Specification and Verification of Some Classical Mutual
Exclusion Algorithms with CafeOBJ

Kazuhiro Ogata and Kokichi Futatsugi

JAIST ({ogata, kokichi}@jaist.ac.jp)

Abstract. We have specified and verified some classical mutual exclusion algorithms with
CafeOBJ by adopting UNITY computational model and its logic. Two properties of each
mutual exclusion algorithm have been proven with CafeOBJ, together with UNITY logic and
simulation relations. One property is a safety property that more than one process can never
enter their critical section simultaneously, and the other a liveness property that a process
wanting to enter a critical section eventually enters there. In this paper, we describe the
specification and verification of mutual exclusion algorithms.

1 Introduction

UNITY [2] is a parallel computational model, and a specification and programming logic. It also
provides a proof system based on the logic that is an extension of Floyd-Hoare logic[4,7] and is
influenced by temporal logic[11]. On the other hand, CafeOJB [3,5,9], an algebraic specification
language, provides notational machinery so as to specify labeled transition systems, which is similar
to UNITY computational model, and the corresponding semantics, namely, hidden algebra [6].

We have adopted the UNITY computational model to specify mutual exclusion algorithms
in CafeOBJ, and used UNITY logic and simulation relations[8] to verify a safety and a liveness
properties of mutual exclusion algorithms with CafeOBJ. A safety property is often interpreted as
saying that some particular bad thing never happens, while a liveness property is often informally
understood as saying that some particular good thing eventually happens. The safety property of
each mutual exclusion algorithm, which has been proven, is that more than one process can never
enter their critical section simultaneously, and the liveness property of each of them, which has
also been proven, is that a process wanting to enter a critical section eventually enters there. The
mutual exclusion algorithms specified in CafeOBJ are Peterson algorithm [10], Ticket algorithm,
and Anderson algorithm[1]. In this paper, we describe the specification and verification of the
mutual exclusion algorithms with CafeOBJ.

The rest of the paper is organized as follows. Section 2 briefly explains UNITY. In Sect. 3, we
introduce how CafeOBJ specifies UNITY computational model, and verifies safety and liveness
properties using some small example. In Sect.4, Peterson algorithm is treated, and in Sect. 5,
Ticket and Anderson algorithms are treated. Finally, Sect. 6 gives a conclusion.

2 UNITY

UNITY[2] is a parallel computational model, and a specification and programming logic. It also
provides a proof system based on the logic that is an extension of Floyd-Hoare logic[4,7] to
parallel programs, and is also influenced by temporal logic[11]. UNITY has a minimum notational
machinery to represent the parallel computational model. In this section, a brief explanation of
UNITY is given.

2.1 Computational Model

The parallel computational model of UNITY is basically a labeled transition system. It has some
initial states and finitely many transition rules. Application or execution of one transition rule
may simultaneously change (possibly nothing) some of the components that the state of a labeled

transition system is composed of. An execution starts from one initial state and goes on forever;
in each step of execution some transition rule is chosen nondeterministically and executed. Non-
deterministic choice is constrained by the following fairness rule: every transition rule is chosen
infinitely often.

UNITY has a minimum notational machinery or a programming language to represent the
parallel computational model. A program consists of a declaration of variables, a specification of
their initial values, and a set of multiple-assignment statements. Since some variables may not
be initialized, a labeled transition system has more than one initial state. A multiple-assignment
statement corresponds to a transition rule.

Now a small example is given. The following UNITY program gcd has the two variables x and y
whose initial values are M and N, respectively. It also consists of the two statements; one statement
sets £ to z minus y provided that z is greater then y, and the other y to y minus z provided that
y is greater than x.

Program gcd
declare z, y : integer
initially z, y = M, N {M and N are positive integers}
assignr:=cz—yife>ylly=y—zczifz<y

end {gcd}

2.2 Specification and Programming Logic

The logic is based on assertions of the form {p} s {¢}, denoting that an execution of statement s
in any state that satisfies predicate p results in a state that satisfies predicate g, if execution of s
terminates. Properties of a UNITY program are expressed using assertions of the form {p} s {¢},
where s is universally or existentially quantified over the statements of the program. The properties
are classified into a safety or a liveness property. Examples of safety properties are that variable z
is always positive, and that two processes can never enter their critical sections simultaneously. Ex-
amples of liveness properties are that the difference between z and y eventually becomes nothing,
and that a process wanting to enter a critical section eventually enters there. Existential quantifi-
cation over program statements is essential in stating liveness properties, whereas safety properties
can be stated using only universal quantifications over statements (and using the initial condition).

Although all properties of a program can be expressed directly using assertions, a few additional
terms are introduced for conveniently describing properties of programs: unless, stable, invariant,
ensures, and leads-to. The first three terms are used to state safety properties, and the latter two
ones to state liveness properties. The definitions of these terms are given below.

Unless For a given program F', p unless q is defined as follows:
punless q=(Vs:sin F :: {pA—q} s {pVaq}).

In other words, if p holds at any point during the execution of F', then either ¢ never holds
and p continues to hold forever, or ¢ holds eventually (it may hold initially when p holds) and
p continues to hold at least until q holds.

Stable stable p is defined as a special case of unless:

stable p = p unless false .

A stable predicate remains true once it becomes true (though it may never become true).
Invariant invarient p is defined as a special case of stable:

invariant p = (initial condition = p) A stable p.

An invariant is always true: all states of the program that arise during any execution of the
program satisfy all invariants.

Ensures For a given program F', p ensures q is defined as follows:
p ensures ¢ = (p unless ¢) A{(3s:sin F :: {p A ~q} s {q}).

In other words, if p is true at some point in the computation, p remains true as long as ¢ is
false (from p unless q), and eventually ¢ becomes true.
Leads-to (—) A given program has the property p — ¢ if and only if this property can be derived
by a finite number of applications of the following inference rules:
« (Basis) p ensures q 7
p = q

¢ (Transitivity) P= 4927

peT ’
Vm:meW :p(m) — q)
(An:meW :p(m)) —q

¢ (Disjunction) For any set W,

3 UNITY in CafeOBJ
3.1 UNITY Computational Model in Hidden Algebra

CafeOBJ [3, 5, 9] provides a notational machinery to describe labeled transition systems, and the
corresponding semantics, namely, hidden algebra[6]. In hidden algebra, a hidden sort represents
(states of) a labeled transition system. Action operations or actions, which take the state of a
labeled transition system and more than zero data such as integers, and returns another (possibly
the same) state of the system, can change the sate of a labeled transition system. The state of a
labeled transition system can be observed only using observation operations or observations that
take the state of a labeled transition system and returns the value of a data component in the
system.

As an example, a CafeOBJ specification that corresponds to the UNITY program gcd is given.
The specification consists of one module whose name is GCD. GCD imports another module INT
where some sorts and operations relating to integers are declared. By importing INT, integers and
the related operators such as addition and subtraction can be used. GCD declares one hidden
sort State that represents (states of) the labeled transition system that the UNITY program ged
represents. The main part of the signature is as follows:

-- initial state

op init : -> State
-- observations
bops x y : State -> NzNat
-- actions
bops update-x update-y : State -> State
GCD has two (atomic) actions update-x and update-y that correspond to the first and second
assignment statements in the UNITY program gcd, respectively. It also has two observations x and
y with which we can observe the values of the variables z and y, respectively. init is one initial
state of GCD. GCD has three sets of equations: one for initial state init, and the others for the
two states after one of the two actions update-x and update-y have been executed, respectively.
We are giving the three sets of equations.

eq x(init) =M . eq y(init) =N .

