i219 Software Design Methodology
12. Case study 1
Dining philosopher problem

Kazuhiro Ogata (JAIST)

Outline of lecture

Dining philosopher problem (DPP)
Dining Room in UML & Java
Chopstick in UML & Java
Philosopher in UML & Java

DPP in UML & Java

Analysis of DPP

Dining philosopher problem (DPP) (1)

* There are n (= 2) philosophers who are either
thinking in a thinking room TR or eating in a dining
room DR.

* There is a table in DR that has n seats.

Each seat is given a pair of chopsticks left & right,
but they are supposed to be shared with the
philosophers at the left & right seats, respectively.

_the chopstick is shared

TR seat 1
O with seat 1 & seat 2

seat 2

Dining philosopher problem (DPP) (2)

* p can eat only if p holds both left & right.

Once p holds left, right or both of them, p never
releases them until p finishes eating.

* Possible to prevent deadlock?

If every philosopher holds one chopstick, it is
deadlock.

* One solution is to allow at most n—1 philosophers

to enter DR.
TR seatl D
seat %i

of

seat 2

Dining philosopher problem (DPP) (3)

C is waiting B is eating
TR B DR TR DR

TRC zi @DR %C B %C

B has finished eating
C can enter DR C has entered DR Cis eating

DR TR C DR TR DR

;QiB %C o %B o %B

C has finished eating m A has finished eating

TR E DR : DR
c TRB c TR OC DR
L @ - ¥F @ - ¥

Dining Room in UML & Java (1)

DR has the capacity (how many
people can enter) that is
represented by B

cnt is the number of people in DR

DiningRoom

hﬁ‘\vManyPeopleCanEnter‘ Integer {readonly}
cnt: Integer < -

—--———p+enter(): Void {synchronized}

A person can enter DR if cnt is less A person in DR can leave DR,

than the capacity, and increments decrements cnt, and let waiting
cnt; otherwise, he/she needs to wait people know that one seat becomes
until at least another person leaves available

DR

Dining Room in UML & Java (2)

public class DiningRoom {
private final int howManyPeopleCanEnter; private int cnt;
public DiningRoom(int howMany) {
this.howManyPeopleCanEnter = howMany; this.cnt=0; }

public synchronized void enter() throws InterruptedException {
if (howManyPeopleCanEnter > cnt) { cnt++; }

else
Whi{le (howManyPeopleCanEnter <= cnt) { this.wa;t(); }
cnt++; a philosopher may have to wait until at least
bl one other philosopher leaves DR
public synchronized void leave() {
cn.t--;) every time a philosopher leaves DR,
}thls.notlfyAll(); 7777 he/she lets other philosophers know it

}

Chopstick in UML & Java (1)

beingUsed is true if the chopstick is used and false otherwise

- Chopstick
“beingUsed: Boolean

_>+acquire(): Void {synchronized}

+release(). Void {synchrnoized

T-.

A pérson can use the chopstick if A‘berson can release the chopstick

beingUsed is false, and sets it to used by him/her, sets beingUsed to
true; otherwise, he/she needs to false, and lets people waiting for the

wait until the chopstick is released chopstick know that the chopstick
becomes available

Chopstick in UML & Java (2)

public class Chopstick {
private boolean beingUsed;
public Chopstick() { this.beingUsed = false; }
public synchronized void acquire() throws InterruptedException {
while (beingUsed) { this. walt() }
beingUsed = true; a philosopher has to wait while
} T the chopstick is being used
public synchronized void release() {
beingUsed = false;

this.notify All(); _ __ every time a philosopher releases the
} 7 chopstick, he/she lets other philosophers
} know it

Philosopher in UML & Java (1)

nextld is used to give each the identification
philosopher a unique number given to the
identification number A philosopher
the left chopstick [Philosopher o
“nextlD: Integer=10 .
Sh?red by the left | -myld: Integer {readanly} < 0 how m_any dmners.
philosopher <howManyDinners: Integer?readonly} the philosopher will
-left: Chopstick
the right chopstick 4 _gnt: Chﬂpstick take N
shared by the right -droom: DiningRoom < - the dining room
philosopher ;run(): Void
entering DR

