i219 Software Design Methodology
4. Object-oriented
programming language 1

Kazuhiro Ogata (JAIST)

Outline of lecture

Hello world!

Class

Inheritance
Interface
Exception
Exception handling
Type cast

Hello world! (1)

modifier class public & static method that
returns nothlng (V01d)
pubhc class HelloWorld { . array of strings

class System pubhc static void ma1n(Str1ng[Targs) {~ astring
> System out.println("Hello world!"); } 3
standard output .~ " prints a String and terminates the line
(System’s static field (attribute) * (PrintStream’s method that returns
whose type (class) is PrintStream) nothing)

v" A Java application starts with main(...). % javac HelloWorld.java
Each application needs to have a class in % java HelloWorld

which public static void main(String[] args) Hello world!

is declared. %

v The naming convention for files: each
class C is written in one elass file whose
name is C.java.

Hello world! (2)

* Aclass diagram of HelloWorld

EZE,

root of Java \
class hierarchy .

FilterOutputStream
/

cim& Flugfable

r——_- >‘ String[] ’—D‘ Objec:t ‘ PrintStream
HelloWaorld
+main(args: String[1): Void Appe(%able

+printin(s: String): Void

8 AutoClosable
|
|
! System
1

|
|
|
|
|
|
+out : PrintStream
— oy T ETMONeam | _

Seriagiable |CharSgguence|

Composable<String>

Class (1)

* A class ClassName is declared as follows:

fields (attributes), methods, constructors, etc.
are declared

cModifiers class ClassName { }

can be accessed from everywhere the class cannot be extended
\ " (cannot have any subclases)

S
v cModifiers ::= [public] [abstract] [final] ...
can be accessed in the
package of the class if
public is not given

abstract class from which no object is made

Example: public class Point { ... }

Class (2)

* Afield (attribute) fieldName is declared as follows:

a reference type (class and interface) the result of evaluating this expression is
& a primitive type, such as int used to initialize the field

fModifiers\Atype fieldName [=ﬂinitializer] ;

all classes can access the field
if the class is public ™.)
v fModifiers ::= [public|protected|private] [static] [final] ...

7 if none of the three access modifiers is given,
classes in the same package in which the class is

only the class in which the field is declared

some classes such as subclasses
If initializer is omitted, a non-primitive type (a reference type), integer and double
fields are initialized as null, 0 and +0.0, respectively.

Example: private double x =—-0.5 ;
private double y;

Class (3)

* A method methodName is declared (defined) as follows
mModifiers type methodName (parameters) methodBody

method signature -

The same access control effects
as those to fields

v mModifiers ::= [public|protected|private] [abstract] [static]\fﬁnal]

the method cannot be
overridden in its subclasses

parametertypi pazﬁmeter name noimbiementation
/parameters = tl Py --s tn P,

a sequence of statements such as assignments & return statements
v methodBody ::= ; (if abstract is used) | {A } (otherwise)
Example: public final double getX() { return x; }
public final void setX(double x) {thisx =x; }

attribute x of the object executing setX is set to parameter x

Class (4)

instance variable in Smalltalk

* Static fields (attributes):

Each object of a class has (a copy of) each non-static’field, but
a static field is shared by all objects of the class (and its

\T\\ .
subclasses). " class variable in Smalltalk -~ 115 used to count how many
o i points have been made; every
Example: private static int n = 0; time an object of Point is

made, n is incremented.

e Static methods :

class methods in Smalltalk instance methods in Smalltalk

In a static rﬁethod, non-static fields & non-static methods cannot
be used.

Example: public static int howManyPoints() { return n; }

A static method can be invoked through an object of the class, but should be
invoked through the class such as Point. howManyPoints().

Class (5)

* Objects of a class are made with constructors.

