i117: Basic of Programming

5. User-defined data structures (2)

Kazuhiro Ogata, Canh Minh Do

i116 Basic of Programming - 5. User-defined data structures (2)

Roadmap

* Binary trees
* Enumeration types
* User-defined exceptions

i116 Basic of Programming - 5. User-defined data structures (2) 3

Binary trees

Inductively defined as follows:

(1) Leaf is a binary tree.

(2) If vis a value and It & rt are binary trees, then

Node(v,It,rt) is a binary tree.
Node(2,

Node(0,Leaf,Leaf),
Leaf Node(0,Leaf,Leaf) Node(1,Leaf,Leaf))

Node: 2

‘ aNode: 0 ‘ ‘ aNode: 1 ‘

‘ aleaft H aleaft ‘ ‘ aleaft H aleaft ‘

i116 Basic of Programming - 5. User-defined data structures (2) 4

Binary trees

Called the root of the tree
N~ JlaNode:11

left right

aNode: 7

left right
‘ aNode: 8 ‘ ‘ aNode: 9 ‘
of ght left/ right left/ right
‘ aleaft H aleaft ‘ ‘ aleaft H aleaft ‘

‘ aNode: 1 ‘ ‘ aNode: 2 ‘ ‘ aNode: 4 ‘ ‘ aNode: 5

left/ “right Ieft/\\ight Ieft/\\ight left/ “\right

‘ aleaft H aleaft ‘ ‘ aLeaft H aleaft ‘ ‘ aleaft H aleaft ‘ ‘ aleaft H aleaft ‘

i116 Basic of Programming - 5. User-defined data structures (2)

Binary trees

class Tree(object):
def isLeaf(self):
pass
def str_ (self):
pass

class Leaf(Tree):
def isLeaf(self):
return True
def str_ (self):
return 'leaf’

i116 Basic of Programming - 5. User-defined data structures (2)

Binary trees

class Node(Tree):
def isLeaf(self):
return False
def str (self):
return '(val: ' + str(self.val) + ') (left: ' + str(self.left) + ') (right: ' + str(self.right) +"')'
def init_ (self,v,it.rt):
self.val =v
self.left = It
self.right = rt

i116 Basic

of Programming - 5. User-defined data structures (2)

Binary trees

nl1 = Node(1,Leaf(),Leaf())
n2 = Node(2,Leaf(),Leaf())
n3 = Node(3,n1,n2)

n4 = Node(4,Leaf(),Leaf())
n5 = Node(5,Leaf(),Leaf())
né = Node(6,n4,n5)

n7 = Node(7,n3,n6)

n8 = Node(8,Leaf(),Leaf())
n9 = Node(9,Leaf(),Leaf())
n10 = Node(10,n8,n9)
n11 = Node(11,n7,n10)
print(str(n11))

Binary trees

How to search a binary tree for something (or
value) can be classified into two ways:

— Depth-first search

— Breadth-first search

Depth-first search: For each path from the root to
each leaf, search is carried out.

Breadth-first search: Search starts with the
shallowest depth that only consists of the root; all
nodes located at the same depth are checked,
and if nothing is found, the search moves to the
next depth.

i116 Basic of Programming - 5. User-defined data structures (2)

Binary trees

aNode: 11
left right
aNode: 7 aNode: 10
left right left right
aNode: 3 aNode: 6 alode: 8 aNede: 9
- right | right
left right left right left” 118 o
et | aleatt alealt || aleah

aNode:1 aNode: 2 aNode: 4 aNode: 5

left. right |eft right left BNt jefr right

atealt | alealt aleah | aleafs

Breadth-first search

aheatt | ateatt| | atealt | aleatt

Depth-first search
ORBRONONORE)

i116 Basic of Programming - 5. User-defined data structures (2) 10
Binary trees
Depth-first search W
@
Af left right
©),
/ ‘ aNode: 8 ‘ ‘ aNode: 9 ‘
of ight left right left/ “right
@ ‘ aleaft H aleaft ‘ ‘ aleaft H aleaft ‘

