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Abstract

TLS has been formally analyzed with the OTS/CafeOBJ
method. In the method, distributed systems are modeled as
transition systems, which are written in terms of equations,
and it is verified that the models have properties by means
of equational reasoning. TLS is the latest version, or the
successor of SSL, which is probably the most widely de-
ployed security protocol. Among the results of the analysis
are that pre-master secrets cannot be leaked, when a client
has negotiated a cipher suite and security parameters with
a server, the server has really agreed on them, and client
cannot be identified if they do not send their certificates to
servers.

Keywords: algebraic specification, interactive theorem
proving, security, rewriting, verification.

1. Introduction

A large number of security protocols have been proposed
so as to protect data at the application and transport lay-
ers. They are extremely essential in the Internet era. The
most widely deployed security protocol among them is most
likely SSL (Secure Sockets Layer). Most of the WWW
browsers adopt SSL. Their users send their personal infor-
mation such as credit card numbers to purchase goods from
electronic malls. It is then really important that the security
protocol is truly secure. We have formally analyzed TLS[2]
(Transport Layer Security), which is the latest version, or
the successor of SSL, so as to confirm that it is secure.

The OTS/CafeOBJ method[9] has been used to analyze
the protocol. CafeOBJ[1] is an algebraic specification lan-
guage/system, with which software/hardware systems are
specified in terms of equations and it is verified that the
systems have properties by means of equational reasoning.
OTSs (observational transition systems) are transition sys-
tems suited for being written in equations. A security pro-
tocol, together with the most general intruder, is modeled
as an OTS. The OTS is described in equations with Cafe-
OBJ. Properties to analyze are expressed as CafeOBJ terms,

and proof scores that the OTS has the properties are also
written in CafeOBJ. The proof scores are then verified with
the rewriting facilities of CafeOBJ. Rewriting is an efficient
way of implementing equational reasoning.

In the current OTS/CafeOBJ method, basically proof
scores should be written by hand, although most part of a
proof score that an OTS has a property can be reused for
other proof scores that the OTS has other properties. But, it
took about one week to verify 18 invariants in the case study
described in the paper by writing proof scores in CafeOBJ.
This is most likely because the basic proof method used in
the case study, namely equational reasoning using rewriting,
can moderate the difficulties of proofs that might otherwise
become too hard to understand. This also does not show
that interactive theorem proving costs high as often said no-
toriously.

In this paper, we describe how TLS has been analyzed.
Among the results of the analysis are that pre-master secrets
cannot be leaked, when a client has negotiated a cipher suite
and security parameters with a server, the server has really
agreed on them, and client cannot be identified if they dot
not send their certificates to servers.

The rest of the paper is organized as follows. Section 2
mentions the OTS/CafeOBJ method. Section 3 describes
TLS and presents the abstract handshake protocol that has
been analyzed. The way of analyzing the abstract hand-
shake protocol is described in Section 4 and Section 5. Sec-
tion 6 discusses some related work, and we conclude the
paper in Section 7.

2. The OTS/CafeOBJ Method

2.1. CafeOBJ: Algebraic Specification Language

Abstract machines as well as abstract data types can be
specified in CafeOBJ1[1], which are mainly based on hid-
den and initial algebras. CafeOBJ has two kinds of sorts:
visible and hidden sorts denoting abstract data types and
the state spaces of abstract machines. CafeOBJ has two

1See www.ldl.jaist.ac.jp/cafeobj/.



kinds of operators wrt (with respect to) hidden sorts: ac-
tion and observation operators that denote state transitions
of abstract machines and let us know the situation where ab-
stract machines are located. Both an action operator and an
observation operator take a state of an abstract machine and
zero or more data, and return the successor state of the state
and a value that characterizes the situation of the abstract
machine.

Action and observation operators are declared by start-
ing with bop, and others by starting with op. After bop
or op, an operator name is written, followed by : and a list
of sorts, and then, -> and a sort are written. Operators are
defined with equations. Equations are declared by starting
with eq, and conditional ones by starting with ceq. After
eq, two terms connected with = are written, ended with a
full stop. After ceq, two terms connected with = are writ-
ten, followed by if, and then, a term denoting the condition
and a full stop are written. The CafeOBJ system uses equa-
tions as left-to-right rewrite rules and rewrites a given term.
The command red is used to rewrite a given term.

Basic units of CafeOBJ specifications are modules. The
CafeOBJ system provides built-in modules such as BOOL
where propositional logic is specified. The import of
BOOL lets us use the visible sort Bool denoting truth
values, the constants true and false, and some log-
ical operators such as not_ (negation), _and_ (con-
junction) and _implies_ (implication). The operator
if_then_else_fi (choice) is also available. An under-
score _ indicates the place where an argument is put.
BOOL plays an essential role in verification with the

CafeOBJ system. If the equations available in the module
are regarded as left-to-right rewrite rules, they are complete
wrt propositional logic[5]. Any term denoting a proposi-
tional formula that is always true (or false) is surely rewrit-
ten to true (or false).