The constants M and N are the initial values of the variables x and y, respectively.
x(8) - y(8) if x(S) > y(S) .

x(S) if x(S) <= y(8) .

y(s) .

ceq x(update-x(S))
ceq x(update-x(S))
eq y(update-x(S))

S is a variable for State. The three equations correspond to the first assignment statement in the
UNITY program gcd.

eq x(update-y(S)) = x(8) .
ceq y(update-y(S)) = y(S) - x(S) if x(S) < y(8) .
ceq y(update-y(S)) = y(S) if x(S) >= y(S) .

The three equations correspond to the second assignment statement in the UNITY program gcd.

3.2 Verification of Safety and Liveness Properties with CafeOBJ

The following two properties are proven from the CafeOBJ specification GCD with CafeOBJ. One is
a safety property, and the other a liveness property. The liveness property means that the difference
between z and y eventually becomes nothing.

1. invariant © > 0Ay >0,
2. true— 2 =y.

Proof sketch 1: Since the initial values M and N of and y are positive, the predicate clearly holds
in the initial state. Thus, suppose that the predicate holds, we confirm that it is preserved after
execution of every action. First the following module is declared, in which the needed precondition
is given.
mod GCD-PROOF1 {
pr(GCD)

op s : -> State ops m n : -> NzNat eq x(s) = m. eq y(s) =n .
}

We can show the predicate (i.e. > 0 Ay > 0) is preserved after the action update-x is executed
by having the CafeOBJ system executes the following two proof scores: one for the case z > y, and
the other for the case z < y.

open GCD-PROOF1

eqm>n =true . eqm+ (-mn) >0 = true .
red x(update-x(s)) > O and y(update-x(s)) > O .
close

open GCD-PROOF1
eqm <= n = true . red x(update-x(s)) > O and y(update-x(s)) > 0 .
close

As is the above case, we can show the predicate is preserved after update-y is executed. Therefore,
it follows that the safety property holds in GCD. O

Proof sketch 2: First suppose that the following two subproperties hold in GCD. In this paper,
properties are often written without explicit quantifications; these are universally quantified over
all values of the free variables such as m and n occurring in them.

Lz>yANrx=mAy=nensuresz <mAy=n,
ii. zx<yAxz=mAy=nensuresz=mAy<n.

From the two subproperties using Basis inference rule for leads-to and Finite Disjunction (see
Appendix), the following property is obtained: z # y A (z,y) = (m,n) — (z,y) < (m,n), where <
is the lexicographic ordering relation on the set of pairs of natural numbers. By applying Corollary
of Induction for Leads-to (see Appendix) on the pair (m,n) to this property, the desired property
“true — ¢ = y” is derived. O

Next we show the assumed subproperties actually hold in GCD.

Proof sketch 2.1: First the following module is declared, in which the needed precondition is given.

mod GCD-PROOF2 {

pr(GCD)

op s : > State ops mn : -> NzNat

eq x(s) =m . eqy(s) =n .

eqm>n =true . eqm> n =true. eqm+ (- n) <m = true
}

We can show the first subproperty holds in GCD by executing the following proof score.

open GCD-PROOF2
red x(update-x(s)) < m and y(update-x(s)) == n .
red x(update-y(s)) == m and y(update-y(s)) ==n .
close

The second subproperty can be shown almost the same way as the first subproperty. O

4 Two-Process Mutual Exclusion

In this and the next sections, two-process and N-process mutual exclusion algorithms are treated.
For each algorithm in this and the next sections, the following two properties are proven:

ME1 Two processes (or more generally more than one process) can never enter their critical
section simultaneously.
ME2 A process wanting to enter a critical section eventually enters there.

4.1 Simplified Peterson Algorithm

Peterson algorithm [10] need not sophisticated atomic operations. It can be implemented using
usual load and store instructions. In Peterson algorithm, one shared variable turn is used, and
each process ¢ € {0,1} has its own local variable flag[i] that can be only read by the opponent
process i (= i+1 mod 2). The code, in a traditional style, is given below. The initial value of flag[i]
is false; the initial value of turn is arbitrary.

repeat while ﬂag[;] A turn = 1
Critical Section

flag[i] := false

We first specify a simplified Peterson algorithm with large granularity in CafeOBJ. The simpli-
fied version can be easily vefiied w.r.t. the two properties ME1 and ME2. After the verification,
more realistic version is described.

Specification We describe the CafeOBJ specification of the simplified Peterson algorithm. It is
called SS-PETERSON2P. SS-PETERSON2P divides the simplified Peterson algorithm into three
atomic actions: try, enter, and leave. try corresponds to the first two assignments flag[i] := true
and turn := i, and does the two assignments simultaneously. enter corresponds to the repeat
while statement, and leave to the last assignment.
In SS-PETERSONZ2P, each process has three possible states: t0, h0, and e0. That a process
is in t0 means it is executing any code but the simplified Peterson algorithm, a process changes
its state to hO whenever it executes try only if it is in t0, and that a process is in e0 means it is
executing the critical section.
Besides the three atomic actions, there are three observations: p, flag, and turn. p and flag
are used to observe the state and the flag’s value of each process, respectively, and turn to observe
the turn’s value. The main part of the signature of the specification is as follows:
-- initial state
op initQ : -> SState0

-— observations
bop p : Nat SStateQ -> PState0
bop flag : Nat SState0 -> Bool
bop turn : SState0 -> Nat

-- actions

bop try : Nat SStateQ -> SState0

bop enter : Nat SState0 -> SStateQ
bop leave : Nat SStateQ -> SStateO

SState0 is a hidden sort that represents the state of the simplified Peterson algorithm, and Nat,
Bool, and PState0 are visible sorts that represent natural numbers, booleans, and the states of
processes. init0 is one initial state of the simplified Peterson algorithm.

SS-PETERSON2P has four sets of equations: one for one initial state init0, and the others for
the three states after a process has executed try, enter, and leave, respectively. We are giving
the four sets of equations.

-- 0. in the initial state.

eq p(I, init0) = t0 .
eq flag(I, init0) = false .

I is a variable for natural numbers that are used to identify each process. In SS-PETERSON2P,
only two natural numbers 0 and 1 are used. In the initial state, every process are in t0, and every
flag is set false. The value of turn is arbitrary.

-- 1. after execution of ‘try’

ceq p(I, try(I, S)) = ho if p(I, S) == t0 .
ceq p(J, try(I, §)) = p(J, S) if J =/=1 or p(J, S) =/= t0 .

ceq flag(I, try(I, S)) = true if p(I, §) == t0 .

ceq flag(J, try(I, S)) = flag(J, S) if J =/=1 or p(J, S) =/= t0 .
ceq turn(try(I, S)) = I if p(I, S) == t0 .

ceq turn(try(I, S)) = turn(S) if p(I, S) =/= t0 .