HaNode:/l ‘ ‘aNode: 2 ‘

‘ aNode: 4 ‘ ‘ aNode: 5 ‘

t/ Jright left/ ‘right

left/ Yight |eft/ “right

aleaft || aleaft ‘ aleaft H aLeaft ‘

‘ aleaft H aleaft ‘ ‘ aleaft H aleaft ‘

i116 Basic of Programming - 5. User-defined data structures (2) 11

Binary trees
Breadth-first search .

right
@ g
e:8 aNode: 9 ‘

o ight left right left Mght
@ ‘ aleaft H aleaft ‘ ‘ aleaft H aleaft ‘
‘ aNode: 1 ‘ ‘ aNode: 2 ‘ ‘ aNode: 4 ‘ ‘ aNode: 5
ft/ ght left/ right left/ right et/ right
‘ aleaft H aleaft ‘ ‘ aleaft H aleaft ‘ ‘ aleaft H aleaft ‘ ‘ aleaft H aleaft ‘
i116 Basic of Programming - 5. User-defined data structures (2) 12

Binary trees

n1 = Node(1,Leaf(),Leaf())

def dfSearch(tree,x): n2 = Node(2,Leaf(),Leaf{())
if tree.isLeaf(): n3 = Node(3,n1,n2)
return tree n4 = Node(4,Leaf(),Leaf())
if x == ‘[‘ree'va[: n5= NOde(5,Leaf(),Leaf())
return tree n6 = Node(6,n4,n5)
tmp = dfSearch(tree.left,x) n7 = Node(7,n3,n6)
if not tmp.isLeaf(): n8 = Node(8,Leaf(),Leaf())
return tmp n9 = Node(9,Leaf(),Leaf())
return dfSearch(tree.right,x) n10 = Node(10,n8,n9)

n11=Node(11,n7,n10)
print(n11.str())

r = dfSearch(n11,2)
print(str(r))

r = dfSearch(n11,0)
print(str(r))

i116 Basic of Programming - 5. User-defined data structures (2)

Binary trees

nl = Node(1,Leaf(),Leaf())

if x == node.val:
return node
qgu.engueue(node.right)
return Leaf()

def bfSearch(tree,x): n2 = Node(2,Leaf(),Leaf())
qu = Queue() n3 = Node(3,n1,n2)

qu.enqueue(tree) n4 = Node(4,Leaf(),Leaf())

while not gu.isEmpty(): n5 = Node(5,Leaf(),Leaf())
node = qu.top() n6 = Node(6,n4,n5)
qu.dequeue() n7 = Node(7,n3,n6)

if node.isLeaf(): n8 = Node(8,Leaf(),Leaf())

continue n9 = Node(9,Leaf(),Leaf())

n10 = Node(10,n8,n9)
nil=Node(11,n7,n10)
print(n11.str())
print(str(r))

r = bfSearch(n11,0)
print(str(r))

i116 Basic of Programming - 5. User-defined data structures (2)

Binary trees

* Why do we need to have both depth-first search
and breadth-first search for (binary) trees?

* In most cases, depth-first search is more efficient
than breadth-first search for conventional
computers.

* This is because we need to use a queue to
implement breadth-first search for conventional
computers.

* When should we use breadth-first search?

i116 Basic of Programming - 5. User-defined data structures (2)

Binary trees

tree

aNode: 1 <—J

‘ aNode: 1 ‘ ‘ aNode: 0 ‘

Very long! oteatt | sttt |

aNode: 1 What if we try to carry out dfSearch(tree,0)?

‘ aleaft ‘

aNode: 1

15

i116 Basic of Programming - 5. User-defined data structures (2)

Enumeration types

* You could use integers, strings, etc., to
distinguish several different cases.

* We may want to name such cases and then
integers are not very adequate.

 Strings may be OK but need more spaces than
integers.