. . acquiring the left chopstick
each philosopher conducts the six acquiring the right chopstick

actions for each dinner, repeating them releasing the right chopstick

howManyDinners times releasing the left chopstick
leaving DR

Philosopher in UML & Java (2)

public class Philosopher extends Thread {

private static int nextld = 0; private final int myld;

private final int howManyDinners; private Chopstick left;

private Chopstick right; private DiningRoom droom,;

public Philosopher(int n,Chopstick 1,Chopstick r,DiningRoom dr) {
this.myld = nextld++; <~ this.howManyDinners = n;
this.left=1; this.right =r; ' this.droom = dr;
) ‘

a unique identification number is given

public void run() { ... } 5 the philosopher object being created

Philosopher in UML & Java (3)

public void run() {
for (int i = 0; i < howManyDinners; i++) {

// thinking

try { droom.enter(); }<—- entering DR

catch (InterruptedException e) {}

try { left.acquire(); }< acquiring the left chopstick

catch (InterruptedException e) {}

try { right.acquire(); }«
catch (InterruptedException e) {}

// taking a dinner
right.release();<——

left.release(); «------wmrmomsrormom e releasing the left chopstick
droom.leave(); <.

- acquiring the right chopstick

- releasing the right chopstick

- leaving DR

DPP in UML & Java (1)

phil1 is taking a dinner
in droom

)

-~
-~
-

hil1:Philosopher
myld =1
howManyDinners =

2

right

chstk2:Chopstick

drgom

laft
chstk1:Chopstick

beingUsed = true

dr:DiningRoom

beingUsed = true

laft

howManyPeopleCanEnter = 2
cnt=2

ht

o

phil2:Philosopher
myld =2
howManyDinners = 2

Fight

-
-~
-

phil2 is waiting until another
leaves droom

i

chstk3 Chopstick
beingUsed = true

et phil3:Philosopher
myld=3

howManyDinners = 2

)

-
-~
-

phil3 is waiting until the right
chopstick becomes available

DPP in UML & Java (2)

Y begin(3.2) o |
>

new

’

three philosophe
are created &

new

B
DiningRoom(3-1) '\ivom—‘

each philosopher
takes two dinners

|
new|

Ly

: chpstk1
1 M.
|

: 7 chpstk2
| [

Ph\\Dsopher(E,chpstk} chpstk2,dfoom)

ST phin

siart i

new

|
|
|
1
|
|
T
|
new |

Philo sopher(2,chp51H2,chpstk3,a#ruom)
| |

dtart |
T

|
|_new !

50pher(2,t|thp51k3,chﬁstk1 Jdroa

start

El

'
|
l
PhlIF
|
I
|
|
|
I

DPP in UML & Java (3)

hil1:Philosopher

myld =1

howManyDinners = 2
right lerft
chstk2:Chopstick droom chstk1:Chopstick
beingUsed = falsg dr:DiningRoom beingUsed = falsg

howManyPeopleCanEnter = 2
laft cnt=0 right
e
phil2:Philosopher right | chstk3:Chopstick —eft—|__ phil3:Philosopher
myld =2 beingUsed = false| myld=3

howManyDinners = 2

howManyDinners = 2

DPP in UML & Java (4)

public class DiningPhilosopherProblem {

public void begin(int n,intm) { < n philosophers; each eats m times

DiningRoom dr = new DiningRoom(n-1); <
Chopstick left;
Chopstick right = new Chopstick();
Chopstick tmp = right;
for (inti=0; 1 <n-1; i++) {

left = right;

right = new Chopstick();

(new Philosopher(m,left,right, dr)) start()
i
left = right;
right = tmp;
(new Philosopher(m,left,right,dr)).start(); <

DR is created; at most n—1
philosophers are allowed to
enter DR at the same time

it philosopher thread is
createdfori=1...n-1;

" they are scheduled by

sending start() to them

nt" philosopher thread is
created & scheduled by
sending start() to it

DPP in UML & Java (5)

public class Test3DPP {
public static void main(String[] args) {
DiningPhilosopherProblem dpp
=new DiningPhilosopherProblem();

dpp.begin(3,2);
phil1:Philosopher
} myld = 1
} howManyDinners = 2
right lgft
chstk2:Chopstick drgom chstk1:Chopstick
beingUsed = falsg drDiningRoom beingUsed = false|
howManyPeopleCanEnter = 2
lgft cnt=0 right
arpm
phil2 Philosopher TIght chstk3:Chopstick [—T&ft phil3:Philoscpher
myld=2 beingUsed = falsg myld=3
howManyDinners = 2 howManyDinners = 2