J is also a variable for natural numbers, and S for the states of the simplified Peterson algorithm.
The first two equations, the next two ones, and the last two ones prescribe how each process’s state,
each process’s flag, and turn change after a process executes try. The set of equations corresponds
to the following two UNITY assignment statements:

{I7 : 0<i<1 :: ps, flag,, turn := h0, true, 0 if p; = t0),

where p; and flag; are variables for the state and the flag of a process ¢ € {0, 1}, respectively.

-- 2. after execution of ‘enter’
ceq p(I, enter(I, S)) = e0
if p(I, S) == hO and flag(I, S) and (not (flag(opponent(I), S) and turn(S) == I)) .
ceq p(J, enter(I, S)) = p(J, S)
if J =/=1 or p(I, S) =/= hO0 or not flag(J, S) or (flag(opponent(J), S) and turn(S) == J) .
eq flag(J, enter(I, S)) = flag(J, S) .
eq turn(enter(I, S)) = turn(S) .

opponent is a function that takes as arguments 0 (or 1) and returns 1 (or 0). The first two equations
prescribe a process ¢ € {0,1} changes its state to e0 whenever it executes enter only if it is in hO,
its flag is true, and its opponent process’s flag is false or turn is its opponent process’s ID, and
otherwise the process i does not change its state. The last two equations say flag’s and turn keep
remaining even if any process executes enter. The corresponding UNITY assignment statements
are as follows:

(l¢e : 0<i<1 u p;:=h0 if p; =h0A flag; A ~(flag; A turn = 1)),

where ¢ is ¢mod 2.

-— 3. after execution of ‘leave’

ceq p(I, leave(I, S)) = t0 if p(I, S) == e0 .
ceq p(J, leave(I, S)) = p(J, S) if J =/=1 or p(J, S) =/= 0 .
ceq flag(I, leave(I, S)) = false if p(I, S) == e0 .

ceq flag(J, leave(I, S)) = flag(J, S) if J =/= 1 or p(J, S) =/= e0 .

eq turn(leave(I, S)) = turn(S) .
The first two equations and the next two ones prescribe a process 7 changes its statet to t0 and
the i’s flag is set false whenever the process ¢ executes leave only if it is in e0. The last one says
turn keeps remaining even if any process executes leave. The corresponding UNITY assignment
statements are as follows:

{I7 : 0<i<1 = p;, flag, :==h0, false if p; = e0).

Verification We prove the simplified Peterson algorithm w.r.t. the two properties ME1 and
ME2. The properties are restated in more formal way as follows:

1. invariant —(p; = e0 A p; = €0),
2. pi=h0—p; =€0.

Proof sketch 1: In the initial state, the predicate is vacuously true because every process is in t0.
Thus we confirm that the predicate is preserved after any process executes any action in a state
satisfying the predicate. We prove the property by a case analysis. However, a little thought shows
that we need to consider only the cases, (pg,p1) = (€0,h0) and (h0,e0), because the predicate is
clearly preserved after any process executes any action in the other cases. Besides only execution
of enter by p1 (or py) needs considering in the former case (or in the latter case). We can show
the predicate is preserved after p; executes enter in the state where pg and p; are in e0 and ho,
respectively, by having the CafeOBJ system execute the following proof score:

open SS-PETERSON2P

op s : —> SState0 .

eq p(0,s) = e0 . eq p(1,s) =ho .

eq flag(0,s) = true . eq flag(l,s) = true .

eq turn(s) =1 .

red p(0,enter(1,s)) == e0 and p(1,enter(1,s)) == hO .
close

In the above proof score, we use the fact that the two flag’s are true and turn is 1 if py and p;
are in e0 and hO, respectively. If the two processes are in h, it is trivial that the two flag’s are
true. Therefore the fact can be shown by confirming that the h0-to-e0 transition of pg, in the state
where both py and p; are in hO0, occurs only if turn is 1. The execution of the following two proof
scores can show the fact.
mod SS-PETERSON2P-PROOF {
pr (SS-PETERSON2P)
op s : -> SState0
eq p(0,s) = h0 . eq p(1,s) = h0 .
eq flag(0,s) = true . eq flag(l,s) = true .
}
open SS-PETERSON2P-PROOF
eq turn(s) = 0 .
red p(0,enter(0,s)) == hO and p(1,enter(0,s)) == hO .
close
open SS-PETERSON2P-PROOF
eq turn(s) =1 .
red p(0,enter(0,s)) == e0 and p(1,enter(0,s)) == hO .
close

The proof of the latter case can be done the same way as the former case. O

Proof sketch 2: We show the property holds in the case ¢ = 0. First suppose the following four
subproperties hold:

i. po =h0Ap; =10 ensures pg =e0V (pp =h0Ap; =h0A turn =1),
ii. po = hOAp; =h0A turn =0 ensures po = hOA pg = €0,

iii. po = hOA p1 = h0 A turn = 1 ensures po = €0,

iv. po = hO A p1 = €0 ensures pg = h0O A p; =10.

From the subpropperties i and ii using Basis inference rule for leads-to and Cancelation Theorem
(see Appendix), the following subproperty is obtained:

v. po=h0Ap; =t0— py =¢€0.

From the subproperties ii and iii using Basis inference rule for leads-to and Finite Disjunction (see
Appendix), the following subproperty is obtained:

vi. po =h0Ap; =h0— py =¢€0.

From the subproperties iv and v using Basis and Transitivity inference rules for leads-to, the
following subproperty is obtained:

vii. pg = hOAp; =e0 — pg =e0.

Then from the three subproperties v, vi and vii using Finite Disjunction twice, the desired property
“po = hungry — po = eating” is derived. O

We have to prove the four assumed subproperties.

Proof sketch 2.1: In the case that pg = hOAp; = t0, none of the actions but enter by py and try by
p1 can change the system state. Therefore only the execution of enter by py and try by p; needs
considering. Besides “invariant pp = hOAp; =10 & po = h0Ap; = t0A flagy A —flags A turn = 0”
is used to prove the subproperty. The execution of the following proof score can show the first
subproperty holds in SS-PETERSON2P.

open SS-PETERSON2P

op s : —> SState0 .

eq p(0, s) =h0 . eq p(1, s) =t0 .

eq flag(0, s) = true . eq flag(l, s) = false .

eq turn(s) =0 .

red p(0, enter(0, s)) == e0 .

red p(0, try(1, s)) == hO and p(1, try(1, s)) == hO and turn(try(l, s)) ==
close

The other three subproperties can be shown by executing the following three proof scores. As
is the case for the first subproperty, a little thought can reduce the number of cases.

open SS-PETERSON2P
op s : —> SState0 .
eq p(0, s) =h0 . eq p(1, s) = hO .
eq flag(0, s) = true . eq flag(l, s) = true .
eq turn(s) = 0 .
red p(0, enter(0, s))
red p(0, enter(l, s)) =
close
open SS-PETERSON2P
op s : —-> SState0 .
eq p(0, s) = h0 . eq p(1, s) = hO .
eq flag(0, s) = true . eq flag(l, s) = true .
eq turn(s) =1 .
red p(0, enter(0, s)) == e0 .
red p(0, enter(1l, s)) == hO and p(1, enter(l, s)) == hO and turn(enter(l, s)) =
close
open SS-PETERSON2P
op s : —> SState0 .
eq p(0, s) =h0 . eq p(1, s) = e0 .
eq flag(0, s) = true . eq flag(l, s) = true .
eq turn(s) = 0 .
red p(0, enter(0, s)) == hO and p(1, enter(0, s)) == e0 .
red p(0, leave(l, s)) == hO and p(1, leave(l, s)) == t0 .
close

n
o

= hO and p(1, enter(0, s)) == hO and turn(enter(0, s)) =
hO and p(1, enter(l, s)) == e0 .

n
-

4.2 Peterson Algorithm

Next more realistic (refined) version of Peterson algorithm is specified and verified.

