i219 Software Design Methodology
11. Software model checking

Kazuhiro Ogata (JAIST)

Outline of lecture

Concurrency

Model checking

Java Pathfinder (JPF)
Detecting race condition

Bounded buffer problem
— Detecting deadlock
— Detecting assertion violation

Concurrency (1)

If a multithreaded program in which two threads (thO and th1) may
run in parallel is executed by a multi-core computer, the two threads
may be truly running in parallel on two different cores.

thO /g thl /§ b1

¥

For example, suppose that thO performs two basic things al and a2
in this order and th1 performs two basic things bl and b2 in this
order. Then, while thO is performing al, th1 is performing b1 or b2 at
the same time, and while thO is performing a2, th1 is performing bl
or b2.

b2

Concurrency (2)

Since it is not easy to deal with true concurrency, concurrency is
expressed as interleaving of basic things (called atomic actions or
state transitions) performed by threads. For the two thread example
on the previous page, since each thread performs two atomic
actions (or state transitions) and each execution consists of four
atomic actions, there are ,C, (= 6) possible execution sequences
(called traces):

al, a2, bl, b2
al, bl, a2, b2
al, bl, b2, a2
bl, al, a2, b2
bl, al, b2, a2
bl, b2, al, a2

SANNA A

Concurrency (3)

Let us consider this simple multithreaded program:

public class SimpInc extends Thread {
private static int count = 0; thl
private static int count2 = 0;
public void run() { count2++; } tho bl
public static void main(String[] args)

throws InterruptedException {
Thread t = new Simplnc(); al
t.start();
count++; a2
t.join();
System.out.println("count: " + count); a3
assert count == 2;
| ; bl can be performed after al and before a3 and then there
are two possible traces.
6
Concurrency (4)
Given a multithreaded where
program:

is a point (such as a message passing

_} a, expression) that has something to do with

thread scheduling, such as t.start() and
_} a t.join(), or where objects (or values) shared

by multiple threads are accessed non-
mutually exclusively, and a,, a,, ..., a, are
fragments of the program that do not have
such a point anywhere except for the
beginning and end.

Then, a,, a,, ..., &, are treated atomic

actions, some of which may be executed
_ a multiple times by one thread or multiple
n

ones.

Concurrency (5)

From a multithreaded program, what is called a computation tree is
made, in which nodes are program states and edges are executions
of atomic actions (called transitions). The root is the very initial state
of the program.

. . SimplInc:
An ordinal program in
which there is one thread:
al
Initial state .
a2 bl

Final state @ bb a2

a3 a3
®

Concurrency (6)

In each state of a computation tree, there is 0 or more threads
scheduled and 0 or more threads suspended. In the initial state, there
is only one scheduled thread (the main thread executing the static
main(...) method). If there are no scheduled threads, the state is either
a final state (if no suspended threads) or what is called a deadlock state
(if some suspended threads). {ty t, b, 1y}

One thread is taken from the scheduled
ones and becomes running S

The number of the transitions
{ty, 15} from the state is the same as
—z-==""" that of the scheduled threads
in the state

S & scheduled

t, termi t, is suspefided t, is scheduled t is crea

{th t2’ tS}
{ty, ts} {t,, t,, ts} {ts}

Note that a transition may not alter the scheduled and suspended threads at all.

~__
{to, b, 13} o, 1, B, 6, b {to, :Qza t, b}
{t & 1

1
4 b5

Concurrency (7)

Let us revisit this simple multithreaded program:

public class Simplnc extends Thread { {th0}

private static int count = 0; thl {}
private static int count2 = 0;
public void run() { count2++; } tho |bl {rtlhO, th1}

public static void main(String[] args)

throws InterrupteflException { (th1} {th0}
Thread t = new SimplInc(); al (thO ()
t.start(); o bl a2
count++; a2 (hO! M
tjoin(); o im0}
System.out.println("count: " + count); ! 3 {3’
assert count == 2; a3 : ’

) 0 0

Model checking

Exhaustively traverses all possible traces of a given multithreaded
program to find a state or a path to a state in which some desired
properties, such as deadlock freedom, are not fulfilled.

Testing may not traverse all possible traces of a given multithreaded
program because the scheduler of the Java virtual machine cannot be
controlled by ordinary programs.

