i219 Software Design Methodology
3. Static modeling

Kazuhiro Ogata (JAIST)

Outline of lecture

Some UML notations for static modeling:
* Class

* Stereotype

* Note

* Relationship

* Class diagram

* Static attribute & method

* Qualification

* Template (parameterized) class
* Object

* Object diagram

Class (1)

* Aclass is described as a rectangle that has three

partitions.

name of class

list of attributes

list of methods

Note that what are written in the 3™ partition are called
operations, and the implementation of an operation is called

a method in UML.

In this course, however, terminology “method” is used instead

of “operation”.

Class (2)

* Let us consider a class of maps that associate
integers with strings with lists of pairs of strings

and integers.

MapOfStringTolnteger

<--

- name

-list: ArrayList<PairOfStringAndinteger=

+put(k: String, v: Integer): Void
+getik: String): Integer
+delete(k: String): Void
+isRegistered(k: String): Boolean
-findIndex(k: String): Integer

—-- list of attributes

<t |list of methods

Class (3)

e An attribute is written as follows:

visibility nameOfAttribute : class (or type) = defaultValue

v visibility is one of -, +, # and ~ meaning private, public,
protected, and package; optional (can be omitted).

v nameOfAttribute is used to refer to the attribute.

v class (or type) is a class (or type) that is the range of the
attribute; optional.

v’ deafultValue is the initial value of the attribute; optional.

Note that an attribute may have multiplicity and {property-string} meaning
how many attribute objects or values an object of that class may have and
additional properties; e.g., {readOnly} specifies that the attribute cannot be
modified.

Class (4)

* One attribute in MapOfStringTolnteger:
-list: ArrayList<PairOfStringAndInteger>

In this course, visibility is always - (private), preventing from
directly accessing attributes from other classes (even
subclasses).

If an attribute in a class C needs to be accessed by other
classes, C provides a getter (a get method) and a setter (a set
method) with which the attribute can be observed and
modified.

Class (5)

Instead of p,:class,, ..., p,:class,, we may
write class, p,, ..., class, p, in this course.
¢ A method is written as follows:

visibility nameOfMethod(p,:class,, ..., p,:class,) : class

v visibility is one of -, +, # and ~ meaning private, public,
protected, and package; optional.

v nameOfMethod is used to refer to the method.

v’ piclass; is a parameter where p; is the name and class; is its
class (or type); the parameter list is optional.

v class is the class (or type) of an object (or value) returned by
the method; optional.
Note that a method may have {property-string} meaning additional

properties; a parameter may be preceded by direction that is one of in
(if omitted), out, and inout; it may have a default value.

Class (6)

* Five methods in MapOfStringTolnteger:
+put(k:String,v:Integer): Void
+get(k:String): Integer
+delete(k:String): Void
+isRegistered(k:String): Boolean
-findIndex(k:String): Integer

In this course, visibility is either - (private) or + (public); if a
method does not return any objects (values), Void is used.

The getter and setter of the attribute list are not provided and
then the attribute cannot be accessed by other classes.

Class (6)

* The 2" & 3™ partitions (attributes & methods) in a
class may be omitted.

‘ MapOfStringTolnteger |

* A class may have an extra partition in which its
responsibilities are written.

* Some (or all) of attributes and/or methods may be
omitted (which may be indicated with an ellipsis “...”).

MapOfStringTolnteger
-list: ArrayList<PairOfStringAndinteger=
+put(k: String, v: Integer): Void

MapOfStringTolnteger
Responsibilities
-- associate an integer with a string

/Responsibilities
" | -- associate an integer with a string

ACN

omission of some methods ©an extra partition

Class (7)

» Abstract classes where some methods (called
abstract methods) are not implemented are
described in the same way as (concrete) classes
except that names & abstract methods are
written in italics. - initalics

StmParseTree

;fnferpre!‘{env: Map=String Integer=):
abstract " Map<String,integer>
methods +genCode(): List<Command=>

Stereotype

* Some specific classes, such as those for exceptions are
indicated with stereotypes whose names are enclosed by
double angle brackets (guillemets); stereotypes are also
used to describe some data types, such as enumerations,

and interfaces.

