Lesson 11. The Complexity of Video Games 1628E – Information Processing Theory

Giovanni Viglietta johnny@jaist.ac.jp

JAIST – January 27, 2020

Decision problems

instances

Example: Prime?

instances

Basic complexity classes

P: problems <u>decidable</u> in polynomial time (i.e., "efficiently") **NP:** problems verifiable in polynomial time, given a *certificate*

Observation: $\mathbf{P} \subseteq \mathbf{NP}$

Open problem: is $\mathbf{P} \subsetneq \mathbf{NP}$ or is $\mathbf{P} = \mathbf{NP}$?

If A is reducible to B and we can solve B efficiently, then we can solve A efficiently (given an instance of A, apply the reduction, and solve the resulting instance of B)

NP-hard problems

A problem is NP-hard if all the problems in NP can be reduced to it (i.e., it is at least as hard as every NP problem)

NP-complete problems

A problem is NP-complete if it is NP-hard and it is also in NP (i.e., it is the "hardest problem" in NP)

NP-complete problems: examples

Observation: if one NP-complete problem is solvable in polynomial time, then P = NP = NP-complete

Perhaps the most important NP-complete problem:

3-SAT Input: a Boolean expression of the form:

Output: YES if there is a truth assignment to the variables that makes the expression true. NO otherwise.

Guideline: "Expand the board, but do not change the rules"

Guideline: "Expand the board, but do not change the rules"

Guideline: "Expand the board, but do not change the rules"

Guideline: "Expand the board, but do not change the rules"

Add more platforms and enemies, but do not change the "physics"

Guideline: "Expand the board, but do not change the rules"

Add more platforms and enemies, but do not change the "physics" **Basic decision problem:** is a given level beatable?

- Start
- Finish
- Variable, with mutual exclusion between outgoing paths
- Clause, initially locked, and unlockable from three paths
- Crossover, unidirectional, single-use, and fixed traversal order

- Start
- Finish
- Variable, with mutual exclusion between outgoing paths
- Clause, initially locked, and unlockable from three paths
- Crossover, unidirectional, single-use, and fixed traversal order

Theorem (1)

If all the above gadgets are present \implies NP-hard

Super Mario Bros. (NES)

Start gadget

Finish gadget

Super Mario Bros.: Crossover gadget

Super Mario Bros.: Crossover gadget

Metroid (NES)

Metroid: NP-hardness

Metroid: NP-hardness (Crossover gadget)

Donkey Kong Country (SNES)

Donkey Kong Country: NP-hardness

Donkey Kong Country: NP-hardness

Crossover gadget

The Legend of Zelda: A Link to the Past (SNES)

The Legend of Zelda: NP-hardness

Variable gadget

The Legend of Zelda: NP-hardness

Check out

Clause gadgets

The Legend of Zelda: NP-hardness

Crossover gadget

Pokémon (Game Boy)

Clause gadget

Pokémon: Crossover gadget

х

x'

More complexity classes

PSPACE: problems decidable in polynomial <u>space</u> (i.e., using only polynomially many bits of "memory")

EXP: problems decidable in exponential \underline{time} (i.e., not necessarily "efficiently")

More complexity classes

Quantified Satisfiability

Recall that the 3-SAT problem asks if there is a truth assignment that satisfies an expression of the form:

 $(x \wedge \bar{y} \wedge z) \vee (\bar{x} \wedge z \wedge w) \vee (y \wedge \bar{z} \wedge \bar{w}) \vee (\bar{x} \wedge y \wedge w).$

In other words, it asks if the following formula is true:

 $\exists x, \exists y, \exists z, \exists w, (x \land \bar{y} \land z) \lor (\bar{x} \land z \land w) \lor (y \land \bar{z} \land \bar{w}) \lor (\bar{x} \land y \land w).$

Generalizing, we can alternate \exists and \forall quantifiers, and ask if the following formula is true:

 $\exists x, \forall y, \exists z, \forall w, (x \land \bar{y} \land z) \lor (\bar{x} \land z \land w) \lor (y \land \bar{z} \land \bar{w}) \lor (\bar{x} \land y \land w).$

The QSAT problem asks if a fully quantified Boolean expression is true. It is the canonical PSPACE-complete problem.

y = w = true

 $y = w = \mathsf{true}$

 $y = \mathsf{true}, \ w = \mathsf{false}$

 $y = \mathsf{false}, \ w = \mathsf{true}$

 $y = \mathsf{false}, \ w = \mathsf{true}$

 $y = \mathsf{false}, \ w = \mathsf{false}$

Pressure plates can be found anywhere in the level, and they can act on Doors located arbitrarily far from them:

Next we will see how to implement the PSPACE-hardness framework with only Doors and Pressure Plates:

Theorem (2) $Doors + Pressure \ plates \implies PSPACE-hard$

PSPACE-hardness framework: implementation

-

Existential gadget

Universal gadget

Prince of Persia (PC, Amiga)

Prince of Persia (PC, Amiga)

Prince of Persia (PC, Amiga)

Pressure plate that must be pressed

Quake (PC)

Quake (PC)

Sonic (Sega Genesis)

Sonic (Sega Genesis)

Adventure games by LucasArts and Sierra

From Pressure plates to Stand-alone Doors

Observation: in our implementation of the PSPACE-hardness framework, we only used two Pressure plates per Door: one that opens it, and one that closes it. We can incorporate these three elements in a single *Stand-alone Door* gadget:

The "open" path may even give the player the option to leave the door closed: indeed, choosing not to open a door is never helpful!

