i219 Software Design Methodology
10. Multithreaded programming

Kazuhiro Ogata (JAIST)

Outline of lecture

Thread

Race condition
Synchronization
Deadlock

Bounded buffer problem

Thread (1)

¢ Units of execution.

* Can runin parallel (in theory on a uniprocessor
computer but actually on a multiprocessor or multicore
computer).

* Instances of class Thread (or any of its subclasses) in
Java, making it possible to write parallel (or concurrent)
programs in Java.

v' A process in an OS is a running program, equipped with its own
memory space; may be called a heavyweight process.

v’ Multiple threads can reside in one process, sharing one memory
space; may be called lightweight processes; UNIX on workstations
sold by Sun Microsystems (where Java was born) had a
lightweight process library.

Thread (2)

public class SubclassOfThread extends Thread {
public SubclassOfThread(...) { ... }

public void run() { ... } -~ anew thread is created

.

Thread th = new SubclassOfThread(...);
th.start(); < making the thread active (scheduled) and

start executing method run() by sending
message start() to the thread

when an application is launched, there must be at least one thread
that executes main(); such a thread is called the main thread

Thread (3)

sent by Java VM Main thread

T
. .
main
-

—=" 4 Thread

T
start | »
= = “
- run

sent by Java VM

an asynchronous
message; Main
thread does not wait
until a Thread
terminates

the two threads are funning
in parallel L |

Thread (4)

public class PrintingThread extends Thread {
private int times;
public PrintingThread(int n) { this.times =n; }
public void run() { long myld = this.getld(); <
for (int i = 0; 1 < times; i++)
System.out.println(i + ": [am #" + myld + " thread.");

obtaining the identifier
of the thread executing
the method

}

public static void main(String[] args) { creating three threads,
Thread t1 = new PrintingThread(50); | each of which displays
Thread t2 = new PrintingThread(50); |~ what s like
Thread t3 = new PrintingThread(50);] 17-Tam #10 thread.

tl.start(); t2.start(); t3.start();
} 50 times.

}

Race condition (1)

public class NonatomicCounter { private int count = 0;

public void inc() { count++; } T Ureatel 2 Uneatel - Lnga
public int get() { return count; } }|tmes=1000000 times=1000000 times=1000000

public class Unsafelnc extends Thread { coun coun counter
private NonatomicCounter counter; private int times; po——

public Unsafelnc(NonatomicCounter ¢,int n)
{ this.counter = c; this.times = n; }
public void run() { for (int i = 0; i < times; i++) counter.inc(); }
public static void main(String[] args) throws InterruptedException {
NonatomicCounter ¢ = new NonatomicCounter(¥;------.
Thread t1 = new Unsafelnc(c,1000000); o
Thread t2 = new Unsafelnc(c,1000000); The object is shared by
Thread t3 = new Unsafelnc(c,1000000); the three threads
tl.start(); t2.start(); t3.start();
t1.join(); t2.join(); t3.join();
System.out.println("Counter: " + c.get()); } }

Race condition (2)

A launch of the application (Unsafelnc) does not display the followng:

Counter: 3000000
What are actually displayed are as follows:

Counter: 1697864 Counter: 1700446 Counter: 2737760

Each time the application is launched, a different result is displayed.

Why?

Race condition (3)

The reason: count++; is not atomic and at least consists of three basic
things: (1) read count (fetching the content v of count),
(2) compute (calculate v+1), and (3) write count (store
the result of v+1 into count).

count++; is processed by three threads simultaneously
without any protection or in an arbitrary way.

When each thread ti (i = 1,2,3) performs read; count, compute; and
write; count, there are ,C; X (C; (1680) possible scenarios.
One possible scenario:
read, count, read, count, read, count, compute,, compute,, compute;,
write, count, write, count, write; count

After the scenario, what is stored in count is 1 but not 3, although each
thread increments count. The effects of two increments are lost.

Race condition (4)

Race condition is a situation in which objects (or
resources) shared by multiple threads are used
without any protection (or in an arbitrary way) by
those threads, which may cause a different
outcome each time when the program is launched.

One possible remedy is to use synchronization
mechanisms, controlling threads so that at most one
thread is allowed to use shared objects (or resources)
at any given moment.

Synchronization (1)

Each object is equipped with one lock that can be used to synchronize
threads such that a thread that has acquired such a lock is allowed to
enter a section in which shared objects (or resources) can be used.
Two ways to use such locks:

1. Synchronized methods: ... synchronized ... m(...) { ... }

When a thread t executes 0.m(...), t first tries to acquire the lock |
associated with an object 0. If t has acquired |, tis allowed to invoke
m(...). Otherwise, t waits until t has acquired |. When t finishes
executing m(...), t releases I.