* Enumeration types should be used to
distinguish several different cases.

i116 Basic of Programming - 5. User-defined data structures (2) 17

Enumeration tvpes

Enum is a class.
/ An enumeration type, such as Thing,

from enum import * is defined as @ sub-class of Enum.

class Thing(Enum): def _ str_ (self):
Gold = auto() if self == Thing.Gold:
Silver = auto() Different values return 'Gold'
Stone = auto() | are automaticall elif self == Thing.Silver:
Poison = auto() generated by return 'Silver'
Nothing = auto() auto(). elif self == Thing.Stone:

return 'Stone'

elif self == Thing.Poison:

print(Thing.Gold) return 'Poison’
print(Thing Silver) elif self == Thing.Nothing:
print(Thing.Stone) return 'Nothing'
print(Thing.Poison) alse
print(Thing.Nothing) return 'Error’

{116 Basic of Programming - 5. User-defined data structures (2) 18

Enumeration types

nl = Node(Thing.Poison,Leaf(),Leaf())
n2 = Node(Thing.Stone,Leaf(),Leaf())
n3 = Node(Thing.Stone,n1,n2)

n4 = Node(Thing.Silver,Leaf(),Leaf())
n5 = Node(Thing.Gold,Leaf(),Leaf())
n6 = Node(Thing.Stone,n4,n5)

n8 = Node(Thing.Silver,n3,n6)

Silver

‘ Poison ‘ ‘ Stone ‘ ‘ Silver ‘ ‘ Gold ‘

‘ aLeaft H aleaft H aleaft H aleaft ‘ ‘ aleaft H aleaft ‘ aleaft || aleaft

i116 Basic of Programming - 5. User-defined data structures (2) 19

Enumeration types

* Let’s make a game as follows:

— A tree that has Gold, Silver, Stone and Poison is
searched in a random way;

— If you find Gold, you win;

— If you find Poison, you lose; etc.
* How do we do “search in a random way?”
* It is based on Breadth-first search for trees.

— The queue used is shuffled somehow from time to
time.

i116 Basic of Programming - 5. User-defined data structures (2) 20

Enumeration types

//‘\ The module random is imported.
E\ln‘l’ﬂ +hat

import random
class Queue(object):
elements =[]

import random
is basically the same as
from random import *

def shuffle(self):

size = len(self.elements) AN integer x such that 0 = x > size
t=size /] 2 is randomly generated.
while t > 0:

i = random.randrange(size)
j =random.randrange(size)
self.swap(i,j)

t=t—-1

i116 Basic of Programming - 5. User-defined data structures (2)

Enumeration types

def swap(self,i):

if i >= 0 and j >= 0 and i < len(self.elements) and j < len(self.elements) and i != j:

tmp = self.elements|i]

self.elements|i] = self.elements]j]

self.elements|j] = tmp

g = Queue()

a.engueue(1)
g.enqueue(2)
a.enqueue(3)
a.enqueue(4)
g.enqueue(5)
a.engueue(6)

a.enqueue(7)
g.enqueue(8)
g.enqueue(9)
g.enqueue(10)
print(g.str())
a.shuffle()
print(g.str())

21

i116 Basic of Programming - 5. User-defined data structures (2)

Enumeration types

from queue import *
from thing import *

def rSearch(tree,x):

qgu = Queue()

gu.enqueue(tree)

while not gu.isEmpty():
node = gu.top()
gu.dequeue()
if isinstance(node, Node):

print(node.val)

if node.isLeaf|():
continue
if x == node.val:
return node
qu.enqueue(node.left)
qu.enqueue(node.right)
gu.shuffle()
return Leaf()

22

i116 Basic of Programming - 5. User-defined data structures (2)

23

Enumeration types

n1 = Node(Thing.Stone,Leaf(),Leaf())
n2 = Node(Thing.Poison,Leaf(),Leaf())
n3 = Node(Thing.Stone,n1,n2)

n4 = Node(Thing.Silver,Leaf(),Leaf())
n5 = Node(Thing.Silver,Leaf(), Leaf())
n6 = Node(Thing.Stone,n4,n5)

n7 = Node(Thing.Stone,n3,n6)

nll = Node(Thing.Stone,n7,n8)
ni7 = Node(Thing.Stone,n15,n16)

r = rSearch(n17,Thing.Gold)
print(str(r))

This piece of code is available
from the course website.

