i219 Software Design Methodology
2. Basic concepts of object-oriented
technology

Kazuhiro Ogata (JAIST)

Outline of lecture

Object

Attribute

Message & method
Class

Inheritance
Interface

Abstract class

Object (1)

* Let us consider the following thing:
— Feeding a key and a value into it, it associates the
value with the key.

— Feeding a key into it, if there exit some values
associated with the key, it returns the value most
recently associated with the key.

X& 3 y&4

An example of objects

Object (2)

* What we can do for objects are essentially:
— to send messages to them, and

— to send messages to them and get some results from
them.

* On receipt of a message, what an object does is
basically:
— to create new objects,

— to send messages to objects (including itself) (and get
some results from them),

— to change something inside the object, and/or
— to return something as the result of the message.

Object (3)

* When we use software components, we are more
interested in what they can do for us than how they do
those things (how they are implemented).

* Objects can be such components.

When we want to associate values with keys, we can use the
object (let’s call it the blue object):

! ! ! !

N

X&3 y&4 X& S5 X 3

But, not interested in how it is implemented inside, e.g., hash
table and binary search tree.

Attribute (1)

* An object has its own internal state that are made of
what are called attributes.

If the blue object is implemented with a list of pairs of keys and
values, then it has such a list as its attribute.

Attribute (2)

* In Smalltalk, given an object, its attributes can only be
(essentially) directly modified and observed (accessed)
by the object itself.

What holds attributes are called instance variables.

* InJava, attributes can be given four different access
levels.
Attributes can be declared with one of the three access
modifiers (private, protected and public), and with
none of them (meaning package).
Even if an attribute is declared as private, it can also be
accessed by other objects.

What holds attributes are called fields.

Message & method (1)

* An object cannot accept all messages.

* What messages can be accepted by an object are
described as methods.

* A method has a name; it may have a list of
parameters (together with their types); it may
have a type whose value is returned by the
method.

If an object has a method such that its name is get, and it takes
one parameter whose type is String and returns an integer,
then it can accept the message get(“abc’) and returns an
integer, such as 3.

Message & method (2)

* The blue object can accept two kinds of messages
— to associate a value with a key and
— to get a value associated with a key

* The object has the following two methods for the
two kinds of messages: ‘
— put(k: Key, v: Value): Void
— get(k: Key): Value

put(x3) put(yd) put(x5) get(x) 5

Message & method (3)

* In Smalltalk, if an object has a method, any
(other) objects can send the object the
message corresponding to the method.

* In Java, also possible to make an access
control to methods, making them private,
protected, public & package.

Class (1)

* A class describes what objects look like.

* Each object has its class and is called an instance
of the class.

* In aclass, attributes and methods are declared;
an instance (object) of the class has those
attributes and methods.

Units of access control to attributes (or encapsulation) are
instances in Smalltalk, but classes in Java.

If an attribute is declared as private in a class in Java, then the
attribute of an object (instance) of the class can be accessed by
not only the object itself but also any other objects of the class.

Class (2)

* The class from which the blue object is
instantiated is described as follows (in UML):

- class name

private BlueClass “
U plist: ListOfPairOfKey&\Value« | attribute
+put{k:Key, v:\Value): Void
|Fgetk:Key): Value

<{~— method

public =

Class (3)

* An implementation of BlueClass in Java is as

follows:
public class BlueClass {

attribute —- > private ArrayList<KeyValPair> list; ~ making an object
" of ArrayList<...>

constructor public BlueClass() { P

making 7 list = new ArrayList<KeyValPair>(); }

instances of ~ primitive type for integers

the class E public void put(String k, int v{...}

method <~~~ Public Integer get(String k) { ...}

" wrapper class for integers

Class (4)

* put() & get() are as follows:
Message get(i) is sent to list,
~ obtaining the pair at
position iin the list.