* Constructors are declared in a class whose name is
ClassName as follows: the same as those in methods

ctrModifiers ClassName (parameféfs) {...}

a sequence of statements, such as assignments & return statements

v ctrModifiers ::= [public|protected|private] ...
The same access control effects

a class may have multiple as those to fields

constructors provided that they
have different parameters Example: public Point() { n++; }

If x = x is used instead of this.x = X, . publlc POint(double X,double y) {

argument x is set to argument x and fiel] . K _
x is initialized as the default value (+0.0). this.x = x; thlS.y =y, ot }

Class (6)

* If any constructors are not explicitly declared in a class
ClassName, the default constructor is automatically

declared: Constructors like this are called non-arg constructors

ctrModifiers ClassName () { }
The same acc\é‘s\s\ control modifier as that of the class ClassName

* If at least one constructor is explicitly declared in a class,
the default constructor is not declared.

Example:
If no constructor is explicitly declared in Point, the following

default constructor is automatically declared:
public Point() { }

Class (7)

Two method signatures m,(P,) and m,(P,) are equal if m, is the
same as M, and P is equal to P, up to parameter names.

* piity, ..., Pty isequal toq:t’y, ..., gt up to parameter
names if and only if n =m and t;=t’; for each i.

* Two methods whose name are the same and parameters
are different can be declared in a class; one is said to
overload the other with each other.

method overloading

public double distance() { public double df\stance(Point pt) {
return Math.sqrt(x*x+y*y); double tmpx = pt.getX() - x;
} double tmpy = pt.getY() - y;

return Math.sqrt(tmpx*tmpx-+tmpy*tmpy); }

* Two methods whose name are the same and parameters
are equal up to parameter names cannot be declared in a
class even though the return types of the two methods are
different.

Class (9)

* The rest of the class Point:

public class Point { ...
public final double getY() { returny; }
public final void setY(double y) { this.y=y; }

The static method sqrt(...) in thg class Math is invoked.
public double distance() { return Ma£ﬁ.sqrt(x*x+y*y); }
a concatenation oReration of strings
public String toString() { return "(" :L X+""+y+"" o}

j aString + anObject (or anObject + aString) is the same as (or converted
into) aString + anObject.toSting() (or anObject.toString() + aString)

Class (10)

prefix unary operator argument of new

* An object of a class is made with new plus a constructor
with parameters if any.

Example: i
ample: 05.0.0)ismade (; 4142135623730951, 1.4142135623730951)
Point p0 = new Point(); - -is made

Point pl = new Point(1.4142135623730951,1.4142135623730951);
p0.setX(1.0); 1.0is set to x in p0 by sending setX(1.0) to p0

p0.setY(1.0); 1.0 is set to y in p0 by sending setY(1.0) to p0
System.out.println(pl.getX()); xinpl is observed by sending getX() to p!
System.out.println(p1.getY()); vy inplisobserved by sending getY() to pl
System.out.printIn(p0.distance()); | The distances of p0 & p1 are observed
System.out.println(p1.distance()); | by sending distance() to p0 & p1.

System.out.println(Point.howManyPoints());
n (#points made) is observed by sending howManyPoint() to Point

Class (12)

* Let us consider a game such that given two points goal & walker
and one integer maxSteps, you succeed if walker gets to goal by

randomly moving to a next point in maxSteps moves.
this class cannot be extended

public final class RandomWalking {
private final Point goal;
private final int maxSteps; }
private Point walker;
public RandomWalking(double gx, double gy,
double wx, double wy, int max) {

assignments to goal & maxSteps are
«-———--—-not allowed once they are initialized
because of final

goal = new Point (gx,gy); goal & maxSteps are initialized
walker = new Point(wx,wy); ~~ whenan object of
maxSteps = max; } RandomWalking is made

public void startWalking() { ... } }

assignments to goal & maxSteps are not allowed here

Class (13)

 startWalking is as follows

public void startWalking() { 7
/1 goal.setX(10.0); e
// goal = new Point(0.0,0.0);

// maxSteps = 10; -
int steps = 0;
while (true) {
System.out.println("walker: " + walker);
if (goal.distance(walker) < 1.0) { ... break; } gotto goal in maxSteps
if (steps >= maxSteps) { ... break; } did not get to goal in maxSteps
double dx = Math.random(); double dy = Math.random();
dx = Math.random() > 0.2 ? -dx : dx;
dy = Math.random() > 0.2 ? -dy : dy;
walker.move(dx,dy); the next point to which walker moves is
steps++; } randomly made

modification of the contents is allowed;
--- even if uncommented, a compiler does
not complain

-..___ assignments are not allowed; if
uncommented, a compiler complains

Inheritance (1)

¢ A class can be extended to make a new class.