2. Synchronized statements: synchronized (0) { ... }

When a thread t executes the statement, t first tries to acquire the lock
| associated with an object 0. If t has acquired |, tis allowed to enter
the body ... Otherwise, t waits until t has acquired |. When t leaves the
body ..., treleases .

Synchronization (2)

public class AtomicCounter {private int count = 0;
public synchronized void inc() { count++; }
public synchronized int get() { return count; } }

public class Safelncl extends Thread {
private AtomicCounter counter; private int times;
public Safelnc1(AtomicCounter c,int n)
{ this.counter = c; this.times =n; }
public void run() { for (int i = 0; i < times; i++) counter.inc(); }
public static void main(String[] args) throws InterruptedException {
AtomicCounter ¢ = new AtomicCounter();
Thread t1 = new Safelnc1(c,1000000);
Thread t2 = new Safelnc1(c,1000000);
Thread t3 = new Safelnc1(c,1000000);
t1.start(); t2.start(); t3.start();
t1.join(); t2.join();t3.join();
System.out.println("Counter: " + c.get()); } }

Synchronization (3)

public class Safelnc2 extends Thread {
private NonatomicCounter counter; private int times;
public Safelnc2(NonatomicCounter c,int n)
{ this.counter = c; this.times =n; }
public void run() {
for (int i = 0; 1 < times; i++)
synchronized (counter) { counter.inc(); } }
public static void main(String[] args) throws InterruptedException {
NonatomicCounter ¢ = new NonatomicCounter();
Thread t1 = new Safelnc2(c,1000000);
Thread t2 = new Safelnc2(c,1000000);
Thread t3 = new Safelnc2(c,1000000);
t1.start(); t2.start(); t3.start();
t1.join(); t2.join(); t3.join();
System.out.println("Counter: " + c.get()); } }

Synchronization (4)

public class PseudoAtomicCounter { private static int count = 0;
public synchronized void inc() { count++; }
public synchronized int get() { return count; } }

b,
public class PseudoSafelnc] extends Thread { 6‘91‘ 5
private PseudoAtomicCounter counter; private int times; W/-
public PseudoSafelnc1(PseudoAtomicCounter c,int n) /7&,)
{ this.counter = c; this.times = n; }
public void run() { for (int i = 0; i < times; i++) counter.inc(); }
public static void main(String[] args) throws InterruptedException {
PseudoAtomicCounter c1 = new PseudoAtomicCounter();
PseudoAtomicCounter c2 = new PseudoAtomicCounter();
PseudoAtomicCounter c3 = new PseudoAtomicCounter();
Thread t1 = new PseudoSafelnc1(c1,1000000);
Thread t2 = new PseudoSafelnc1(c2,1000000);
Thread t3 = new PseudoSafeInc1(c3,1000000);
t1.start(); t2.start(); t3.start();
t1.join(); t2.join(); t3.join();
System.out.println("Counter: " + cl.get()); } }

Synchronization (5)

public class PseudoSafelnc2 extends Thread {
private NonatomicCounter counter; private int times;
public PseudoSafelnc2(NonatomicCounter c,int n) 6(9 s
{ this.counter = c; this.times =n; } $ W,
public void run() { 7o,
S S : &2
for (int i = 0; 1 < times; i++)
synchronized (this) { counter.inc(); } }
public static void main(String[] args) throws InterruptedException {
NonatomicCounter ¢ = new NonatomicCounter();
Thread t1 = new PseudoSafeInc2(c,1000000);
Thread t2 = new PseudoSafeInc2(c,1000000);
Thread t3 = new PseudoSafeInc2(c,1000000);
t1.start(); t2.start(); t3.start();
t1.join(); t2.join(); t3.join();
System.out.println("Counter: " + c.get()); } }

Deadlock (1)

public class DeadlockInc extends Thread {

private NonatomicCounter counterl, counter2;

public DeadlockInc(NonatomicCounter ¢1,NonatomicCounter c2)

{ this.counter1 = cl; this.counter2 = c2; }

public void run() {
synchronized (counterl) { for (int i=1; 1 < 5000; i++) ;

synchronized (counter2) {
counterl.inc(); counter2.inc(); } } }

public static void main(String[] args) throws InterruptedException {
NonatomicCounter ¢l = new NonatomicCounter();
NonatomicCounter c¢2 = new NonatomicCounter();
Thread t1 = new DeadlockInc(c1,c2);
Thread t2 = new DeadlockInc(c2,c1);
t1.start(); t2.start();
t1.join(); t2.join();
System.out.println("Counterl: " + cl.get() + ", Counter2: " + c2.get()); } }

Deadlock (2)

Thread t1 tries to acquire the lock associated with c1 and the lock
associated with c2, while thread t2 tries to acquire the lock associated
c2 and the lock associated with c1.

