i219 Software Design Methodology
1. Overview of software design
methodology

Kazuhiro Ogata (JAIST)

Outline of lecture

Activities involved in software development
Unified Modeling Language (UML) for
specifying requirements/designs

Java for implementing designs (writing
programs for designs)

Java Path Finder (JPF) for model checking Java
multithreaded programs

Outline of design & implementation of a
simple calculator

3

Activities involved in software development

* Domain description and/or analysis

* Requirements specification and/or analysis

» Software design specification and/or analysis
* Implementation (programming)

* Analysis (testing,/model checking,|etc.) of
programs

* Deployment
* Maintenance (or evolution)

Requirements/design specification

» Use of (structured) natural languages
— Less systematic & informal

* Object-oriented design methodologies
(OODM)

— Systematic but informal

* Formal methods

— Systematic and formal

A history of OODM in a nutshell (1)

* In the 1980s, Smalltalk became a stable platform and
C++ was born.

* Between 1988 and 1992, several object-oriented
graphical modeling languages were proposed. Among
them are

— OOAD by Grady Booch; OOA & OOD by Peter Coad
— OOSE by Ivar Jacobson; OMT by Jim Rumbaugh
— Responsibility Driven Design by Rebecca Wirfs-Brock

* In 1994, Rumbaugh (GE) joined Booch at Rational (now
a part of IBM).

* By OOPSLA ‘95, Booch & Rumbaugh prepared the 1
public document of their merged method: version 0.8
of the Unified Method documentation.

A history of OODM in a nutshell (2)

* In 1995, Jacobson (Objectory) joined Booch &
Rumbaugh.

* The OMG decided to take a major role for
standardization because of interoperability.

* InJan. 1997, Rational collaborated other organizations
and released version 1.0 of the UML documentation.

* In Nov. 1997, the OMG adopted version 1.1 of the UML
documentation as an official OMG standard.

* |n 2005, UML 2.0 was released.
* |n 2011, UML 2.4.1 was released.

UML in a nutshell

* 13 kinds of diagrams for structure & behavior
— 6 kinds of diagrams for structure
Eg., class diagram, object diagram
— 7 kinds of diagrams for behavior
E.g., use case diagram, sequence diagram, state diagram
* 3 ways of using UML as
— Sketch
— Blueprint
— Programming language
* Can be used for 2 directions of engineering
— Forward engineering
— Backward engineering

Programming Paradigms

Imperative (procedural) programming

— Pascal, C, C++, Java, Lisp, Standard ML, Oz, Ruby, Python
* Logic programming

— Prolog, Oz, GHC, KL1

Functional programming

— Miranda, Haskell, Erlang, Lisp, Standard ML, Oz, Scala,
Maude, CafeOB)

Object-oriented programming

— Smalltalk, C++, Self, Oz, Scala, Ruby, Python,
ABCL/1, ConcurrentSmalltalk, MultithreadSmalltalk

Java in a nutshell

* An object-oriented programming language Designed
(developed) by James Gosling at Sun Microsystems
(merged into Oracle Corporation) at 1995

* Inherited many concepts & technologies from Smalltalk
— bytecode, virtual machine, garbage collection
— multi-threads, dynamic (just-in-time) compilation
— classes, inheritance, reflection, ...

* Some differences from Smalltalk

— statically typed, primitive data types such as int (values of
such types such as 3 and 4 are not objects), ...

Model checking

* A way to formally verify that a design or implementation
(program) of software enjoys desired properties
(requirements)

* Traditional model checking (for designs/programs)

— Designs/programs are supposed to be modeled as state
machines (mainly) by human users

— Among such model checkers: NuSMV, Spin, SAL, PAT, Maude
model checker

* Software model checking (for programs)

— Programs can be model checked and do not need to be
modeled as state machines by human users

— Among such model checkers: Slam (for C programs), CBMC (for
C/C++ programs),JPF (for Java programs) |

10

Java Path Finder (JPF) in a nutshell

* A software model checker for Java programs
developed at NASA Ames Research Center

e Originated from Klaus Havelund in 1999; initially
implemented as a Java-to-Promela translator
(with Spin as a model checker); currently JPF has
its own virtual machine implemented in Java

* Not only a software model checker but also can
do many others for Java programs; hence called
the Swiss army knife for Java verification