Therefore, model checking makes it possible to detect some flaws that
can never be detected by testing.

Java Pathfinder (JPF) (1)

A model checker for Java programs. Also equipped with some other
functionalities. Used for model checking multithreaded Java programs
in this course.

JPF does not control the scheduler of the native Java virtual machine
but has its own virtual machine that is an ordinal Java program running
on the native Java virtual machine.

Java programs model checked by JPF run

on the JPF virtual machine. - ~
JPF Java virtual

JPF controls the scheduler of its own machine

virtual machine to take into account all N /

possible traces of a given multithreaded
program.

Native Java
virtual machine

Java Pathfinder (JPF) (2)

Let us model check SimpInc with JPF. JPF checks if each assertion holds
in each possible trace. If JPF finds a state in which some assertion does
not hold, it shows a trace leading to the state.

To this end, we prepare a .jpf file (Simplnc.jpfin this case) whose

contents are as follows: the current directory (folder) is added to
program to be ihecked - both classpath & sourcepath
target = Simplnc
classpath+=. |
sourcepath+=. } |
report.console.property violation=error,trace,snapshot

asking JPF to display error, trace & snapshot
information when JPF finds something wrong

Then, we can model check the program with JPF as follows:

% javac Simplnc.java
% jpf Simplnc.jpf

Java Pathfinder (JPF) (3)

The assertion does not hold in any trace, and then JPF finds a state in
which it does not hold and displays a trace leading to the state:

trace #1

transition #0 thread: 0
~ Source code fragment corresponding to al

transition #1 thread: 0

. Source code fragment corresponding to a2
transition #2 thread: 1

- Source code fragment corresponding to bl
fransition #3 thread: 0

- Source code fragment corresponding to 23

Some info shown here about the state in which
* something wrong happened

snapshot #1

results
error #1: gov.nasa.jpf.vm.NoUncaughtExceptionsProperty "java.lang.AssertionError at
SimpInc.main(Simplnc...."

Java Pathfinder (JPF) (4)

Let us consider another simple multithreaded program:
. . Two possible traces
public class SimpConclnc extends Thread thi

{ al
private static int count = 0; bl | read o
public void run() { count++; } «—— b2 | compute 2@ b
) S . b3 | write a a
public static void main(String[] args)
throws InterruptedException thO a a
{
Thread t = new SimpConclnc(); al b b
t.start(); a2 | read b
count++; } - a3 | compute :
tjoin(); 2 | write b b
System.out.println("count: " + count); 25
assert count == 2; a a

} @

3 countis 2 countis 1

Java Pathfinder (JPF) (5)

JPF finds a state in which the assertion does not hold and shows a trace
leading to the state:

trace #1

transition #0 thread: 0

al
transition #1 thread: 1 bl | read count (0)

transition #2 thread: 0 read count (0)
transition #3 thread: 0 23

increment (1)

transition #4 thread: 1 b2

increment (1)

transition #5 thread: 0 write count (1)

transition #6 thread: 1 write count (1)
transition #7 thread: 0 a5

== snapshot #1
count is

results
error #1: gov.nasa.jpf.vm.NoUncaughtExceptionsProperty "java.lang.AssertionError at

. "

SimpConclnc.main(Simp...

Detecting race condition (1)

public class FCounter { v’ One static field x is shared
private static int x = 0; by all objects of FCounter.
public static int get() { return x; } v Since the two threads tl &

public synchronized void inc() { x++; } } t2 use objects of FCounter, t1
& t2 also share the static field

public class Unsafelnc extends Thread { x in FCounter.

public void run() { (new FCounter()).inc(); } v’ Since inc() is synchronized

public static void main(String[] args) in which x is incremented,
throws InterruptedException { there seems no race condition
Thread t1 = new Unsafelnc(); in the program.
Thread t2 = new Unsafelnc(); v" No matter how many times
t1.start(); Thread.sleep(1000); t2.start(); itislaunched (tested), what is
tl.join(); t2.join(); displayed is 2.

System.out.println("count: " + FCounter.get());

assert FCounter.get() ==2; } }
v’ But, ... you see?