If t1 has acquired the lock 11 associated with c1 and t2 has acquired
the lock 12 associated with c2, t1 will wait forever until 12 is released
and t2 will wait forever until 11 is released — deadlock.

Deadlock is a situation in which nothing will never
happen.

Deadlock (3)

public class NoDeadlockInc extends Thread {
private NonatomicCounter counterl, counter2;
public NoDeadlockInc(NonatomicCounter ¢c1,NonatomicCounter c2)
{ this.counter1 = cl; this.counter2 = c2; }
public void run() {
synchronized (counterl) { for (int i=1; 1 < 5000; i++) ;
synchronized (counter2) {
counterl.inc(); counter2.inc(); } } }
public static void main(String[] args) throws InterruptedException {
NonatomicCounter ¢l = new NonatomicCounter();
NonatomicCounter c¢2 = new NonatomicCounter();
Thread t1 = new NoDeadlockIne(c1,c2);
Thread t2 = new NoDeadlockIne(c1,c2);
t1.start(); t2.start();
t1.join(); t2.join();
System.out.println("Counterl: " + cl.get() + ", Counter2: " + c2.get()); } }

Bounded buffer problem (1)

Sender Bounded buffer Receiver

87 f 5 . [s[al3] 2. B 10

Let us write a program such that a thread (called Sender) sends data
(represented as 0, 1, 2, ...) to another thread (called Receiver) via a
bounded buffer.

The bounded buffer is shared with the two threads (Sender & Receiver).
First, the bounded buffer uses neither synchronized methods nor
synchronized statements.

20

Bounded buffer problem (2)

public class NonatomicBBuf<E> { Bounded buffer
private Queue<E> queue;
private int noe = 0; 51413

private final int capacity;
public NonatomicBBuf(int cap) {
this.queue = new EmpQueue<E>();

When the bounded buffer is empty,
null is returned.

this.capacity = cap; public E get() {
} if (noe > 0) {
public void put(E e) { E e = queue.top();
if (noe < capacity) { queue = queue.deq();
queue = queue.enq(e); noe--;
noe++; return e;
H h

} return null;
Only when the bounded buffer is not }

full, an element e is put into it. }

21

Bounded buffer problem (3)

import java.util. *; Sender

T

public class FSender1<E> extends Thread { @@
private NonatomicBBuf<E> buf; the bounded buffer
private List<E> msgs; data to be sent
public FSender1(NonatomicBBuf<E> buf,List<E> msgs) {
this.buf = buf; this.msgs = msgs; }
public void run() {
for (int i = 0; 1 < msgs.size(); it++)

buf.put(msgs.get(i));
}
What Sender does is to put the data to be sent
into the bounded buffer.
22
Bounded buffer problem (4)

import java.util. *; Recejver
public class FReceiverl <E> extends Thread { %‘

private NonatomicBBuf<E> buf; the bounded buffer
private List<E> msgs; in which the received data are stored
private int nom; the number of data to be received
public FReceiver1(NonatomicBBuf<E> buf,List<E> msgs,int nom) {
this.buf = buf; this.msgs = msgs; this.nom = nom; }
public void run() {
for (int i = 0; i < nom; i++)
msgs.add(buf.get());

} What Receiver does is to get data from the
bounded buffer

23

Bounded buffer problem (5)

import java.util.*;

public class FBBProbl {
public static void main(String[] args) throws InterruptedException {

NonatomicBBuf<Integer> buf = new NonatomicBBuf<Integer>(3);
List<Integer> msgsSent = new ArrayList<Integer>();
for (int i=0; i < 10000; i++) msgsSent.add(i);
List<Integer> msgsReceived = new ArrayList<Integer>();
int nom = msgsSent.size();
FSenderl<Integer> sender = new FSender1<Integer>(buf,msgsSent);
FReceiverl<Integer> receiver = new FReceiverl<Integer>(buf,msgsReceived,nom);
sender.start(); receiver.start();
sender.join(); receiver.join();
System.out.println("msgsSent: " + msgsSent);
System.out.println("msgsReceived: " + msgsReceived);
if (msgsReceived.equals(msgsSent)) System.out.println("Success!");
else System.out.println("Failure!"); } }

24

Bounded buffer problem (6)

NonatomicBBuf<Integer> buf = new NonatomicBBuf<Integer>(3);

List<Integer> msgsSent = new ArrayList<Integer>();

List<Integer> msgsReceived = new ArrayList<Integer>();

int nom = msgsSent.size();

FSenderl<Integer> sender = new FSenderl<Integer>(buf,msgsSent);
FReceiverl<Integer> receiver = new FReceiverl<Integer>(buf,msgsReceived,nom);

receiver: FReceiveri<integer>

‘ sender: FSenderi <Integer= nom = 10000

[0,1, 2, ..,9989] queue = ...

noe = ...
capacity = 3

Bounded buffer problem (7)

The first version does not successfully deliver the data 0, 1, 2, ..., 9999
to Sender from Receiver.