* Let us make a class of points in 3D space by extending the

class Point.
PointIn3D cannot be extended fields, constructors, methods

public final class PointIn3D extends Point -
subclass Point is extended gUpercIass
* PointIn3D inherits all fields (attributes) & methods

from Point; some of them cannot be directly accessed,
such as x and y in Point.

A field added: private double z; cannot be directly accessed but
cannot be directly accessed but can be with getX() and getY()
can be with howManyPoints()

~ Each object of PointIn3D has three (copies of) fields x, y, z, and share
“ nwith all other objects of Point & PointIn3D. _

----- not only Point

Inheritance (2)

A constructor added:

public PointIn3D(double x,double y,double z) {
super(x,y); this.zA= z; }

Point(x,y) in Point is invoked field z in the object being created

is set to argument z
In an constructor, at most one constructor in either the
current class (this(...)) or the super class (super(...)) may
be invoked; this(...) or super(...) should appear at the very
beginning place in the constructor; if this(...) is used, this(...)
should be different from the constructor.

If neither super(...) nor this(...) is invoked, a non-arg
constructor such as the default one in the superclass is
invoked; if a non-arg one is not declared, a compiler complains.

Inheritance (3)

A type t' is said to be a subtype of a type tif and only if
one of the following cases is fulfilled:
— Iftis a class (including an abstract class), then t' extends t
(namely that t' is a subclass of t).

— Iftis aninterface, thent' extendst (namely thatt'is a
subinterface of t) or t' implements t (namely thatt'is a
class (including an abstract class) that implements t).

The subtype relation is transitive; if t' is a subtype of t
and t" is a subtype of t', then t" is a subtype of t.

A type tis a supertype of atype t'ifand only if t'is a
subtype of t.

A subtype t' of a type t can be used at the place where t
can be used, but not vice versa.

Inheritance (4)

 this overrides distance() in Point

A method added:

public double distgﬁce() { L distance() in Point is invoked
double disIn2D = super.distance();
return Math.sqrt(disIn2D*disIn2D+z*z); }

SuperClass m in SubClass is said to override m in

+m(p1;type1’“."p;];typen); type SuperClaSS if and Only if typei is the
same as type'; for each i, provided

Lﬁ that type' should be type or a subtype

SubCTass of type if type is a reference type, and

be type if type is a primitive type;
otherwise a compiler complains.

+m(q,:type’,,..., g,:type’,): type'

Inheritance (5)

A method added: pt, an object of PointIn3D, can be used as an
' argument of distance() in Point because PointIn3D is
a subtype of Point.

public double distance(PointIn3D pt) {
double disIn2D = super.distance(pt);
double tmpz = pt.getZ() - z;
return Math.sqrt(disIn2D*disIn2D+tmpz*tmpz); }

This method overloads distance() & distance(Point pt) in
Point and distance() in PointIn3D.

21

Interface (1)

* Aninterface InterfaceName is declared as follows:

methods, etc. are declared

iModifiers interface InterfaceName { .. }
always abstract; can be omitted
. .~ and usually omitted
v iModifiers ::= [public] [abstract] ...
can be accessed in the package of the class if
public is not given

can be accessed from everywhere

public interface PointInterface {

double getX();
double getY(); }

all methods in interfaces are abstract & public,
which can be omitted and usually omitted

Example:

22

Interface (2)

* Aninterface is implemented by a class (partially by an
abstract class) an abstraqt class that implements PointInterface
Y
Example: public abstract class AbstractPoint
implements PointInterface {

public abstract double distance();

public double distance(PointInterface pt) {
double tmpx = this.getX() - pt.getX();
double tmpy = this.getY() - pt.getY();
return Math.sqrt(tmpx*tmpx+tmpy*tmpy); } }

AbstractPoint has three abstract methods; one is distance() and the others

are getX() and getY() that come from PointInterface

* Note that if a class has abstract methods, it should be
abstract.