Specification Synchronous assignment to flag[i] and turn can be decoupled provided that turn
is set to 7 only after flag[i] is set true. A local boolean variable reg[i] of p; is introduced to perform
these two assignments in order; reg[i] holds if flag[i] has been set true and turn is yet to be set to
i.
In the specification that is called PETERSON2P, there are five atomic actions: try, setflag,
setturn, enter, and leave. Execution of try by a process means that the process starts to execute
Peterson algorithm. setflag corresponds to flag[i] := true, setturn to turn := i, enter to the
repeat while statement, and leave to flag[i] := false.
In PETERSONZ2P, each process has five possible states: t2, h2-1, h2-2, h2-3, and e2. For
example, that a process is in h2-2 means it has executed flag[i] := true and is yet to be execute
turn :=i.
There are also four observations in PETERSON2P: p, flag, reg, and turn. The main part of
the signature is as follows:
-- initial state
op init2 : -> SState2

-- observations
bop p : Nat SState2 -> PState2
bop flag : Nat SState2 -> Bool
bop reg : Nat SState2 -> Bool
bop turn : SState2 -> Nat

-- actions
bop try : Nat SState2 -> SState2
bop setflag : Nat SState2 -> SState2
bop setturn : Nat SState2 -> SState2

bop enter : Nat SState2 —> SState2
bop leave : Nat SState2 —> SState2

SState2 is a hidden sort that represents the state of Peterson algorithm, and PState2 is a visible
sort that represents the states of processes. init2 is one initial state of Peterson algorithm.

PETERSONZ2P has six sets of equations: one for one initial state init2, and the others for the
five states after a process has executed try, setflag, setturn, enter, and leave, respectively.
We are giving the six sets of equations.

-- 0. in the initial state.
eq p(I, init2) = t2 .
eq flag(I, init2) = false .
eq reg(I, init2) = false .

In the initial state, all processes’ states, all flag’s, and all reg’s are t2, false, and false, respectively.
turn is arbitrary.

-- 1. after execution of ‘try’
ceq p(I, try(I, S)) = h2-1 if p(I, S) == t2 .
ceq p(J, try(I, S)) = p(J, 8) if J =/=1I or p(J, S) =/= t2 .
eq flag(J, try(I, S)) = flag(J, S) .
eq reg(J, try(I, S)) = reg(J, S) .
eq turn(try(I, S)) = turn(S) .

-- 2. after execution of ‘setflag’
ceq p(I, setflag(I, S)) = h2-2 if p(I, S) == h2-1 .
ceq p(J, setflag(I, S)) = p(J, S) if J =/=1I or p(I, S) =/= h2-1 .
ceq flag(I, setflag(I, S)) = true if p(I, S) == h2-1 and not flag(I, S) .
ceq flag(J, setflag(I, S)) = flag(J, S) if J =/= I or p(J, S) =/= h2-1 or flag(J, S) .
ceq reg(I, setflag(I, S)) = true if p(I, §) == h2-1 and not flag(I, S) .
ceq reg(J, setflag(I, S)) = reg(J, S) if J =/=1 or p(J, S) =/= h2-1 or flag(J, S) .
eq turn(setflag(I, S)) = turn(S) .

-- 3. after execution of ‘setturn’
ceq p(I, setturn(I, S)) = h2-3 if p(I, S) == h2-2 .
ceq p(J, setturn(I, S)) = p(J, S) if J =/= I or p(I, S) =/= h2-2 .
eq flag(J, setturn(I, S)) = flag(J, S) .

ceq reg(I, setturn(I, S)) = false if p(I, S) == h2-2 and reg(I, S) .

ceq reg(J, setturn(I, S)) = reg(J, S) if J =/= I or p(I, S) =/= h2-2 or not reg(J, S) .
ceq turn(setturn(I, S)) =1I if p(I, S) == h2-2 and reg(I, S) .

ceq turn(setturn(I, S)) = turn(S) if p(I, S) =/= h2-2 or not reg(I, S) .

-— 4. after execution of ‘enter’
ceq p(I, enter(I, S)) = e2
if p(I, S) == h2-3 and flag(I, S) and not reg(I, S) and
not (flag(opponent(I), S) and not reg(opponent(I), S) and turn(S) == I) .
ceq p(J, enter(I, S)) = p(J, S)
if J =/=1 or p(I, S) =/= h2-3 or not flag(I, S) or reg(I, S) or
(flag(opponent (I), S) and not reg(opponent(I), S) and turn(S) == I) .
eq flag(J, enter(I, S)) = flag(J, S) .
eq reg(J, enter(I, S)) = reg(J, S) .
eq turn(enter(I, S)) = turn(S) .

-- 5. after execution of ‘leave’

ceq p(I, leave(I, S)) = t2 if p(I, 8) == e2 .
ceq p(J, leave(I, S)) = p(J, S) if J =/=1 or p(J, S) =/=e2 .
ceq flag(I, leave(I, S)) = false if p(I, S) == e2 .

ceq flag(J, leave(I, S)) flag(J, S) if J =/=1 or p(J, S) =/= e2 .
eq reg(J, leave(I, S)) = reg(J, S) .
eq turn(leave(I, S)) = turn(S) .

Prior to verifying PETERSON2P w.r.t. ME1 and ME2, SS-PETERSON2P gets altered a
little so as to ease the verification. The action try in SS-PETERSON2P is decoupled into two
actions try and set. According to this decoupling, the state h0 is decoupled into two states h1-1
and h1-2, and t0 and e0 are renamed t1 and el, respectively. The new try changes nothing but
the state of a process that executes try to hi-1 provided that it is in t1, and set sets flag of a
process that executes set true and turn to its ID, and changes the process’s state to h1-2 provided
that the process is in hi-1. The altered version of SS-PETERSONZ2P is called S-SPETERSON2P.
The verification of S-PETERSON2P w.r.t. ME1 and ME2 can be done almost the same way as
that of SS-PETERSON2P.

LT
.....
......
.......
.......
......
.......
.,

set

fag(i) A turn =i
ag(i) A turn = i

(a) state transition (b) state transition
in S—-PETERSON2P in PETERSON2P

Fig. 1. Correspondance between states in S-PETERSON2P and PETERSON2P

Verification We first verify PETERSON2P w.r.t. ME1 by showing there exists a simulation
relations from PETERSON2P to S-PETERSON2P, and then verify PETERSON2P w.r.t. ME2
using the simulation relation and UNITY logic. By showing there exists a simulation relation from
PETERSON2P to S-PETERSON2P, we can say PETERSON2P also has the safety properties such
as ME1 satisfied by S-PETERSON2P [8]. We can prove PETERSON2P has liveness properties
such as ME2 using the fact that PETERSON2P satisfies the same safety properties and UNITY
logic.