Theorem (3)

Stand-alone Doors + *Crossovers* \implies *PSPACE-hard*
- Start & Finish
- Crossover, usable multiple times
- Stand-alone Door: can be opened, closed, and traversed if and only if it is open

- Start & Finish
- Crossover, usable multiple times
- Stand-alone Door: can be opened, closed, and traversed if and only if it is open

- Start & Finish
- Crossover, usable multiple times
- Stand-alone Door: can be opened, closed, and traversed if and only if it is open

- Start & Finish
- Crossover, usable multiple times
- Stand-alone Door: can be opened, closed, and traversed if and only if it is open

- Start & Finish
- Crossover, usable multiple times
- Stand-alone Door: can be opened, closed, and traversed if and only if it is open

- Start & Finish
- Crossover, usable multiple times
- Stand-alone Door: can be opened, closed, and traversed if and only if it is open

- Start & Finish
- Crossover, usable multiple times
- Stand-alone Door: can be opened, closed, and traversed if and only if it is open

- Start & Finish
- Crossover, usable multiple times
- Stand-alone Door: can be opened, closed, and traversed if and only if it is open

- Start & Finish
- Crossover, usable multiple times
- Stand-alone Door: can be opened, closed, and traversed if and only if it is open

- Start & Finish
- Crossover, usable multiple times
- Stand-alone Door: can be opened, closed, and traversed if and only if it is open

- Start & Finish
- Crossover, usable multiple times
- Stand-alone Door: can be opened, closed, and traversed if and only if it is open

- Start & Finish
- Crossover, usable multiple times
- Stand-alone Door: can be opened, closed, and traversed if and only if it is open

- Start & Finish
- Crossover, usable multiple times
- Stand-alone Door: can be opened, closed, and traversed if and only if it is open

- Start & Finish
- Crossover, usable multiple times
- Stand-alone Door: can be opened, closed, and traversed if and only if it is open

- Start & Finish
- Crossover, usable multiple times
- Stand-alone Door: can be opened, closed, and traversed if and only if it is open

- Start & Finish
- Crossover, usable multiple times
- Stand-alone Door: can be opened, closed, and traversed if and only if it is open

- Start & Finish
- Crossover, usable multiple times
- Stand-alone Door: can be opened, closed, and traversed if and only if it is open

- Start & Finish
- Crossover, usable multiple times
- Stand-alone Door: can be opened, closed, and traversed if and only if it is open

Lemmings (PC, Amiga)

Lemmings (PC, Amiga)

Lemmings: Door gadget

Lemmings: Door gadget

The Legend of Zelda: Door gadget

The Legend of Zelda: Door gadget

Donkey Kong Country (SNES)

Donkey Kong Country: Door gadget

Donkey Kong Country 2 & 3: Door gadgets

Why do we care?

We know for a fact that every level of any "real" game is solvable. So, why do we study level solvability?

Why do we care?

We know for a fact that every level of any "real" game is solvable. So, why do we study level solvability?

• Player's perspective: "Which way should I go?"

One of the paths is certainly right, but which one?

• Designer's perspective: "Is my new level solvable at all?"

Single-player games:

- Games in P: they have a "simple" winning algorithm. When this algorithm is discovered, they become uninteresting.
 → Games with short longevity. :(
- NP-complete games: they keep challenging the player, and they have "short" solutions whose discovery requires creativity.
 → Fun games! :)
- PSPACE-complete games: they still require ingenuity, but solving them may take exponentially many "moves".
 - \longrightarrow Challenging games, but may be tedious. :/

Two-player games:

• Games in NP: they have "simple" winning strategies.

 \longrightarrow Games with short longevity. :(

PSPACE-complete games: they are challenging, and the winner is determined after polynomially many moves.
→ Fun games! :)

Examples: Reversi, Gomoku, Go (without ko)

• EXP-complete games: they still require ingenuity, but games may last exponentially many "moves".

 \longrightarrow Challenging games, but may be tedious. :/

Examples: Checkers, Chess, Go (with Japanese ko)

G. Viglietta Gaming is a hard job, but someone has to do it! Theory of Computing Systems 54, 2014

G. Viglietta *Lemmings is PSPACE-complete* Theoretical Computer Science 586, 2015

- G. Aloupis, E. D. Demaine, A. Guo, and G. Viglietta Nintendo games are (computationally) hard Theoretical Computer Science 586, 2015
- E. D. Demaine, G. Viglietta, and A. Williams Super Mario Bros. is harder/easier than we thought FUN 2016

In this lesson we saw that Super Mario Bros. levels that contain only Question-Mark Blocks, Super Mushrooms, and Fire Bars are NP-hard, and levels that contain only Breakable Blocks, Spinies, and Fire Bars are PSPACE-hard.

Prove that levels that contain only Breakable Blocks and Spinies are NP-hard.