«Exception»
|OException

«Exception»
CalculatorException

«Exception»
SyntaxErrorException

«enumeration»< |
TokenName

LPAR
RPAR
MUL
Quo
REM
PLUS
MINUS
NUmM
UNDEF

- stereotype

«interfaces
ExpParseTree

+calculate(): Integer

Note

* A note can be used to give comments or
constraints to an element or a collection of

elements.

wenumerations
TokenName

note | x i up

Corresponding to

'+,'-, [0-9]+, and
others, respectively

L

LPAR
RPAR
MUL
Quo
REM
PLUS
MINUS
NUM
UNDEF

Relationship (1)

* Four kinds of relationships among classes (& others):

1. Dependency — a change to a class (the dependee) may affect the
other class (the depender); written as follows:

(depender) ---------- > (dependee)
2. Association — a structural relationship among classes that describes
a set of links, a link being connections of objects of those classes;
written as follows: multiplicity (optional)

Oorl > 0.1 < 7% < 0 ormore

employerV 7employee
end name (optional)

Multiplicity : m .. n (greater than or equal m & less than or equal n), * (0 or
more; the same as 0 .. *), n (exactly n; the same as n .. n)

Relationship (2)

3. Generalization — a specialization/generalization relationship such as
inheritance; written as follows:

(specialization {> (generalization
such as a subclass) such as superclass)

4. Realization — an implementation/specification relationship between
two things; one specifies a contraction that the other guarantees to
carry out; written as follows:

(implementation > (specification such
such as a class) as an interface)

Class diagram (1)

* A class diagram consists of classes (and others such as
interfaces) and relationships among them.

Attributes may be described with associations.

An end name may be adorned with a visibility.

MapOfStringTolnteger ?jﬁﬁlT‘ ArrayList<PairOfStringAndinteger>

+put(k: String, v: Integer). Void A R
+get(k: String): Integer '
+delete(k: String): Void) :

+isRegistered(k: String): Boolean i For each c?bJGCt of .
-findindex(k: String): Integer : MapOfStringTolnteger, there exists
' one object of

ArrayList<PairOfStringAndInteger>.

For each object of i
ArrayList<PairOfStringAndInteger>, there exists
zero or one object of MapOfStringTolnteger; there
may exists some list objects that any map objects
do not have.

Class diagram (2)

* What the diagram describes on the previous page
is also described as follows:

MapOfStringTolnteger 0 ST {ordered) * PairOfStringAndinteger
+put(k: String, v: Integer): Void A -key: String
+get(k: String): Integer -val: Integer
+delete(k: String): Void +getkey(): String
+isRegistered(k: String): Boolean +getVal(): Integer
~findindex(k: String): Integer +setKey(k: String): Void
/ +setVal(v: Integer): Void

This specifies that pairs associated with a map
should be ordered.

Class diagram (2)

Let us consider a map such that the effect of put(...) can be
undone once; the corresponding class is made to extend
MapOfStringTolnteger.

MapOfString Tolnteger
-list: ArrayList<PairOfStringAndInteger=
+put(k: String, v: Integer): Void
+get(k: String): Integer

UndoMapOfStringTolnteger
-prevKey: String

-prewVal: Intager _ 1 +delete(k: String): Void
*+put(k: String, v: Integer): Void +isRegistered(k: String): Boclean
+undo(): Void -findIndex(k: String): Integer

- - -

-
-

1. prevKey is k in the preceding put(k,v), and
prevV/al is the value previously associated with k
before the preceding put(k,v).

2. put overrides put in the superclass to let the two
attributes be those key and value.

Class diagram (3)

* Let us implement ExpParseTree with two classes
NumParseTree & AddParseTree.

<<interface>>
ExpParseTree

+calculate(): Integer

MumParseTree AddParseTree
-num: Integer -exp1: ExpParseTree
+calculate(): Intege -exp2: ExpParseTree

+calculate(): Integer

Class diagram (4)

* Let us consider an arithmetic calculator that takes an
expression written as a string, converts it into a list of
tokens, makes a parse tree from the list, calculates the
expression, and displays the result; the calculator
depends on parse trees.