Proof sketch 1: Tt is necessary to classify actions into two types: external and internal actions. In
S-PETERSON2P, try, enter and leave are external, and set is internal; in PETERSON2P, try,
enter and leave are external, and setflag and setturn are internal.

First of all, a simulation function mapping each state of PETERSON2P to some state of S-
PETERSON2P is defined so as to define a candidate for a simulation relatoin. The mapping from
each process’s state in PETERSON2P to some process’s state in S-PETERSON2P is defined as
shown in Fig. 1.

The following module SIMFUNC defines the simulation function sim.

mod SIMFUNC {
pr(S-PETERSON2P + PETERSON2P)
op sim : SState2 -> SStatel
var S : SState2
var I : Nat
ceq p(I, sim(S))
ceq p(I, sim(8))

t1 if p(I, §) == t2 .

hi-1 if p(I, S) == h2-1 or p(I, S) == h2-2 .
ceq p(I, sim(S)) = h1-2 if p(I, S) == h2-3 .
ceq p(I, sim(S)) = el if p(I, S) == e2 .
ceq flag(I, sim(S)) = true if flag(I, S) and not reg(I, S) .
ceq flag(I, sim(S)) = false if not flag(I, S) or reg(I, S) .
eq turn(sim(S)) = turn(S) .

}

A candidate for a simulation relation from PETERSON2P to S-PETERSONZ2P is defined. The
following module SIMREL defines the candidate R.
mod SIMREL {

pr(SIMFUNC)
op _R_ : SStatel SState2 -> Bool

10

var S1 : SStatel
var S2 : SState2
eq S1 R S2 = p(0, S1) == p(0, sim(S2)) and p(1, S1) == p(1, sim(S2)) and
flag(0, S1) == flag(0, sim(S2)) and flag(l, S1) == flag(l, sim(S2)) and
turn(S1) == turn(sim(S2)) .
¥

Then we prove the candidate is a simulation relation from PETERSON2P to S-PETERSON2P.
For each initial state of PETERSON2P, we can easily find a corresponding initial state of S-
PETERSON2P w.r.t. R because the two initial states are clearly under R if the two turn’s get set
equal. The rest of the proof is done by a case analysis; there are 25 cases to be checked. For each case,
in which the two states of S-PETERSON2P and PETERSON2P are under the candidate relation,
we show there exists some action (possibly empty) sequence in S-PETERSON2P, corresponding
to each action in PETERSONZ2P, s.t. the state after the action sequence in S-PETERSON2P and
the state after the single action in PETERSON2P are still under the candidate relation, and the
action sequence contains only (more than zero) internal actions, and moreover one external action
that is the same as the single action provided that the single action is external. In this paper, we
show only six cases plus one extra module in which the two states s1 in S-PETERSON2P and s2
in PETERSON2P are declared, which are under R. Each of the six cases is the state the process 1
in PETERSON2P has set turn to 1, and before it is yet to enter the critical section, i.e. its state
is h2-2.

mod SIMREL-PROOF {
pr(SIMREL)
op s1 : -> SStatel op s2 : -> SState2
eq p(0, s1) = p(0, sim(s2)) . eq p(1, s1) = p(1, sim(s2)) .
eq flag(0, s1) = flag(0, sim(s2)) . eq flag(l, s1) = flag(l, sim(s2)) .
eq turn(sl) = turn(sim(s2)) .
}
open SIMREL-PROOF
eq p(0, s2) = t2 . eq p(1, s2) = h2-3 .
eq flag(0, s2) = false . eq flag(l, s2)
eq reg(0, s2) = false . eq reg(l, s2) =
eq turn(s2) =1 .
red try(0, s1) R try(0, s2) and enter(l, s1) R enter(1, s2) .
close
open SIMREL-PROOF
eq p(0, s2) = h2-1 . eq p(1, s2) = h2-3 .
eq flag(0, s2) = false . eq flag(l, s2) = true .
eq reg(0, s2) = false . eq reg(l, s2) = false
eq turn(s2) =1 .
red s1 R setflag(0, s2) and enter(1, sl1) R enter(l, s2) .
close
open SIMREL-PROOF
eq p(0, s2) = h2-2 . eq p(1, s2) = h2-3 .
eq flag(0, s2) = true . eq flag(l, s2) = true
eq reg(0, s2) = true . eq reg(l, s2) = false .
eq turn(s2) =1 .
red set(0, s1) R setturn(0, s2) and enter(1, s1) R enter(l, s2) .
close
open SIMREL-PROOF
eq p(0, s2) = h2-3 . eq p(1, s2) = h2-3 .
eq flag(0, s2) = true . eq flag(l, s2) = true
eq reg(0, s2) = false . eq reg(l, s2) = false
eq turn(s2) = 0 .
red enter(0, s1) R enter(0, s2) and enter(1, s1) R enter(l, s2) .
close
open SIMREL-PROOF
eq p(0, s2) = h2-3 . eq p(1, s2) = h2-3 .
eq flag(0, s2) = true . eq flag(l, s2) = true
eq reg(0, s2) = false . eq reg(l, s2) = false
eq turn(s2) =1 .
red enter(0, s1) R enter(0, s2) and enter(1, s1) R enter(l, s2) .
close
open SIMREL-PROOF
eq p(0, s2) = e2 . eq p(1, s2) = h2-3 .
eq flag(0, s2) = true . eq flag(l, s2) = true
eq reg(0, s2) = false . eq reg(l, s2) = false
eq turn(s2) =1 .
red leave(0, s1) R leave(0, s2) and enter(1, s1) R enter(l, s2) .
close

= true .
false .

Now that we have shown there exists a simulation relation from PETERSON2P to S-
PETERSON2P and the state e2 in PETERSON2P is mapped to the state el in S-SPETERSON2P

11

in the simulation relation, we have proven PETERSON2P has the safety property ME1 that S-
PETERSONZ2P satisfies as well. O

Proof sketch 2: We prove PETERSON2P satisfies the liveness property ME2, i.e. “p; = h2-1 —
p; = €27, where i € {0,1}. Since it is easy to show “p; = h2-1 — p; = h2-3” in PETERSON2P,
it is sufficient to show “p; = h2-3 — p; = €2” in PETERSON2P. In this paper, we show the case
that ¢ =0, i.e. “pg =h2-3 +— py = e2.”

Suppose that the process 0 in PETERSON2P is in h2-3. If =flag, V turn = 1, it is easy to show
“pg = h2-3 — py = €2.” Thus suppose that flag, A turn = 1. Since there is the simulation relation R
from PETERSON2P and S-PETERSON2P, the process 0 must be in h1-2 and flag; A turn =1 in
the corresponding state in S-SPETERSONZ2P. If so, the process 0 must be in el in SSPETERSON2P.
Since this is a safety property, so must the process 0 in PETERSON2P. It is easy to show that
“pr = €2 = p; = t2” in PETERSON2P. If p; in e2 changes its state to t2, —flag; V turn = 1.
Moreover even if p; executes any action sequence, —flag; V turn = 1 keeps holding unless py in
h2-3 changes its state to e2. The following proof score proves this fact:

open PETERSON2P

ops s sl s2 s3 s4 s5 : -> SState2 .

op test : SState2 -> Bool .

eq p(0, s) = h2-3 . eq p(1, s) =e2 .

eq flag(0, s) = true . eq flag(l, s) = true .

eq reg(0, s) = false . eq reg(l, s) = false .
eq turn(s) =1 .

eq s1 = leave(l, s) .

eq s2 = try(1, leave(l, s)) .

eq s3 = setflag(l, try(1, leave(l, s))) .

eq s4 = setturn(l, setflag(l, try(1, leave(l, s)))) .

eq sb = enter(l, setturn(l, setflag(l, try(l, leave(l, s))))) .

eq test(S:SState2) = not flag(l, S) or turn(S) == 1 .

red test(sl) and test(s2) and test(s3) and test(s4) and test(s5) .
close

Consequently we have shown “py = h2-1 — pg = €2.” The case that i = 1 can be shown as the
same way. O

5 N-Process Mutual Exclusion

In this section, Ticket and Anderson algorithms are treated.