public void put(String k, int v) {)
for (int i = 0; i < list.size(); i++)

if (k.equals(list.get(i).getKéy())) {)
list.get(i).setVal(v); Then, message getKey() is
return; } sent to the pair, obtaining

list.add(0,new KeyValPair(k,v)); } the key (a String) in the pair.
Then, message equals(...)

public Integer get(String k) { together with the key as the
for (inti=0; i < list.size(); i++) argument is sent to k,
if (k.equals(list.get(i).getKey())) ~ obtaining true or false.
return list.get(i).getVal();
return null; }

Class (4)

* In Smalltalk, classes are also objects (which
are instances of the class Metaclass).

(Almost everything such as integers and
messages are objects in Smalltalk)

* For each class, in Java, there exists an object
(which is an instance of the class Class) that
represents the class.

Class (5)

* Note that there are some object-oriented
programming languages that have no classes:

— Self : designed & developed at Xerox PARC,
Stanford Univ., & Sun Microsystems; one of the
main designers is David Unger; purer than
Smalltalk.

— ABCL/1 : designed & developed at Titech & U. of
Tokyo; one of the main designers is Akinori
Yonezawa; an object-oriented concurrent
programming language

Inheritance (1)

* An existing class can be extended (or specialized)
to make a new class.

* The new class basically inherits all attributes and
methods owned by the existing class.

(some of them may not be directly accessed by
the new class in Java)

BlueClass
Let us add two new methods to -list: ListOfPairOfKey&Value
BlueClass: +put(k:Key, v:Value): Void
. X . +get(k:Key): Value
1. Fleletq(k. Key): Void +delete(k Key): Void
2. 1sReg1stered(k: K): Boolean +isRegistered(k:Key): Boolean

Inheritance (2) supercles

¢
Extend BlueClass to make a new class BlueClass

-list: ListOfPairOfKey&Val
called BlueClassUndo such that the Lo e S
. put{k:Key, v:Value): Void
effect with put(k,v) can be undone once. | +get(k:Key): Value
+delete(k:Key): Void

An object of BlueClassUndo cannot +isRegistered (k:Key): Boolean
directly access to the attribute list that ?{,
is inherited from BlueClass but has it as

BlueClassUndo
-previey: Key
. -prevVal: Value
The method put(.._.) in BlueClassUndo = 1 0 Vo
overrides put(...) in BlueClass. ¢ pclass | *putlkKey, v:Value): Void

one of the attributes.

generalization

; -
put(x,3) put(y,4) put(x,5) undo() get(X) 3

Inheritance (3)

* Implementations of isRegistered() and delete() in
Java are as follows:

public boolean isRegistered(String k) {
for (int i = 0; 1 < list.size(); it++)
if (k.equals(list.get(i).getKey()))
return true;
return false; }

public void delete(String k) {
for (int i = 0; i1 < list.size(); it++)
if (k.equals(list.get(i).getKey())) {
list.remove(i);
return; } }

Inheritance (4)

* An implementation of BlueClassUndo in Java is

as follows: BlueClass is extended to make BlueClassUndo.

public class BlueClassUndo exterids BlueClass {
private String prevKey;
private Integer prevVal;
public BlueClassUndo() {

super(); < The constructor in BlueClass
prevKey = null; is invoked.
prevVal = null;

H
public void put(String k, int v) { ... }
public void undo() { ... }

b

20

21

Inheritance (5)

e put(...) & undo() are as follows:

public void put(String k, int v) public void undo() {

{ if (prevKey !=null) {
prevKey =k; if (prevVval !=null) {
if (super.isRegistered(k)) { super.put(prevKey,prevVal);

prevVal = super.get(k);
} else {

prevVal = null; }
supef.put(k,v); }

prevVal = null;
} else {
super.delete(prevKey); }
prevKey =null; } }

The method put(...) in BlueClass is

invoked.