2.2. Observational Transition Systems (OTSs)

We assume that there exists a universal state space de-
noted by �. We also assume that data types used, including
the equivalence relation (denoted by �) for each data type,
have been defined in advance.

An OTS[9] � consists of ��� �� � � where

� � : A set of observers. Each � � � is a function � � ��
�, where � is a data type and may differ from observer
to observer. Given two states ��� �� � �, the equivalence
(denoted by �� �� ��) between them wrt � is defined as
	� � ������� � �����.

� � : The set of initial states such that � 
 �.

� � : A set of conditional transitions. Each � � � is a
function � � � � � such that ����� �� ����� for each
��� � ���� and each ��� �� � ���. ���� is called the
successor state of � � � wrt � . The condition �� of � is

called the effective condition. For each � � � such that
��� ���, � �� ����.

An execution of � is an infinite sequence ��� ��� � � � of
states satisfying Initiation (�� � �) and Consecution (for
each � � ��� �� � � �, ���� �� ����� for some � � � ). A
state � is called reachable wrt � iff (if and only if) there
exists an execution of � in which � appears. Let �� be the
set of all reachable states wrt �. All properties considered
in this paper are invariants. A predicate 	 is called invariant
wrt � iff 	� � �� �	���.

Observers and transitions may be parameterized. Ob-
servers and transitions are generally expressed as ����������
and ���������� , provided that 
�� � � and there exists a data
type �� such that � � �� �� � ��� � � � � ��� �� � � � � ��.

2.3. Specification of OTSs in CafeOBJ

� is denoted by a hidden sort, say H, ���������� by a Cafe-
OBJ observation operator, say o, and ���������� by a CafeOBJ
action operator, say a. An action operator is basically speci-
fied with equations by describing how the value returned by
each observation operator changes. A typical form of such
equations looks like

ceq o�a�S�X��
� � � � �X�� ��X��

� � � � �X�� �
� e-a�S�X��

� � � � �X�� �X��
� � � � �X�� � if c-a�S�X��

� � � � �X�� � �

S is a CafeOBJ variable of H and each X� is a CafeOBJ vari-
able of the visible sort denoting D�. a�S�X�� � � � � �X��� de-
notes the successor state of S wrt ���������� . e-a�S�X�� � � � � �
X�� �X�� � � � � �X��� denotes the value returned by ����������
in the successor state. The effective condition ����������� is
denoted by c-a�S�X�� � � � � �X���.

2.4. Verification of OTSs

Some invariants may be proved by case analysis only.
But, we often need induction, especially simultaneous in-
duction on the number of transitions applied. We then
describe how to prove a predicate 	� invariant to � by
such induction by writing proof scores in CafeOBJ[9]. The
proof that 	� is invariant to � often needs other predicates.
We suppose that 	�� � � � � 	� are such predicates. We then
prove 	� � � � � � 	� invariant to �, but each proof that
	� �� � �� � � � � �� is invariant to � is written individually.
Let ���� � � � � ����

whose types are���� � � � � ����
be all free

variables in 	� �� � �� � � � � �� except for � whose type is �.
We first declare the operators denoting 	�� � � � � 	� and

their defining equations in a module INV (which imports
the module where � is written) as follows:

�� inv� � H V�� � � �V���
-> ����

�� inv��S�X��� � � � �X���
� � p��S�X��� � � � �X���

� �



where � � �� � � � � �. V� �� � ��� � � � � �
�� is a visible sort
denoting ��, and X� is a CafeOBJ variable whose sort is
V�. p��S�X��� � � � �X���

� is a CafeOBJ term denoting 	�.
In INV, we also declare a constant x� denoting an arbitrary
value of V� �� � �� � � � � ��. We then declare the operators
denoting basic formulas to show in the inductive cases and
their defining equations in a module ISTEP (which imports
INV) as follows:

�� istep� � V�� � � �V���
-> ����

�� istep��X��� � � � �X���
�

� inv��s�X��� � � � �X���
� ������� inv��s

��X��� � � � �X���
� �

where � � �� � � � � �. s and s� are constants of H, denoting an
arbitrary state and a successor state of s.