5.1 Ticket Algorithm

Ticket algorithm is a mutual exclusion algorithm based on issuing tickets to a critical section.
Some atomic operation has to be used to implement the algorithm. In the algorithm shown,
fetch&incmod is used. It atomically reads a memory location, increments the value modulo N,
writes the result into the memory location, and return the old value. It can be implemented
(simulated) using simpler atomic operations such as swap or 1dstub provided by SPARC architec-
ture[12]. The algorithm in a traditional style is given below:

ticket[i] := fetch&incmod(next,N)
repeat while ticket[i] # serve
Critical Section

ticket[i] :== N

serve := serve + 1 mod N
next and serve are shared variables of values in {0, ..., N — 1}; initially both are 0, and ticket[d] is
a local variable to a process whose ID is 7 in {0, ..., N — 1}. next represents the next ticket to the

critical section that is to be issued to a process, while serve represents the ticket whose owner is
in the critical section or is allowed to enter it. When a process i tries to enter the critical section,
it takes a ticket, that is, it indivisibly copies into its local variable ticket[i] and increments next
modulo N using fetch&incmod. If a process’s ticket is equal to serve, it enters the critical section.
When a process leaves there, it increments serve modulo N.

12

Specification We describe the CafeOBJ specification of Ticket algorithm that is called TICKET.
TICKET divides Ticket algorithm into three atomic actions: try, enter, and leave that correspond
to the first assignment, the repeat while statement, and the last two assignments, respectively.

In TICKET, each process has three possible states: t0, h0, and e0. That a process is in t0
means it is executing any code but Ticket algorithm, a process changes its state to h0 whenever it
executes try only if it is in t0, and that a process is in e0 means it is executing the critical section.

Besides the three atomic actions, there are four observations: p, ticket, next, and serve. The
main part of the signature of the specification is as follows:

-- initial state
op init0 : -> SStateO

-— observations
bop p : Nat SState0O -> PStateO
bop ticket : Nat SState0 -> Nat
bop next : SStateQ -> Nat
bop serve : SStateQ -> Nat
-- actions
bop try : Nat SStateQ -> SState0

bop enter : Nat SStateQ -> SStateO
bop leave : Nat SState0 —> SStateQ

TICKET has four sets of equations: one for one initial state init0, and the others for the three
states after a process has executed try, enter, and leave, respectively. We are giving the four
sets of equations.

-- 0. in the initial state.
eq p(I, init0) = tO .
eq ticket(I, init0) = N .
eq mnext(init0) =0 .
eq serve(initQ) = 0 .

-— 1 after execution of ‘try’

ceq p(I, try(I, S)) = hO if ticket(I, S§) == N and p(I, S) == t0 .
ceq p(J, try(I, 8)) = p(J, S) if J =/= 1 or ticket(J, 8) =/= N or p(J, S) =/=t0 .
ceq ticket(I, try(I, S)) = next(S) if ticket(I, S) == N and p(I, S) == t0 .

ceq ticket(J, try(I, S)) = ticket(J, S) if J =/= I or ticket(J, S) =/= N or p(J, S) =/= t0 .
ceq next (try(I, S)) next(S) + 1 mod N if ticket(I, S) == N and p(I, S) == t0 .

ceq next (try(I, S)) next (S) if ticket(I, S) =/= N or p(I, S) =/= t0 .

eq serve(try(I, S)) = serve(S) .

-— 2 after execution of ‘enter
ceq p(I, enter(I, S)) = e0 if serve(S) == ticket(I, S) .
ceq p(J, enter(I, S)) = p(J, S) if J =/= I or ticket(J, S) =/= serve(S) .
eq ticket(J, enter(I, S)) = ticket(J, S) .
eq mnext(enter(I, S)) = next(S) .
eq serve(enter(I, S)) = serve(S) .

-— 3 after execution of ‘leave

ceq p(I, leave(I, S)) = tO if p(I,) == e0 .
ceq p(J, leave(I, S)) =p(J, S) if J =/=1 or p(J, S) =/= €0 .
ceq ticket(I, leave(I, S)) = N if p(I, S) == e0 .

ceq ticket(J, leave(I, S)) = ticket(J, S) if J =/= I or p(J, S) =/= e0 .
eq mnext(leave(I, S)) = next(S) .

ceq serve(leave(I, S)) serve(S) + 1 mod N if p(I, S) == e0 .

ceq serve(leave(I, S)) serve(S) if p(I, S) =/= e0 .

Verification We verify Ticket algorithm specified in CafeOBJ w.r.t. ME1 and ME2. The two
properties are formally restated:

1. invariant p; =e0OAp; =e0=>i=7,
2. p; =h0+— p; =e0.

Proof sketch 1: The following two subproperties are easily checked to hold:

i. invariant p; = e0 = ticket[i] = serve ,
ii. invariant ticket[i] = ticket[j] =i = j V ticket[i] = N .

From the first subproperty (in the following the term invariant is omitted), p; = €0 Ap; = €0 =
ticket[i] = serve A ticket[j] = serve. From this and serve < N, p; = €0 Ap; = €0 = (ticket[i] =
ticket[]) A ticket[i] < N . From this and the second subproperty, p; =e0Ap; =e0 =i =3j. O

Proof sketch 2: Suppose that the following two subproperties hold in TICKET:

13

i. ((3j = pj = e0) Ap; = hOA ticket[i] # N A (ticket[i] — serve mod N) = k) ensures (p; =
hO A ticket[i] # N A (ticket[i] — serve mod N) < k),

ii. ((V§ ::p; # e0)Ap; = hOAticket[i] # N A(ticket[i] — serve mod N) = k) ensures ((p; =
hO A ticket[i] = serve) V ((3j :: pj = e0) A p; = hO A ticket[i] # N A (ticket[i] —
serve mod N) = k)).

From the two subproperties using Basis inference rule for leads-to, Cancellation Theorem and Finite
Disjunction, the following liveness property is obtained:

(pi = hO A ticket[i] # N A (ticket[i] — serve mod N) = k) — ((p; = hO A ticket[i] =
serve) V (p; = hO A ticket[i] # N A (ticket[i] — serve mod N) < k)).

Then, by applying Induction for Leads-to (see Appendix) on k to this, the following is obtained:
p; = hO A ticket[i] # N — p; = h0 A ticket[i] = serve. We can also easily show the following: p; =
hO A ticket[i] = serve ensures p; = e0. From these two subproperties using Basis and Transitivity
inference rules for leads-to, the following is obtained: p; = h0 A ticket[i] # N — p; = €0. Besides,
“p; = h0 = ticket[i] # N” holds clearly. Therefore, from these two subproperties using Implication
Theorem (see Appendix) and Transitivity inference rule for leads-to, the desired property “p; =
hO — p; = e0” is derived. |

We prove the assumed subproperties.