22

Inheritance (6)

* Another design & implementation of BlueClass

ArrayList=KeyValPair>

1

BlueClass2

+put(k:Key, v:Value): Void
+get(k:Key): Value
+delete(k:Key): \Void
+isRegistered(k:Key): Boolean

public class BlueClass?2
extends ArrayList<KeyValPair> {
public BlueClass2() { super(); }
public void put(String k, int v) {
for (int i = 0; 1 < super.size(); i++)
if (k.equals(this.get(i).getKey())) {
this.get(i).setVal(v);
“return; }
super.add(0,new KeyValPair(k,v)); }
.

The méfﬁbd get(...) in the class of which the object is executing
the method put(...) is invoked.

Keyword this refers to the

currently running object.

Interface (1)

* Aninterface is what specifies methods such that any of its
implementations (classes) is supposed to provide them.

* An interface can be used as type as a class.
* But, no objects are made from interfaces.

Let us consider parse trees of arithmetic expressions such as

There are several kinds of nodes such as addition and number.
Each kind of nodes is expressed as one class.

Each of such classes is supposed to provide a method
calculate() that calculates (the expression corresponding to) the
parse tree whose top is an object of that class.

24

Interface (2)

As a type for any expression whose top is either addition or
number, an interface can be used; it also specifies that its
implementations are supposed to provide a method calculate().

cinterfacen< ____|
ExpParseTree

realization +calculate(): Integer

| stereotype saying that this
is an interface

NumParseTree AddParseTree
-num: Integer -exp1: ExpParseTree
+calculate(): Intege -exp2: ExpParseTree
+calculate(): Integer

Interface (3)

* ExpParseTree, NumParseTree & AddParseTree in Java:

public interface ExpParseTree { int calculate(); }
- declaration of interface
public class NumParseTree implements ExpParseTree {

private int val; T
public NumParseTree(int x) { val=x; } - ExpParseTreeis
public int calculate() { return val; } } - implemented

public class AddParseTree implementstExpParseTree {
private ExpParseTree eptl, ept2;
public AddParseTree(ExpParseTree el, ExpParseTree €2) {
eptl =el; ept2 =e2; }
public int calculate() {
int n1 = eptl.calculate(); int n2 = ept2.calculate();
returnnl +n2; } }

Abstract Class (1)

An abstract class is what is between a class and an interface.

It can have attributes and methods such that some methods
are not implemented and called abstract methods.

No objects are made from abstract classes.
Let us consider parse trees of imperative programs such as

var := exp;;
while exp, do stm od

Each class expressing each kind of nodes is supposed to provide
interpret(...) & compile(...); the former interprets the
corresponding program and the latter generates a list of
commands (instructions) for the program.

26

27

Abstract Class (2)

A list of commands is supposed to end with command “quit”.

As a type for both statements and expressions, an interface
(ParseTree) is used; As a type for any statements, an abstract
class (StmParseTree) is used, providing a method that puts
“quit” at the end of each list generated.
abstract method is
K L i «Interface»
written in italics ParseTree

+compile(): ArrayList=Command=

\ abstract class name

Lis written in jtalics ?
\ N fm———————
. |
S!'r::ParseTree wlnterface»
+intemret{env: HashMap<String, Integer=): ExpParseTree
HashMap<Sting, Integer= +interpret{env: HashMap<String,Integer=): int
+genCode(): ArrayList=<Command=

28

Abstract Class (3)

e ParseTree & StmParseTree in Java:

public interface ParseTree {

declaration of [jst<Command> compile(); }

abstract class .
abstract class StmParseTree implements ParseTree {
abstract Map<String,Integer>
~ interpret(Map<String,Integer> env)
throws InterpreterException;
public List<Command> genCode() {
List<Command> cl;
cl = this.compile();
cl.add(new Command(CommandName.QUIT));
returncl; } }

declaration of
abstract method

Summary

Object

Attribute

Message & method
Class

Inheritance
Interface

Abstract class

29

