queue()
qu.enqueue(tree)
while not qu.isEmpty():
if times <= 0:
raise Exhausted('You are exhausted.')      

times = times - 1
node = qu.top()
qu.dequeue()
if node.isLeaf():
continue

User-defined exceptions
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if node.val == Thing.Poison:
raise Poison('You found Poison.')

if x == node.val:
print('Success!')
print('You found ', node.val, '.')
return

qu.enqueue(node.left)
qu.enqueue(node.right)
qu.shuffle()

raise NotFound('Nothing was found.')



User-defined exceptions
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def game(tree,x,times):
try:

revGameSearch(tree,x,times)
except Exhausted as em:

print('Failure!')
print(em)

except Poison as em:
print('Failure!')
print(em)

except NotFound as em:
print('Failure!')
print(em)

Multiple exceptions can 
be handled in each way.

Enumeration types
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n1 = Node(Thing.Stone,Leaf(),Leaf())
n2 = Node(Thing.Poison,Leaf(),Leaf())
n3 = Node(Thing.Stone,n1,n2)
n4 = Node(Thing.Silver,Leaf(),Leaf())
n5 = Node(Thing.Silver,Leaf(),Leaf())
n6 = Node(Thing.Stone,n4,n5)
n7 = Node(Thing.Stone,n3,n6)
…
n11 = Node(Thing.Stone,n7,n8)
…
n17 = Node(Thing.Stone,n15,n16)

game(n17,Thing.Gold,25)

This piece of code is available 
from the course website.