Detecting race condition (2)

transition #6 thread: 2

if.Counter.java:4 : public synchronized void in g) x++ read
transition #7 thread:

if.Counter.java:4 : public synchronized void inc() { x++;
transition #é thread: f read

if.Counter.java:4 : public synchronized void inc() { x++; } compute
transition #9 thread: f

FCounter.java:4 : public synchronized void inc x++
! P Y transition #9) {thread 1 compute

if.Counter.java:4 : public synchronized void inc() { x++; } write

transition #11 thread: 0

transition #12 thread: 2
if.Counter.java:4 : public synchronized void inc() { x++; } write
results

error #1: gov.nasa.jpf.ym.NoUncaughtExceptionsProperty "java.lang. AssertionError at
Unsafelnc.main(Unsafe...'
Why?

Detecting race condition (3)

Let us take a close look at the program:

public class FCounter {
private static int x = 0; ... public synchronized void inc() { x++; } }

public class Unsafelnc extends Thread { , — Each thread creates a new
public void run() { (new FCounter()).inc(); } ©object of FCounter and
public static void main(String[] args) ... { ... Sends inc() to the object.
tl.start(); ... t2.start(); ... }

Let c; be the object of FCounter created by ti (i = 1,2).
When t1 sends inc() to c,, t1 successfully acquires the lock associated with
C, because there is no thread that has the lock.

When t2 sends inc() to C,, t2 successfully acquires the lock associated with
C, because ¢, is different from ¢, and then there is no thread that has the
lock.

Therefore, t1 and t2 may increment x simultaneously.

Detecting race condition (4)

A possible remedy

public class GCounter {
private static int x = 0;
private static Object lock = new Object();
public static int get() { return x; }
public void inc() { synchronized (lock) { x++; } } }

public class Safelnc extends Thread {

public void run() { (new GCounter()).inc(); }

public static void main(String[] args) throws InterruptedException {
Thread t1 = new Safelnc(); Thread t2 = new Safelnc();
tl.start(); Thread.sleep(1000); t2.start();
t1.join(); t2.join();
System.out.println("count: " + GCounter.get());
assert GCounter.get() ==2; } }

20

Detecting race condition (5)

Another possible remedy

public class Counter {
private int x = 0;
public synchronized int get() { return x; }
public synchronized void inc() { x++; } }

public class Safelnc2 extends Thread {

private static Counter counter = new Counter();

public void run() { counter.inc(); }

public static void main(String[] args) throws InterruptedException {
Thread t1 = new Safelnc2(); Thread t2 = new Safelnc2();
tl.start(); Thread.sleep(1000); t2.start();
t1.join(); t2.join();
System.out.println("count: " + counter.get());
assert counter.get() == 2; } }

21

Bounded buffer problem (1)

Queue<E>, EmpQueue<E>, NeQueue<E>, MonitorBBuf<E>,
Sender<E>, and Receiver<E> are the same as those used in lecture
note 10. BBProb is as follows:

public class BBProb {
public static void main(String[] args) throws InterruptedException {

MonitorBBuf<Integer> buf = new MonitorBBuf<Integer>(2);
for (int i=0; i < 2; i++) msgsSent.add(i);
assert msgsReceived.equals(msgsSent); } }

The remaining parts ... are the same as those used in lecture note 10.

JPF does not detect any flaws for this version.

22

Bounded buffer problem (2)

Let us revise the problem such that there are two senders.
Senderl

39 @@ 1 Bounded buffer Receiver

2 1] 0 . K% o
Senderz/
3

.54 @@

MonitorBBuf<E> is renamed MonitorBBuf2<E> and modified as
follows:
public class MonitorBBuf2<E> { ...
private List<E> log; ...
public MonitorBBuf2(int cap,List<E> log) { ... this.log = log; }
public synchronized void put(E e) ... { ...
if (noe < capacity) { ... log.add(e); ... } }
.}

23

Bounded buffer problem (3)

public class Sender2<E> extends Thread { ... }
public class Receiver2<E> extends Thread { ... }

MonitorBBuf2<E> is used in these classes.

