
i117: Basic of Programming

5. User-defined data structures (2)

Kazuhiro Ogata, Canh Minh Do

Roadmap

• Binary trees

• Enumeration types

• User-defined exceptions

2i116 Basic of Programming - 5. User-defined data structures (2)

Binary trees

i116 Basic of Programming - 5. User-defined data structures (2) 3

(1) Leaf is a binary tree.

(2) If v is a value and lt & rt are binary trees, then
Node(v,lt,rt) is a binary tree.

Leaf

aNode: 0

aLeaft aLeaft

aLeaft

aNode: 1

aLeaft aLeaft

aNode: 0

aLeaft aLeaft

aNode: 2

Node(0,Leaf,Leaf)

Node(2,
Node(0,Leaf,Leaf),
Node(1,Leaf,Leaf))

Inductively defined as follows:

Binary trees

i116 Basic of Programming - 5. User-defined data structures (2) 4

aNode: 11

aNode: 7 aNode: 10

aNode: 3 aNode: 6

aNode: 1 aNode: 2 aNode: 4 aNode: 5

aNode: 8 aNode: 9

aLeaft aLeaft aLeaft aLeaft aLeaft aLeaft aLeaft aLeaft

aLeaft aLeaft aLeaft aLeaft

left

left

left

left left left

left

left

left left

left

right

right

right

right right right right

right

right

right
right

Called the root of the tree

Binary trees

i116 Basic of Programming - 5. User-defined data structures (2) 5

class Tree(object):
def isLeaf(self):
pass

def __str__(self):
pass

class Leaf(Tree):
def isLeaf(self):
return True

def __str__(self):
return 'leaf'

Binary trees

i116 Basic of Programming - 5. User-defined data structures (2) 6

class Node(Tree):
def isLeaf(self):
return False

def __str__(self):
return '(val: ' + str(self.val) + ') (left: ' + str(self.left) + ') (right: ' + str(self.right) + ')'

def __init__(self,v,lt,rt):
self.val = v
self.left = lt
self.right = rt

Binary trees

i116 Basic of Programming - 5. User-defined data structures (2) 7

n1 = Node(1,Leaf(),Leaf())
n2 = Node(2,Leaf(),Leaf())
n3 = Node(3,n1,n2)
n4 = Node(4,Leaf(),Leaf())
n5 = Node(5,Leaf(),Leaf())
n6 = Node(6,n4,n5)
n7 = Node(7,n3,n6)
n8 = Node(8,Leaf(),Leaf())
n9 = Node(9,Leaf(),Leaf())
n10 = Node(10,n8,n9)
n11 = Node(11,n7,n10)
print(str(n11))

Binary trees

• How to search a binary tree for something (or
value) can be classified into two ways:
– Depth-first search
– Breadth-first search

• Depth-first search: For each path from the root to
each leaf, search is carried out.

• Breadth-first search: Search starts with the
shallowest depth that only consists of the root; all
nodes located at the same depth are checked,
and if nothing is found, the search moves to the
next depth.