Analysis of DPP (1)

In Test3DPPjpf:

target = Test3DPP

classpath+=.

sourcepath+=.

report.console.property violation=error,trace,snapshot

Analysis of DPP (2)

JPF has reported that there is no error detected.

search started: 17/01/10 11:18

results

ho errors detected

statistics

Plapsed time: 00:00:49
btates: new=286086,Vvisited=608580,backtracked=894666,end=226
Fearch: maxDepth=167,constraints=0

Fhoice generators: thread=286086
signal=17865, lock=75500,sharedRef=145954 , threadApi=3, reschedule=46764), data=0

heap: new=24031, released=971448 ,maxLive=381,gcCycles=773501
nstructions: 5016534

ax memory: 417MB

oaded code: classes=66,methods=1484

search finished: 17/01/10 11:19Y

on Windows 7 with Intel® Core™ i7-2620M CPU @ 2.70GHz
and 8GB memory

20

Analysis of DPP (3)

Let us model check DPP in which there are five philosophers and
each philosopher takes one dinner.

public class TestSDPP {
public static void main(String[] args) {
DiningPhilosopherProblem dpp
= new DiningPhilosopherProblem();
dpp.begin(5,1);
}
}
This model checking requires more than the default memory size
(1024 MB) used by JPF. So, the memory size used should be
specified as follows:

% java -Xmx7168m -ea
—-jar /Users/ogata/projects/jpf-core/build/RunJPF.jar
Test5DPP. jpf

21

Analysis of DPP (4)

JPF has reported that there is no error detected.

system under test

fest5DPP.main()

search started: 17/01/01 16:22

results
ho errors detected
statistics
Plapsed time: 03:02:10
btates: new=37203228,visited=141925031 ,backtracked=179128259,end=191
bearch: maxDepth=144,constraints=0

Fhoice generators: thread=37203228
signal=1955720, 1ock=10008827 ,sharedRef=17684099, threadApi=5, reschedule=7554577),
Hata=0

heap: new=5665551, released=157861614 ,maxLive=391,gcCycles=148046996
nstructions: 1004192967

ax memory: 1226MB

oaded code: classes=66,methods=1484

search finished: 17/01/01 19:24

on Windows 7 with Intel® Core™ i7-2620M CPU @ 2.70GHz
and 8GB memory

22

Analysis of DPP (5)

Let us model check DPP in which there are five philosophers and
each philosopher takes two dinners.

public class TestSDPP {
public static void main(String[] args) {
DiningPhilosopherProblem dpp
=new DiningPhilosopherProblem();
dpp.begin(5,2);
}
}

The following amount of memory size was used:

% java —Xmx30720m -ea
-jar /Users/ogata/projects/jpf-core/build/RunJPF. jar
Test5DPP. jpf

23

Analysis of DPP (6)

The model checking could not be conducted because of out of

memory:
search started: 17/01/06 7:18

[SEVERE] JPF out of memory

results
error #1: gov.nasa.jpf.vm_NoOutOfMemoryErrorProperty
statistics
elapsed time: 41:11:00
states: new=751599616,visited=2849662858, backtracked=3601262363,end=373
search: maxDepth=285, constraints=1

choice generators: thread=751599616
(signal=48396150, lock=221054680, sharedRef=360687123, threadApi=5, reschedule=121461658)

data=0

heap: new=408, released=2463530368 ,maxLive=391,gcCycles=-1382241218
instructions: 16898260305

max memory: 17860MB

loaded code: classes=66,methods=1484

search finished: 17/01/08 0:29

on Mac OS X 10.9.5 with 3.4 GHz Intel® Core™ i7Intel®
and 32 GB memory

24

Summary

Dining philosopher problem (DPP)
Dining Room in UML & Java
Chopstick in UML & Java
Philosopher in UML & Java

DPP in UML & Java

Analysis of DPP