Proof sketch 2.1: Even if processes in t0 execute any action, they do not change any ticket of other
processes (in h0) and serve. Moreover, even if processes in hO execute any action in the state in
which there is a process in e0, nothing changes. Therefore, only execution of leave by the process
in e0 needs considering because execution of every action, but leave, by the process in e0 does
not change the system state. Thus, the subproperty can be shown by executing the following proof
score.

open TICKET

op s : —> SState0 .

ops i, j : -> Nat .

op k : -> NzNat .

eq p(i,s) = hO .

eq ticket(i,s) - serve(s) mod N = k .

eq (ticket(i,s) - (serve(s) + 1 mod N) mod N < k) = true .

eq (ticket(i,s) == N) = false .

eq p(j,s) = e0 .

eq ticket(j,s) = serve(s) .

red p(i,leave(j,s)) == hO and ticket(i,leave(j,s)) == ticket(i,s) and

ticket(i,leave(j,s)) - serve(leave(j,s)) mod N < k .

close

O
Proof sketch 2.2: By the same discussion as in the proof of the first subproperty, all we have to do
is to consider a process in hO, say p;, whose ticket is equal to serve executes enter. If k = 0, the
subproperty clearly holds because ticket[i] = serve. Hence, we consider only the case k¥ > 0. The
subproperty can be shown by executing the following proof score.

open TICKET

op s : -> SStateQ .

ops i, j : -> Nat .

op k : -> NzNat .

eq p(i,s) = ho .

eq ticket(i,s) - serve(s) mod N = k .

eq (ticket(i,s) == N) = false .

eq p(j,s) = ho .

eq ticket(j,s) = serve(s) .

red p(j,enter(j,s)) == e0 and p(i,enter(j,s)) == hO and

not (ticket(i,enter(j,s)) == N) and (ticket(i,s) - serve(s) mod N) ==k .

close

5.2 Anderson Algorithm

Anderson algorithm [1] is an array-based queuing mutual exclusion algorithm. It may be regarded
as an improvement of Ticket algorithm. In Ticket algorithm, waiting processes have to repeatedly

14

check if they are allowed to enter their critical section by accessing the same location, i.e. the
shared variable serve. That might cause network or bus traffic high, declining overall performance.
In Anderson algorithm, each process is waiting on a different location, in a different cache line, if
some process is in their critical section. The algorithm in a traditional style is given below:

place[i] := fetch&incmod(next,N)
repeat while —array[place[i]]
Critical Section

array[place[i]] := false
array[place[i] + 1 mod N] := true
place[i] := N

next is a shared variable of values in {0, ..., N —1}, initially 0, and array is a shared array of values
in {0,..., N — 1}, whose size is N, initially array[0] = true and array[i] = false if i # 0. place][i] is
a local variable of values in {0,..., N} to a process whose ID is 4 in {0,..., N — 1}, initially N.

Specification We describe the CafeOBJ specification of Anderson algorithm that is called AN-
DERSON. ANDERSON divides Ticket algorithm into three atomic actions: try, enter, and leave
that correspond to the first assignment, the repeat while statement, and the last three assign-
ments, respectively.

In ANDERSON, each process has three possible states: t1, hl, and el. That a process is in t1
means it is executing any code but Anderson algorithm, a process changes its state to h1 whenever
it executes try only if it is in t1, and that a process is in el means it is executing the critical
section.

Besides the three atomic actions, there are four observations: p, place, next, and array. The
main part of the signature of the specification is as follows:

-- initial state
op initl : -> SStatel

-— observations
bop p : Nat SStatel —> PStatel
bop place : Nat SStatel -> Nat
bop next : SStatel -> Nat
bop array : Nat SStatel -> Bool

-— actions
bop try : Nat SStatel —> SStatel
bop enter : Nat SStatel -> SStatel
bop leave : Nat SStatel -> SStatel

ANDERSON has four sets of equations: one for one initial state init1, and the others for the
three states after a process has executed try, enter, and leave, respectively. We are giving the
three sets of equations.

-- 0. in the initial state.
eq p(I, initl) = t1 .
eq place(I, initl) =N .
eq mnext(initl) =0 .
eq array(0, initl) = true .
ceq array(Idx, initl) = false if Idx =/= 0 .

-- 1 after execution of ‘try’
ceq p(I, try(I, S)) = hl if place(I, S) == N and p(I, S) == t1 .
ceq p(J, try(I, S)) = p(J, S) if J =/= I or place(J, §) =/= N or p(J, S) =/=t1 .
ceq place(I, try(I, S)) = next(S) if place(I, S) == N and p(I, S) == t1 .
ceq place(J, try(I, 8)) = place(J, S) if J =/=1 or place(J, 8) =/=1N or p(J, S) =/=t1 .
ceq next(try(I, S)) = next(S) + 1 mod N if place(I, S) == N and p(I, S) == t1 .
ceq next (try(I, S)) = next(S) if place(J, S) =/= N or p(J, S) =/=t1 .
eq array(Idx, try(I, S)) = array(Idx, S) .

-- 2 after execution of ‘enter’
ceq p(I, enter(I, S)) = el if array(place(I, S), S) .
ceq p(J, enter(I, S)) = p(J, S) if J =/= I or not array(place(I, S), S) .
eq place(J, enter(I, S)) = place(J, S) .
eq mnext(enter(I, S)) = next(S) .
eq array(Idx, enter(I, S)) = array(Idx, S) .

15

ticket[i] # serve

(a) state transition
in TICKET

try

<array[place[i]]

enter

leave

(b) state transition
in ANDERSON

Fig. 2. Correspondance between states in TICKET and ANDERSON

-- 3 after execution of
ceq p(I, leave(I, S))
ceq p(J, leave(I, S))
ceq place(I, leave(I, S)) =
ceq place(J, leave(I, S)) =
eq next(leave(I, S)) =
ceq array(Idx, leave(I, S))
ceq array(Idx, leave(I, S))
ceq array(Idx, leave(I, S))

‘leave’
t1 if p(I, S) == el .
rQ,

next(S) .

S) if J =/=1 or p(J, S) =/=
N if p(I, S) ==
place(J, S) if J =/=1I or
= false if Idx ==
= true if Idx ==

array(Idx, S) if Idx

/=

el .
el .
p(J, S) =/= el .

place(I, S) .
place(I, S) + 1 mod N .
place(I, S) and Idx =/= place(I, S) + 1 mod N .

Verification We verify Anderson algorithm specified in CafeOBJ w.r.t. the two properties as the
same way in the verification of PETERSON2P by showing there exists a simulation relation from

ANDERSON to TICKET.