i116 Basic of Programming - 5. User-defined data structures (2) 8

Binary trees

i116 Basic of Programming - 5. User-defined data structures (2) 9

① ② ③ ④ ⑤ ⑥
①

②

③

④

⑤

Depth-first search Breadth-first search

Binary trees

i116 Basic of Programming - 5. User-defined data structures (2) 10

aNode: 11

aNode: 7 aNode: 10

aNode: 3 aNode: 6

aNode: 1 aNode: 2 aNode: 4 aNode: 5

aNode: 8 aNode: 9

aLeaft aLeaft aLeaft aLeaft aLeaft aLeaft aLeaft aLeaft

aLeaft aLeaft aLeaft aLeaft

left

left

left

left left left

left

left

left left

left

right

right

right

right right right right

right

right

right
right

①

②

③

④

⑤ ⑥

⑦

Depth-first search

Binary trees

i116 Basic of Programming - 5. User-defined data structures (2) 11

aNode: 11

aNode: 7 aNode: 10

aNode: 3 aNode: 6

aNode: 1 aNode: 2 aNode: 4 aNode: 5

aNode: 8 aNode: 9

aLeaft aLeaft aLeaft aLeaft aLeaft aLeaft aLeaft aLeaft

aLeaft aLeaft aLeaft aLeaft

left

left

left

left left left

left

left

left left

left

right

right

right

right right right right

right

right

right
right

①

② ③

④ ⑤ ⑥ ⑦

Breadth-first search

⑧ ⑨

Binary trees

i116 Basic of Programming - 5. User-defined data structures (2) 12

def dfSearch(tree,x):
if tree.isLeaf():
return tree

if x == tree.val:
return tree

tmp = dfSearch(tree.left,x)
if not tmp.isLeaf():
return tmp

return dfSearch(tree.right,x)

n1 = Node(1,Leaf(),Leaf())
n2 = Node(2,Leaf(),Leaf())
n3 = Node(3,n1,n2)
n4 = Node(4,Leaf(),Leaf())
n5 = Node(5,Leaf(),Leaf())
n6 = Node(6,n4,n5)
n7 = Node(7,n3,n6)
n8 = Node(8,Leaf(),Leaf())
n9 = Node(9,Leaf(),Leaf())
n10 = Node(10,n8,n9)
n11 = Node(11,n7,n10)
print(n11.str())
r = dfSearch(n11,2)
print(str(r))
r = dfSearch(n11,0)
print(str(r))

Binary trees

i116 Basic of Programming - 5. User-defined data structures (2) 13

def bfSearch(tree,x):
qu = Queue()
qu.enqueue(tree)
while not qu.isEmpty():

node = qu.top()
qu.dequeue()
if node.isLeaf():
continue

if x == node.val:
return node

qu.enqueue(node.left)
qu.enqueue(node.right)

return Leaf()

n1 = Node(1,Leaf(),Leaf())
n2 = Node(2,Leaf(),Leaf())
n3 = Node(3,n1,n2)
n4 = Node(4,Leaf(),Leaf())
n5 = Node(5,Leaf(),Leaf())
n6 = Node(6,n4,n5)
n7 = Node(7,n3,n6)
n8 = Node(8,Leaf(),Leaf())
n9 = Node(9,Leaf(),Leaf())
n10 = Node(10,n8,n9)
n11 = Node(11,n7,n10)
print(n11.str())
r = bfSearch(n11,2)
print(str(r))
r = bfSearch(n11,0)
print(str(r))

Binary trees

• Why do we need to have both depth-first search
and breadth-first search for (binary) trees?

• In most cases, depth-first search is more efficient
than breadth-first search for conventional
computers.

• This is because we need to use a queue to
implement breadth-first search for conventional
computers.

• When should we use breadth-first search?

i116 Basic of Programming - 5. User-defined data structures (2) 14

Binary trees

i116 Basic of Programming - 5. User-defined data structures (2) 15

aNode: 1

aNode: 1 aNode: 0

aNode: 1

aNode: 1

aLeaft aLeaft

aLeaft

aLeaftaLeaft aLeaftVery long!

What if we try to carry out dfSearch(tree,0)?

tree

Enumeration types

• You could use integers, strings, etc., to
distinguish several different cases.

• We may want to name such cases and then
integers are not very adequate.

• Strings may be OK but need more spaces than
integers.

• Enumeration types should be used to
distinguish several different cases.

i116 Basic of Programming - 5. User-defined data structures (2) 16

Enumeration types

i116 Basic of Programming - 5. User-defined data structures (2) 17

from enum import *

class Thing(Enum):
Gold = auto()
Silver = auto()
Stone = auto()
Poison = auto()
Nothing = auto()

def __str__(self):
if self == Thing.Gold:
return 'Gold'

elif self == Thing.Silver:
return 'Silver'

elif self == Thing.Stone:
return 'Stone'

elif self == Thing.Poison:
return 'Poison'

elif self == Thing.Nothing:
return 'Nothing'

else:
return 'Error'

print(Thing.Gold)
print(Thing.Silver)
print(Thing.Stone)
print(Thing.Poison)
print(Thing.Nothing)

Enum is a class.
An enumeration type, such as Thing,
is defined as a sub-class of Enum.