i116 Basic of Programming - 5. User-defined data structures (2)

24

Enumeration types

def gameS,earch(tree,x,ﬂn?es):
qu = Queue()
qu.engqueue(tree)
while not gu.isEmpty():
if times <= 0:
print('Failure!")
print('You are exhausted.')
return
times = times - 1
node = qu.top()
gu.dequeue()
if node.isLeaf():
continue

Search bound

if node.val == Thing.Poison:
print('Failure!’)
print('You found Poison.")
return
if x == node.val:
print('Success!')
print('You found ', node.val, '.")
return
qgu.enqueue(node.left)
gu.enqueue(node.right)
qu.shuffle()
print('Failure!')
print('Nothing was found.')

i116 Basic of Programming - 5. User-defined data structures (2) 25

Enumeration types

n1 = Node(Thing.Stone,Leaf(),Leaf())
n2 = Node(Thing.Poison,Leaf(),Leaf()) | This piece of code is available

n3 = Node(Thing.Stone,n1,n2) from the course website.
n4 = Node(Thing.Silver,Leaf(),Leaf())

n6 = Node(Thing.Stone,n4,n5)
n7 = Node(Thing.Stone,n3,n6)

n11 = Node(Thing.Stone,n7,n8)
n17 = Node(Thing.Stone,n15,n16)

gameSearch(n17,Thing.Gold,25)

i116 Basic of Programming - 5. User-defined data structures (2) 26

User-defined exceptions

* You may want to distinguish several different
exceptions so that you can handle each
exception adequately.

* You can define your own exceptions to make it
doable.

i116 Basic of Programming - 5. User-defined data structures (2) 27

User-defined exceptions

Three exceptions Poison, Exhausted, and NotFound, are
defined as follows:

class Poison(Exception): Exception is a class, and
pass so are user-defined
exceptions.
class Exhausted(Exception): User-defined exceptions
pass are sub-classes of
Exception.
class NotFound(Exception):
pass

i116 Basic of Programming - 5. User-defined data structures (2) 28

User-defined exceptions

« gameSearch will be revised such that when
you find Poison, an exception “Poison” is
raised, when you exceed the search bound, an
exception “Exhausted” is raised, and when
you do not find Gold, an exception
“NotFound” is raised.

i116 Basic of Programming - 5. User-defined data structures (2)

User-defined exceptions

def revGameSearch(tree,x,times):
qu = Queue()

while not gu.isEmpty():
if times <= 0:
raise Exhausted('You are exhausted.')
times = times - 1
node = qu.top)
qu.dequeue()
if node.isLeaf():
continue

29

i116 Basic of Programming - 5. User-defined data structures (2)

User-defined exceptions

if node.val == Thing.Poison:
raise Poison('You found Poison.')
if x == node.val:
print('Success!')
print('You found ', node.val, '.")
return
qu.enqueue(node./eft)
qu.engueue(node.right)
qu.shuffle()
raise NotFound('Nothing was found.")

30

i116 Basic of Programming - 5. User-defined data structures (2)

31

User-defined exceptions

def game(tree, x,times):
try:

except Exhausted as em:
print('Failure!")
print(em)

except Poison as em:
print('Failure!")
print(em)

except NotFound as em:
print('Failure!’)
print(em)

revGameSearch(tree,x,times)

-

/lultiple exceptions can
e handled in each way.

O

i116 Basic of Programming - 5. User-defined data structures (2)

32

Enumeration types

n1 = Node(Thing.Stone,Leaf(),Leaf())
n2 = Node(Thing.Poison,Leaf(),Leaf())
n3 = Node(Thing.Stone,n1,n2)

n4 = Node(Thing.Silver,Leaf(),Leaf())
n5 = Node(Thing.Silver,Leaf(),Leaf())
n6 = Node(Thing.Stone,n4,n5)

n7 = Node(Thing.Stone,n3,n6)

nl11 = Node(Thing.Stone,n7,n8)
n17 = Node(Thing.Stone,n15,n16)

game(n17,Thing.Gold,25)

This piece of code is available
from the course website.