SimpleCalculator winterfacen
- —— — — = ExpParseTree

+calculate(): Integer

+calculate(e: String): void

NumParseTree AddParseTree

Class diagram (5)
* Provided (implemented) interfaces are described

as follows:
Oi NumParseTree

ExpParseTree

Oi AddParseTree

ExpParseTree

* Required interfaces are described as follows:

SimpleCalculator
+calculate(e: String): void | EXpParse reE

Class diagram (5)

* Asimplified version of the diagram on the
previous, previous page is described as follows:

SimpleCalculator

+calculate(e: String): void | EXpParselree ékk

70

- ExpParseTree

E . AddParseTree

ExpParseTree

Class diagram (6)

* Composition

22

composite -—>| Bike

o oE——

Tire

<-----component

2
The multiplicity on the composite side

omitted) b/c a component class is designed s.t. a component can
have at most or only one composite as its owner.

When a composite is destructed, so do all of its components.

* Aggregation

University

Person
“:? stogents ,,5'

is 1 or 0..1 (which is often

StmParseTree
implements ParseTree

d219sIeJuils (Spuaixa Jo)
s9z||e10ads 994) 9SIBJUSISSY

ExpParseTree specializes.s
/" (or extends) ParseTree

CI ass d I d g ram (6) AddParseTree

* An examb\le\from an assignment

implements ExparseTree
calculator ‘

AssignParseTree

<<Interface>>
ParseTree

AddParseTree

-var: VarParseTree
-exp: ExpParseTree

+compile(): List<Command=/

-exp1: ExpParseTree

+interpret(env: Map<=String.Integer=): I8
Map<String,Integer>
+compile(): ListcCommand>

-exp2: ExpParseTree
+interpret(env: Map<String Integer=): Integer|
+compile(): List<Command=>

StmParseTree

=<Interface>>

Map=String, Integer>
+genCode(). List<Command=>

+interpret{env: Map<String, Integer=):

ExpParseTree
+interpret(env: Map<String.Integer=): Integer

—"11

; B

SCompParseTree

NumParseTree

-stmi: StmParseTree
-stm2: StmParseTree

-num: Integer

Map<=String.Integer>
+compile(): List<Command=>

+interpret(env: Map<String Integer=):

+interpret(env: Map<String Integer=): Integer|
+compile(): List<Command=>

VarParseTree

EmptyParseTree

+interpret(env: Map<String.Integer>):
Map<String,Integer>
+compile(): List<Command>

-name: String

+interpret(env: Map<String.Integer=):
Integer

+compile(): List<Command=>

WY
<<Exception=>
InterpreterException

24

Static attribute & method

e Static attributes & methods in a class are shared
by all objects of that class.

* Underlines are used to specify static attributes &

methods.

property string
saying that the

Club - attribute cannot be

static]
attribute

-myld: Integer {readOnly}

modified once it is

| Znextld: Integer =0

initialized.

+gethMyld(): Integer
+checkMNextld(): Integer
+getMNextid(). Integer

static
method

Qualification

* The design of MapOfStringTolnteger was dependent
on lists.

* Qualification lets us make the design more abstract.

gualifier gualified association

MapOfStringTolnteger

For each map and each string, there exists at most one integer.

26

Template (parameterized) class

* Useful to describe generic things, such as generic lists

explicit binding:
template class template parameters p b g
_-an explicit way to
! Py - .~ instantiate Pair
=1 «bind» <K -> String, V -= Integer>
Pair
-key: K I SR —— PairOfStringAndinteger
-val: V
+getKey(): K - implicit binding:
+getVal(LKV - i i
+setKey(k: K): Void Pair<K -> String, V -> Integer> ?n 'mp!'C't Wa.y to
+setval(v: V): Void instantiate Pair

a conventional way
to instantiate Pair

Pair<String,Integer> | <

27

Object

* Objects are described as rectangles; names/types
are underlined; they may have attribute values.
only type is
written

‘NumParseTree

ept :AddParseTree aSimpleCalculator val=3
A A &

both name & class (type) only name is

are explicitly written written attribute values

28

Object diagram

* A snapshot of the objects in a system

Links are instances of associations.

Note that the relation between
“Uk class A and class B that is used as
| the type of an attribute in A is
spLAddParsalree regarded as an association

\ | between A and B in the course.

| |
:NumParseTree :AddParseTree
val=3 |
| |
/ -~ [:NumParseTree NumParseTree

object val=4 val=5

Summary

Some UML notations for static modeling:

Class

Stereotype

Note

Relationship

Class diagram

Static attribute & method
Qualification

Template (parameterized) class
Object

Object diagram