Different values
are automatically
generated by
auto().

Enumeration types

i116 Basic of Programming - 5. User-defined data structures (2) 18

n1 = Node(Thing.Poison,Leaf(),Leaf())
n2 = Node(Thing.Stone,Leaf(),Leaf())
n3 = Node(Thing.Stone,n1,n2)
n4 = Node(Thing.Silver,Leaf(),Leaf())
n5 = Node(Thing.Gold,Leaf(),Leaf())
n6 = Node(Thing.Stone,n4,n5)
n8 = Node(Thing.Silver,n3,n6)

Poison

aLeaft aLeaft

Stone

aLeaft aLeaft

Stone

Silver

aLeaft aLeaft

Gold

aLeaft aLeaft

Stone

Silver

Enumeration types

• Let’s make a game as follows:
– A tree that has Gold, Silver, Stone and Poison is

searched in a random way;

– If you find Gold, you win;

– If you find Poison, you lose; etc.

• How do we do “search in a random way?”

• It is based on Breadth-first search for trees.
– The queue used is shuffled somehow from time to

time.

i116 Basic of Programming - 5. User-defined data structures (2) 19

Enumeration types

i116 Basic of Programming - 5. User-defined data structures (2) 20

import random
class Queue(object):

elements = []
…

def shuffle(self):
size = len(self.elements)
t = size // 2
while t > 0:

i = random.randrange(size)
j = random.randrange(size)
self.swap(i,j)
t = t – 1

The module random is imported.
Note that
import random
is basically the same as
from random import *

An integer 𝑥 such that 0 𝑥 𝑠𝑖𝑧𝑒
is randomly generated.

Enumeration types

i116 Basic of Programming - 5. User-defined data structures (2) 21

def swap(self,i,j):
if i >= 0 and j >= 0 and i < len(self.elements) and j < len(self.elements) and i != j:

tmp = self.elements[i]
self.elements[i] = self.elements[j]
self.elements[j] = tmp

…

q = Queue()
q.enqueue(1)
q.enqueue(2)
q.enqueue(3)
q.enqueue(4)
q.enqueue(5)
q.enqueue(6)

q.enqueue(7)
q.enqueue(8)
q.enqueue(9)
q.enqueue(10)
print(q.str())
q.shuffle()
print(q.str())

Enumeration types

i116 Basic of Programming - 5. User-defined data structures (2) 22

from queue import *
from thing import *

def rSearch(tree,x):
qu = Queue()
qu.enqueue(tree)
while not qu.isEmpty():

node = qu.top()
qu.dequeue()
if isinstance(node, Node):

print(node.val)

if node.isLeaf():
continue

if x == node.val:
return node

qu.enqueue(node.left)
qu.enqueue(node.right)
qu.shuffle()

return Leaf()

Enumeration types

i116 Basic of Programming - 5. User-defined data structures (2) 23

n1 = Node(Thing.Stone,Leaf(),Leaf())
n2 = Node(Thing.Poison,Leaf(),Leaf())
n3 = Node(Thing.Stone,n1,n2)
n4 = Node(Thing.Silver,Leaf(),Leaf())
n5 = Node(Thing.Silver,Leaf(),Leaf())
n6 = Node(Thing.Stone,n4,n5)
n7 = Node(Thing.Stone,n3,n6)
…
n11 = Node(Thing.Stone,n7,n8)
…
n17 = Node(Thing.Stone,n15,n16)

r = rSearch(n17,Thing.Gold)
print(str(r))

This piece of code is available
from the course website.