Proof sketch 1: First of all, a simulation function mapping from each state of ANDERSON to
some state of TICKET is defined. The mapping from each process’s state in ANDERSON to some
process’s state in TICKET is defined as shown in Fig. 2. The following module SIMFUNC defines

the simulation function sim.

mod SIMFUNC {
pr(TICKET * {op N -> NO} +

ANDERSON * {op N -> N1})

op sim : SStatel -> SState0

op N : -> Nat var S : SStatel var I : Nat

ceq p(I, sim(S)) = t0 if p(I, S) == t1 .

ceq p(I, sim(S)) = hO if p(I, S) == hl .

ceq p(I, sim(S)) = e0 if p(I, S) == el .

eq ticket(I, sim(S)) = place(I, S) .

eq next(sim(S)) = next(S) .

ceq (I == serve(sim(S))) = true if array(I, S) .
ceq (I == serve(sim(S))) = false if not array(I, S) .
eq NO=N. eq N1 =N .

}

In the definition, the fact “invariant array[i] A array[j] = ¢ = j” is used. Next a candidate for
a simulation relation from ANDERSON to TICKET is defined. The following module SIMREL

defines the candidate R.

mod SIMREL {
pr(SIMFUNC)
op _R[_1_ :
var SO : SState0 var S1 :
var I : Nat
eq SO R[I] S1 = p(I, SO)
next (S0)

}

SState0 Nat SStatel -> Bool
SStatel

p(I, sim(S1)) and ticket(I, SO) == ticket(I, sim(S1)) and
next(sim(S1)) and serve(S0) == serve(sim(S1)) .

We prove R a simulation relation from ANDERSON to TICKET by a case analysis. It is divided
into three cases: (1) Every process is in t1; (2) Some processes are in h1, and the rest are in t0;

16

(3) A process is in e0. In this paper, only the case (2) is handled. In the following proof score,
let the process i be in hil s.t. array[place[i]], the process j be in hil s.t. —array[place[j]] , and the
process k be an arbitrary process in h1l. Besides the processes | and m are arbitrary processes in
t1. The execution of the following proof score can show, for each action of ANDERSON in the
system state of the case (2), there exists some action sequence of actions in TICKET.

mod SIMREL-PROOF {
pr(SIMREL)
op sO : -> SState0 op sl : -> SStatel
var I : Nat
eq p(I, s0) = p(I, sim(sl)) .
eq ticket(I, s0) = place(I, sl1) .
eq next(s0) = next(sl) .
eq serve(s0) = serve(sim(sl)) .
eq array(serve(sim(sl)),sl) = true .

}
open SIMREL-PROOF
ops i j k1lm: -> Nat .
eq p(i, s1) = hl . eq p(j, s1) =hl . eq p(k, s1) =hl .
eq p(1, s1) = t1 . eq p(m, s1) = t1 .
eq place(l, s1) = N . eq place(m, s1) = N .
eq place(i, sl1) = serve(sim(sl)) .
eq array(serve(sim(sl)), sl1) = true .
eq array(place(j,sl), s1) = false .
red try(l, s0) R[1] try(1l, s1) and try(l, s0) R[m] try(l, s1) and try(l, s0) R[k] try(l, s1) .
red enter(i, s0) R[i] enter(i, s1) and enter(i, s0) R[j] enter(i, s1) and enter(i, s0) R[1] enter(i, s1) .
red enter(j, s0) R[j] enter(j, s1) and enter(j, s0) R[k] enter(j, sl) enter(j, sO) R[1] enter(j, si1) .
close
The other two cases can be treated the same way as the case (2). Since we have shown there exists
a simulation relation from ANDERSON to TICKET, it has been shown that ANDERSON has the

safety properties such as ME1 that TICKET satisfies. O

Proof sketch 2: Let a process ¢ be in hl in ANDERSON. If array[place[i]], it is easy to show
“p; = hl — p; = el.” Thus suppose that —array[place[i]]. If so, there must be a process ¢ in
hO s.t. ticket[i] # serve in TICKET simulatiing ANDERSON. Moreover there must be a process
Jj s.t. ticket[j] = serve in TICKET, and then there must be a process j s.t. array[place[j]] in
ANDERSON. The process j in ANDERSON eventually reaches the state t1, when array[place[j]]
and array[place[j] + 1 mod N] become false and true, respectively. Thta is, the distance between
place[i] and pos (s.t. array[pos]) decrements. By applying Induciton for leads-to to this, we can
derive the desired liveness property “p; = hl — p; =el.” O

6 Conclusion

We have adopted UNITY computational model to specify mutual exclusion algorithms in CafeOBJ,
and used UNITY logic and simulation relations to verify a safety and a liveness properties of mutual
exclusion algorithms with CafeOBJ.

Throughout the experience that we have specified and verified some mutual exclusion algorithms
with CafeOBJ, we have had the following impressions to CafeOBJ:

— CafeOBJ’s notational machinery is suitable for specifying parallel computational models such
as UNITY computational model.

— CafeOBJ reasonably supports verification of safety properties and ensures liveness properties
of parallel systems; something is needed so that CafeOBJ can support verification of general
liveness properties; in this paper, general liveness properties have been proven by hand.

— It might not be so easy to specify liveness properties in pure equations; in this paper, liveness
properties have been described in UNITY logic; some logical system, e.g. temporal logic, might
strengthen CafeOBJ, allowing CafeOBJ to specify and verify parallel (or distributed) algorithms
and/or systems more suitably.

References

1. Anderson, T. E.: The Performance of Spin Lock Alternatives for Shared-Memory Multiprocessors. I[EEE
Trans. Parall. Dist. Syst. 1(1). (1990) 6-16

17

8.
9.

Chandy, K. M. and Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley. 1988
Diaconescu, R. and Futatsugi, K.: CafeOBJ Report. AMAST Series in Computing 6. World Scientific.
1998

Floyd, R.: Assigning Meanings to Programs. Proc. of Symposia Applied Mathematics 19. (1967) 19-32
Futatsugi, K. and Nakagawa, A.: An Overview of CAFE Specification Environment — an algebraic
approach for creating, verifying, and maintaining formal specification over networks — Proc. of First
IEEE Int’l. Conf. on Formal Engineering Methods. (1997) 170-181

Goguen, J. and Malcolm, G.: A Hidden Agenda. Technical Report CS97-538. Univ. of California at San
Diego. 1997

Hoare, C. A.R.: An Axiomatic Basis for Computer Programming. Communication of the ACM 12 (10).
(1969) 576-580

Lynch, N. A.: Distributed Algorithm. Morgan-Kaufmann. 1996

Nakagawa, A. T., Sawada, T. and Futatsugi, K: CafeOBJ User’s Manual — ver.1.3 —. 1997. Available at
http://caraway.jaist.ac.jp/cafeobj/

10. Peterson, G. L.: Myths about the Mutual Exclusion Problem. Information Processing Letters 12 (3).

(1981) 115-116

11. Pnueli, A.: The Temporal Semantics of Concurrent Programs. Theoretical Computer Science 13. North-

Holland. (1981) 4560

12. SPARC Int’l.: The SPARC Architecture Manual. Prentice Hall. 1992.

A Some Theorems of UNITY Logic

Implication Theorem:

Finite Disjunction:

p—q, p ¢
pVp =gV’

Cancellation Theorem:

p—=>qVb b—r
p=gVr)

Induction for Leads-to: Let W be a set well-founded under the raltion <, and let M be a
function, also called a metric, from program states to W.

Vm:meWapAM=m— (pAM <m)Vq)
Py '

Corollary of Induction for Leads-to:

Vm:meWapAM=m—M<m)

true — —p

18