The proof of each inductive case often needs case anal-
ysis. Let us consider the inductive case where it is shown
that �����������

preserves 	�. Suppose that the state space is
split into � sub-spaces for the proof of the inductive case and
each sub-space is characterized by a predicate ���� �� �� �
�� � � � � �� such that ����� �� � � � � � ������� � 	
��. Also
suppose that �����������

is denoted by a CafeOBJ action op-
erator a and visible sorts ��� � � � � � ����

correspond to data
types ��� � � � � � ����

of the parameters of �����������
. Then

the proof looks like

open ISTEP
-- arbitrary objects
�� y

���

�� � V���
� � � � �� y���

�� � V���
�

-- assumptions
Declaration of equations denoting ������ .
-- successor state
�� s� � a�s� y�� � � � � � y���

� �

-- check
	�
 SIH� ������� istep��x��� � � � � x���

� �
close

where � � �� � � � � � and � � �� � � � � �. A comment
starts with -- and terminates at the end of the line. SIH�

is a CafeOBJ term denoting what strengthens the induc-
tive hypothesis inv��s� x��� � � � � x���

�, and can be inv���s�
t���� � � � � t�����

� and � � � and inv��� �s� t����� � � � � t�������
�

where �	 � ��� � � � � �, t�	
 is a term whose sort is V�	
,
� � �� � � � � �� and � � �� � � � �
�	 . openmakes a temporary
module that imports a module given as an argument, and
close destroys the temporary module. Parts enclosed with
open and close are basic units of proof scores, which are
called proof passages.

3. TLS

TLS[2] is a general protocol that can be used to secure
any exchanges between two points and the successor of
SSL, which was integrated in 1994 in Netscape Navigator.

TLS consists of four subprotocols, which are the TLS
handshake protocol, the change cipher spec protocol, the
alert protocol and the TLS record protocol. Two peers use

the TLS handshake protocol to negotiate a cipher suite and
security parameters. Each of two peers uses the change ci-
pher spec protocol to notify the other that subsequent mes-
sages will be protected under the newly negotiated cipher
suite and security parameters. If either of two peers notices
something wrong, he/she lets the other know about it with
the alert protocol. The TLS record protocol secures commu-
nications between the two peers using the negotiated cipher
suite and security parameters.

The security of TLS crucially depends on a cipher suite
and security parameter negotiated by two peers. If a cipher
suite used is weaker then one that is available to both peers
or security parameters shared by both peers are leaked, then
an adequate level of security cannot be obtained. There-
fore, the security of TLS largely relies on that of the TLS
handshake protocol.

3.1. The TLS Handshake Protocol

Messages exchanged in the TLS handshake protocol are
depicted in Figure 1. Messages marked by � are optional,
and those surrounded by square brackets are for the change
cipher spec protocol.

A server may send a HelloRequest message to a client to
initiate a new run of the protocol. The client replies to the
HelloRequest message with a ClientHello message or sends
a ClientHello message to the server to initiate a new run of
the protocol. A ClientHello message consists of a version
number of TLS, a list of cipher suites that are available to a
client, a random number, etc.

The server replies to the ClientHello message with a
ServerHello message, which contains a version number of
TLS that is the lower of that suggested by the client and
the highest supported by the server, a session ID, a cipher
suite selected from the list in the ClientHello message, a
random number, etc. If the server should be authenticated,
he/she sends his/her certificate to the client. If the server
Certificate message does not contain enough data to allow
the client to exchange a parameter secret called a pre-master
secret, the server sends a ServerKeyExchange message to
the client. The server can optionally request a certificate
from the client by sending a CertificateRequest message if
the server is not anonymous. A ServerHelloDone message
is sent by the server to indicate the end of the ServerHello
and associated messages.

On receipt of the ServerHelloDone message, the client
checks the messages received. The client sends his/her cer-
tificate to the server when necessary. A ClientKeyExchange
message is always sent by the client after a client Certifi-
cate message if it is sent. Otherwise, it is the first message
sent by the client after he/she receives a ServerHelloDone
message. A pre-master secret, which is a random num-
ber generated by the client, is securely exchanged with a



Client Server
�� HelloRequest�

ClientHello ��

�� ServerHello
�� Certificate�

�� ServerKeyExchange�

�� CertificateRequest�

�� ServerHelloDone
Certificate� ��

ClientKeyExchange ��

CertificateVerify� ��

[ChangeCipherSpec] ��

Finished ��

�� [ChangeCipherSpec]
�� Finished

Application Data �� Application Data

Figure 1. The TLS handshake protocol

ClientKeyExchange message. Two methods that is used to
exchange a pre-master secret are specified. One uses RSA,
and the other Diffie-Hellman. The client can then optionally
send a CertificateVerify message to provide explicit verifi-
cation of the client certificate.

At this moment, the client notifies the server with the
change cipher spec protocol that subsequent messages will
be protected under the newly negotiated cipher suite and
security parameters. Among the security parameters are
two symmetric keys that are computed from the two ran-
dom numbers and the pre-master secret2. The two symmet-
ric keys are used to protect messages sent by the client and
the server, respectively. The client then sends a Finished
message to the server to verify that the handshake process
is successful. The Finished message is protected under the
just negotiated cipher suite and security parameters. A Fin-
ish message is a hash of the security parameters and the
handshake messages exchanged so far. The client Finished
message is excluded.