BBProb is renamed BBProb2 and modified as follows:

public class BBProb2 { public static void main(String[] args) ... {
List<Integer> log = new ArrayList<Integer>();
MonitorBBuf2<Integer> buf = new MonitorBBuf2<Integer>(2,log); ...
int nom = msgsSent.size()+msgsSent.size(); ...
Sender2<Integer> sender2 = new Sender2<Integer>(buf,msgsSent);
... sender2.start(); ... sender2.join(); ...
assert msgsReceived.equals(log);} }

MonitorBBuf2<E>, Sender2<E> & Receiver2<E> are used in the class.

JPF does not detect any flaws for this version as well.

24

Bounded buffer problem (4)

MonitorBBuf2<E> is renamed FMonitorBBuf1<E> and modified as

follows:
public class FMonitorBBuf1<E> { ...

public synchronized void put(E e) ... {
if (noe >= capacity) this.wait(); ... }
.}
public class FSender1<E> extends Thread { ... }
public class FReceiverl <E> extends Thread { ... }

FMonitorBBufl<E> is used in these classes.

public class FBBProbl { ... }

FMonitorBBufl1<E>, FSenderl1<E> & FReceiver1<E> are used in the
class.

JPF detects a possible deadlock that may happen in this version.

Bounded buffer problem (5)

transition #72 thread: 1

. . . . nder
FMonitorBBuf1.java:16 : this.wait(); sende

transition #82 thread: 2

_ _ o sender2
FMonitorBBufl.java:16 : this.wait();

transition #83 thread: 3

_ _ S receiver
FMonitorBBuf1.java:31 : this.notify All();

transition #85 thread: 1

'-FMonitorBBufl Java:17 : if (noe < capacity) { puts 1into the buffer
FMonitorBBuf1.java:18 : queue = queue.engq(e);

transition #110 thread: 2

fails to put 1 into the buffer

'.l}i:l]t/[/lonitorggug .java:% : ilf (noe < capacity) {

onitorBButl java: o Both senders terminate.
transition #114 thread: 3

"FMonitorBBuf1.java:26 : this.wait(); waits forever here

deadlock

26

Bounded buffer problem (6)

public class FMonitorBBuf1<E> { ...
public synchronized void put(E e) ... {
if (noe >= capacity) this.wait(); ... } ... }
Suppose that Senderl & Sender2 waits on this.wait(), and Receiver gets
one element from the buffer and executes this.notifyAll(), waking up
both Senderl & Sender2.
After Receiver releases the lock | associated with the buffer, both
Senderl & Sender2 try to acquire |. Suppose that Senderl acquires |
and then Sender2 waits until | is released.
After | is released, Sender2 acquires |. Although now < capacity does
not hold at this moment, however, Sender2 proceeds, neither putting
an element, such as 1, into the buffer nor executing this.notify All().

After that, Receiver waits on this.wait(), but this.notifyAll() will never be
executed, namely that deadlock has been encountered.

27

Bounded buffer problem (7)

MonitorBBuf2<E> is renamed FMonitorBBuf2<E> and modified as

follows:))
public class FMonitorBBuf2<E> { ...

public synchronized E get() ... {
while (noe < 0) this.wait(); ... } }
Receiver2<E> is renamed FReceiver2<E> and modified as follows:

public class FReceiver2<E> { ...
public void run() { ...
try { msgs.add(buf.get()); Thread.sleep(100); } ... } }

FMonitorBBuf2<E> is used in this class and the following class:
public class FSender2<E> extends Thread { ... }

FMonitorBBuf2<E>, FSender2<E> & FReceiver2<E> are used in the
class.

public class FBBProb2 { ... }

28

Bounded buffer problem (8)

JPF detects a possible trace in which the assertion does not hold.

ﬁﬂ'sgsSent: [0,1,0,1]
msgsReceived: [0, 1, 0, null]

Failure!

————— --- transition #130 thread: 3
receiver gets null
FMonitorBBuf2 java:24 : while (noe < 0) from the buffer
FMonitorBBuf2.java:26 :if (noe > 0) {

FMonitorBBuf2.java:33 : return null;

while (noe < 0) this.wait();
is used instead of
while (noe <= 0) this.wait();

This is why there exists such a trace in which the assertion does not
hold.

Summary

Concurrency

Model checking

Java Pathfinder (JPF)
Detecting race condition

Bounded buffer problem
— Detecting deadlock
— Detecting assertion violation