23

Interface (3)

0 polar coordinates

* Class diagram on points

“,theta (in radian or degree)

«interface»
Pointinterface
private double r; | - distance() is abstract
. I

private double theta;
public double distance() { A public double distance() {

returnr; } - return Math.sqrt(x*x+y*y); }

‘ AbstractPointPolarCoordinates ‘ | PointRectangularCoordinates ‘
‘4‘5‘ ~--.___ public PoinRectangularCoordinates
convertToPoinRectangularCoordinates() {...}

PointPolarCoordinatesDegree ‘ ‘ PointPolarCoordinatesRadian

Exception (1)

* One possible constructor for PointPolarCoordinatesRadian:

public PointPolarCoordinatesRadian(double r, double theta) {
this.setR(r); this.setTheta(theta); }

What if r is nagative?
One way to deal with such a case is to throw (raise) an exception.
First a class for exceptions warning such a case is declared.

Exception(String msg) is invoked ; given by Java library

\ public class PointException extends Exception {
public PointException(String msg) {
~super(msg); } }
Note that Exception can be used for this case, but a specific class
that extends Exception should be made to let users
(programmers) know what exception has occurred.

Exception (2)

* The constructor becomes

public PointPolarCoordinatesRadian(double r, double theta)
throws PointException {

. A
if (r<0.0) { - declaration that a PointException may be thrown
throw new PointException("r should not be negative!"); }

if (theta < 0.0 || theta > 2.0 * Math.PT) { "
throw new PointException(...); }
this.setR(r); this.setTheta(theta); }

a PoiﬁtException is thrown
if r is negative

If an exception is thrown, the control moves back along the
sequence of invoking constructors and methods until the
exception is caught; if the exception is not caught, the application
terminates, letting users know that the exception has occurred.

26

Exception handling (1)

* Let us make an application that asks a user to input
two points in Polar Coordinates (where radian is used)
and calculate the distance of the two points.

making classes in package java.io array of AbstractPoint

irnportjava.zib/.; “for input & output available whose length is 2 is made;
))) but no object of
public class DistanceBetweenTwoPoints { AbstractPoint is, made

public static void main(String[] args) throws IOExceptlon {
inti=0; String line;
double[] r =new double[2]; it decodes bytes read from the
double[] theta = new double[2]; J standard input into characters
AbstractPoint[] p = new AbstractPoint[2]; o
InputStreamReader isr = new InputStreamReader(System 1n)
BufferedReader br = new BufferedReader(isr); standard input
System.out. prmtln("lnput two points in polar coordinate system");

it reads character from the standard input in a buffered way

27

Exception handling (2)

it reads a line of text and returns the line
while (i <2) { excluding a line break as a String
try {
System.out.print("r" +i+":");~
. . . L3
llpe = brreadLine().trim(); . __-it converts a String line into a double;
r{i] = Double.parseDouble(line);* if line does not express a double, such

System.out.prlr'lt("thet'a" FIET) “abc”, a NumberFormatException
line = br.readLine().trim(); is thrown

theta[i] = Double.parseDouble(line);
pli] = new PointPolarCoordinatesR@dian(r[i],theta[i]);

it removes white spaces at both sides
of the String

i++; standard error * a PointException may be thrown
} catch(PointException g) {
System.erf.println(e); ~ a PointException is caught

} catch(NumberFormatException e) {

System.err.printin(e); } ; " a NumberFormatException is caught

28

Type cast

since the type of p[j] is AbstractPoint, it is necessary to cast the type to
AbstractPointPolarCoordinate so that convertToRectangularCoordinates can be used

double dis = p[0].distance(p[1]);
AbstractPoint[] q = new AbstractPoint[2];
for (int j = 0; j <2; j++) { !
AbstractPointPolarCoordinates tmp b
= (AbstractPointPolarCoordinates) p[j];
q[j] = tmp.convertToRectangularCoordinates();
H
System.out.println(p[0] + "-->" + p[1] + ": " + dis);
System.out.println(p[0] +": " + q[0]);
System.out.println(p[1] +": "+ q[1]); } }

if convertToRectangularCoordinates() is sent to p[j], a compiler complains that
AbstractPoint does not have the corresponding method.

Summary

Hello world!

Class

Inheritance
Interface
Exception
Exception handling
Type cast

29