The reason must be that the methods put(E e) and get() in the class
NonatomicBBuffer<E> are not synchronized.

public class AtomicBBuf<E> { ...
public synchronized void put(Ee) { ... }
public synchronized E get() { ... }

.

The only difference between NonatomicBBuffer<E> &
AtomicBBuf<E> are that the two methods are synchronized (and the
name of the class & constructor).

26

Bounded buffer problem (8)

public class FSender2<E> extends Thread { ... }

public class FReceiver2<E> extends Thread { ... }

AtomicBBuf<E> is used instead of NonatomicBBuffer<E> in these
classes.

public class FBBProb2 { ... }

AtomicBBuf<E>, FSender2<E> & FReceiver2<E> are used instead of
NonatomicBBuffer<E>, FSenderl<E> & FReceiverl<E> in the class.

27

Bounded buffer problem (9)

The second version still does not successfully deliver thedata 0, 1, 2, ...,
9999 to Sender from Receiver.
public synchronized void put(E e) {
if (noe < capacity) { queue = queue.enq(e); noe++; } }

When put(e) is invoked, if the bounded buffer is full, e is not stored in
the bounded buffer.

public E get() {
if (noe > 0) { E e = queue.top(); queue = queue.deq(); noe--; return e; }
return null; } }

When get() is invoked, if the bounded buffer is empty, null is returned.

It seems to solve them if Sender waits until the buffer becomes non-full
when it is full and Receiver waits until it becomes non-empty when it is
empty.

28

Bounded buffer problem (10)

In FAtomicBBuf<E>, the two methods are modified as follows:

public synchronized void put(E e) { public synchronized E get() {
while (noe >= capacity) ; while (noe <= 0) ;
if (noe < capacity) { if (noe > 0) {
queue = queue.eng(e); noet+; | } E e = queue.top(); queue = queue.deq()
noe--; return e; }

return null; }

public class FSender3<E> extends Thread { ... }
public class FReceiver3<E> extends Thread { ... }

FAtomicBBuf<E> is used in these classes.

public class FBBProb3 { ... }

FAtomicBBuf<E>, FSender3<E> & FReceiver3<E> are used in the class.

The third version is not a solution. Why?

29

Bounded buffer problem (11)

The class Object provides wait() and notify All().
When a thread t holds the lock | associated with an object 0 and

executes 0.wait(), t releases | and waits until 0.notifyAll() is executed by
some other thread.

If a thread executes 0.notifyAll(), all threads that waits by executing
0.wait() are waken up and try to acquire the lock associated with o.

In MonitorBBuf<E>, the two methods are modified as follows:
public synchronized void put(E e) public synchronized E get()

throws InterruptedException { throws InterruptedException {
while (noe >= capacity) this.wait(); ~While (noe <= 0) this.wait();
if (noe < capacity) { if (noe > 0) { E e = queue.top();
queue = queue.eng(e); noet+; queue = queue.deq(); noe--;
this.notifyAll(); } } this.notify All();
return e; }

return null; }

30

Bounded buffer problem (12)
public class Sender<E> extends Thread { ... }
public class Receiver<E> extends Thread { ... }
MonitorBBuf<E> is used in these classes.
public class BBProb { ... }
MonitorBBuf<E>, Sender<E> & Receiver<E> are used in the class.

This version successfully delivers the data 0, 1, 2, ..., 9999 to Sender
from Receiver.

Note that you should use try { ... } catch (...) { ... } in Sender<E> &
Receiver<E>.

Summary

Thread
Race condition

Synchronization
Deadlock
Bounded buffer problem

Appendix

public interface Queue<E> {
Queue<E> enq(E e);
Queue<E> deq();
E top(); }

public class EmpQueue<E> implements Queue<E> {
public Queue<E> enq(E e) { return new NeQueue<E>(e,this); }
public Queue<E> deq() { return this; }
public E top() { return null; } }

public class NeQueue<E> implements Queue<E> {
private E head; private Queue<E> tail;
public NeQueue(E e,Queue<E> q) { this.head = ¢; this.tail = q; }
public NeQueue<E> enq(E e)
{ return new NeQueue<E>(head,tail.enq(e)); }
public Queue<E> deq() { return tail; }
public E top() { return head; } }

32