Outline of design & implementation
of a simple calculator

* Requirements in use cases
* A use case diagram

* A sequence diagram

e Aclass diagram

* An object diagram

* A piece of Java code

* Use of the calculator

Requirements in use cases (1)

Calculate Expression

Main Success Scenario:

1. User inputs an expression

2. System calculates the expression
3. System displays the result

Extensions:

2a: The input has a syntax error
.1: System displays this

3a: Division-by-zero occurs
.1: System displays this

Show Usage

Main Success Scenario:
1. User inputs the help command
2. System displays the usage

Quit

Main Success Scenario:

1. User inputs the quit command
2. System quits

Requirements in use cases (2)

Main Success Scenario:

5. SCreturns the result

Extensions:

Calculate Expression in String

1. CLP gives a string to SC

2. SCtransforms the string into a list of tokens

3. SC makes a parse tree from the list

4. SCinterprets the parse tree and gets the result

3a: A parse tree cannot be made from the list
.1: SC reports a syntax error

4a: Division-by-zero occurs
.1: SC reports the occurrence

CLP stands for Command Line Processor.
SC stands for Simple Calculator.

14

A use case diagram

SimpleCalculator
actor (role) Calculate ™y - - USe case
/ Expression
Y
Show
Usage
User » SyStem
~ boundary
16
participant
> creation
calculate(e:String I & SynC I’OHOUS)
; message
’,’/ scan |
/ new o /
found e _aTokenlist___| _“”‘f_”“s;l
message arbe o
new o
g an ExpParseTree
.7 | ! o |
1 i M
| I
. |
’ el _mnint__ R,
activation < } i A |
T 7 I
! | | :‘ |
L e ! !
lifeline return |

A class diagram

class
realization
N ealizatio stereotype
\ . B
,\ NumParseTree AddParseTree MulParseTree _ :
-num: Integer /| -exp1: ExpParseTree | -expl: Epr{a[seT’rée L
calculate(): Integer -exp2: ExpParseTree 1‘ -exp2: ExpParseTree :
\/ T \/ calculate(): Integer I _|-célculate(): Integer [
Lo e T T T
SCCLP , raenl :
| «interface» - T «enumerations»
| v - ExpParseTree |} Corresponding to TokenName
! «Exception» " +calculate(): Integer LT PRI O LPAR
:_ CalculatorException & '+ [0-9]+, and RPAR
_______________ _; bpt others, respectively MUL
SourceCode i | ~ Quo
-sourceCode: String SimpleCalculator : EEGI'S
~toToken(s:String): Token [<s¢— 7] +calculate(e: String): Void ! MINUS
+scan(): TokenLlIst
0 : note NUM
, \1/” UNDEF
«Exception» ’ : TokenList
] N 1
SyntaxErrorException T)Elrse(). ExpParseTree T {ordered)* Token mEme

dependency association

18

An object diagram

ejpl efp2 o bJ ect
aNumParseTree | | aNumParseTree | :
num=3 num=4 v |Ink
[afolents |
| v
a Token a Token a Token
name=NUM name=ADD name=NUM
num=3 num=4

A piece of Java code

public class SimpleCalculator {

public SimpleCalculator() {}

public void calculate(String exp) { L
SourceCode sc =new SourceCode(exp); .-

TokenList tl = sc.scan()z—

try { ExpParseTree ept = tl.parse();-

System.out.println(ept.calculate());
. LN
} catch (SyntaxErrorException e) {

System.err.println(e.getMessage()); \

} catch (CalculatorException ¢e) {
System.err.println(e.getMessage());

}
}

|-~ A SourceCode sc is made

A list tl of tokens is made
by sending scan() to sc

| Aparse tree ept is made

by sending parse() to tl

_ Acalculation is done by
* sending calculate() to ept
and the result is displayed

20

Use of the calculator

$ java SCCLP

R R R R e e e e

* Simple Calculator *

B R S e e e

SimpleCal> 3+4
[num=3, +, num=4]
add(3,4)

7

SimpleCal> 3+4*5

[num=3, +, num=4, *, num=5]

add(3,mul (4,5))
23
SimpleCal>

Summary

Activities involved in software development
UML for specifying requirements/designs

Java for implementing designs (writing
programs for designs)

JPF for model checking Java programs

Outline of design & implementation of a
simple calculator