Enumeration types

i116 Basic of Programming - 5. User-defined data structures (2) 24

def gameSearch(tree,x,times):
qu = Queue()
qu.enqueue(tree)
while not qu.isEmpty():
if times <= 0:

print('Failure!')
print('You are exhausted.')
return

times = times - 1
node = qu.top()
qu.dequeue()
if node.isLeaf():
continue

if node.val == Thing.Poison:
print('Failure!')
print('You found Poison.')
return

if x == node.val:
print('Success!')
print('You found ', node.val, '.')
return

qu.enqueue(node.left)
qu.enqueue(node.right)
qu.shuffle()

print('Failure!')
print('Nothing was found.')

Search bound

Enumeration types

i116 Basic of Programming - 5. User-defined data structures (2) 25

n1 = Node(Thing.Stone,Leaf(),Leaf())
n2 = Node(Thing.Poison,Leaf(),Leaf())
n3 = Node(Thing.Stone,n1,n2)
n4 = Node(Thing.Silver,Leaf(),Leaf())
n5 = Node(Thing.Silver,Leaf(),Leaf())
n6 = Node(Thing.Stone,n4,n5)
n7 = Node(Thing.Stone,n3,n6)
…
n11 = Node(Thing.Stone,n7,n8)
…
n17 = Node(Thing.Stone,n15,n16)

gameSearch(n17,Thing.Gold,25)

This piece of code is available
from the course website.

User-defined exceptions

• You may want to distinguish several different
exceptions so that you can handle each
exception adequately.

• You can define your own exceptions to make it
doable.

i116 Basic of Programming - 5. User-defined data structures (2) 26

User-defined exceptions

i116 Basic of Programming - 5. User-defined data structures (2) 27

class Poison(Exception):
pass

class Exhausted(Exception):
pass

class NotFound(Exception):
pass

Three exceptions Poison, Exhausted, and NotFound, are
defined as follows:

Exception is a class, and
so are user-defined
exceptions.
User-defined exceptions
are sub-classes of
Exception.

User-defined exceptions

• gameSearch will be revised such that when
you find Poison, an exception “Poison” is
raised, when you exceed the search bound, an
exception “Exhausted” is raised, and when
you do not find Gold, an exception
“NotFound” is raised.

i116 Basic of Programming - 5. User-defined data structures (2) 28

User-defined exceptions

i116 Basic of Programming - 5. User-defined data structures (2) 29

def revGameSearch(tree,x,times):
qu = Queue()
qu.enqueue(tree)
while not qu.isEmpty():
if times <= 0:
raise Exhausted('You are exhausted.')

times = times - 1
node = qu.top()
qu.dequeue()
if node.isLeaf():
continue

User-defined exceptions

i116 Basic of Programming - 5. User-defined data structures (2) 30

if node.val == Thing.Poison:
raise Poison('You found Poison.')

if x == node.val:
print('Success!')
print('You found ', node.val, '.')
return

qu.enqueue(node.left)
qu.enqueue(node.right)
qu.shuffle()

raise NotFound('Nothing was found.')

User-defined exceptions

i116 Basic of Programming - 5. User-defined data structures (2) 31

def game(tree,x,times):
try:

revGameSearch(tree,x,times)
except Exhausted as em:

print('Failure!')
print(em)

except Poison as em:
print('Failure!')
print(em)

except NotFound as em:
print('Failure!')
print(em)

Multiple exceptions can
be handled in each way.

Enumeration types

i116 Basic of Programming - 5. User-defined data structures (2) 32

n1 = Node(Thing.Stone,Leaf(),Leaf())
n2 = Node(Thing.Poison,Leaf(),Leaf())
n3 = Node(Thing.Stone,n1,n2)
n4 = Node(Thing.Silver,Leaf(),Leaf())
n5 = Node(Thing.Silver,Leaf(),Leaf())
n6 = Node(Thing.Stone,n4,n5)
n7 = Node(Thing.Stone,n3,n6)
…
n11 = Node(Thing.Stone,n7,n8)
…
n17 = Node(Thing.Stone,n15,n16)

game(n17,Thing.Gold,25)

This piece of code is available
from the course website.