On receipt of the client Finished message, the server
checks the message. If the message is correct, the server
notifies the client with the change cipher spec protocol that
subsequent messages will be protected under the newly ne-
gotiated cipher suite and security parameters. The server
then sends a server Finished message to the client. A server
Finish message is a hash of the security parameters and
handshake messages exchanged so far. The server Finished
message is excluded.

On receipt of the server Finished message, the client
checks the message. If the message is correct, the client
can exchange application data securely.

2Actually the security parameters are computed from the two random
numbers, the master secret and some constants. The master secret is com-
puted from the two random numbers, the pre-master secret and a constant.

ClientHello �� � Rand�, ListOfChoices
ServerHello � � � Rand� , SID, Choice
Certificate � � � Cert�
KeyExchange �� � ��


�����
ClientFinished �� � ���������������	
��	���
ServerFinished � � � ���	
�	������������	���

ClientHello2 �� � Rand�, SID
ServerHello2 � � � Rand� , SID, Choice
ServerFinished2 � � � ���	
�	������������	����
ClientFinished2 �� � ���������������	
��	����

Figure 2. An abstract handshake protocol

A previously established session and a current session
can be resumed and duplicated without exchanging the
whole handshake messages. If a client wants to resume or
duplicate a session, he/she sets the session ID in a Clien-
tHello message, which is sent to a server. The ClientHello
message is protected under the current cipher suite and se-
curity parameters. On receipt of the ClientHello message,
if the server is willing to resume or duplicate the session,
he/she replies with a ServerHello message, which is pro-
tected under the current cipher suite and security parame-
ters. The server signals the client to use the newly negoti-
ated security parameters for the session. The same cipher
suite is used. A server Finished message is then sent to the
client by the server. On receipt of the server Finished mes-
sage, the client checks the message. If the message is cor-
rect, the client signals the server to use the newly negotiated
security parameters for the session. A client Finished mes-
sage is then sent to the server by the client. On receipt of
the client Finished message, the server checks the message.

3.2. The Handshake Protocol Analyzed

We show the handshake protocol that has been analyzed
in Figure 2. Although the protocol is abstracted away some
details, it has the essence of the TLS handshake protocol
and is much more complicated than academic protocols
such as the NSPK authentication protocol[6]. In the proto-
col, � denotes a client and � a server. The first six message
exchanges are for the full negotiation of a cipher suite and
security parameters, and the remaining for the resumption
of a previously established session or the duplication of a
current session.

Cryptographic primitives used in the protocol are ����
(a one-way hash function), ����� (an encryption function
with asymmetric or symmetric key �) and ����� (a digital
signature function with principal �’s private key). Basic
quantities occurring in the protocol are Rand� (a random
number generated by principal �), ListOfChoices (a list of
cipher suites), Choice (a cipher suite), SID (a session ID),



PMS (a pre-master secret) and K� (principal �’s public
key). Composite data occurring in the protocol are as fol-
lows:

Cert� : ��� ���	�����
ClientKey : �������������������
ServerKey : �������������������
ClientFinish : ��������	�� ���� �������	��� !�����

� !�������������� �����
ServerFinish : �����
"�
�� ���� �������	��� !�����

� !�������������� �����
ClientFinish2 : ��������	�� ���� ����� !���������

����� �����
ServerFinish2 : �����
"�
�� ���� ����� !���������

����� �����

Choice is not only a cipher suite, but also you can consider
that it includes a version number and a compression algo-
rithm.

We suppose the following: a server always sends his/her
certificate to a client when a full handshake process is per-
formed; a server sends neither SeverKeyExchange nor Cer-
tificateRequest messages; server Certificate messages also
play the role of ServerHelloDone messages; a client sends
neither Certificate nor CertificateVerify messages; Change-
CipherSpec messages are implicit; there exists one and only
trustable certificate authority denoted by CA; the method
used for exchanging pre-master secrets is RSA only; the
content of a Finished message is not the hash of the security
parameters and handshake messages exchanged, but that of
two random numbers, a pre-master secret, etc.; Finished
messages exchanged for an abbreviated handshake process
are sent in clear.

4. Modeling

4.1. Assumptions

We suppose that there not only exist multiple trustable
principals but also multiple malicious (untrustable) princi-
pals, and that the cryptosystem used is perfect. Trustable
principals exactly follow the protocol, while malicious ones
may do something against the protocol as well. The combi-
nation and cooperation of malicious principals is modeled
as the most general intruder à la Dolev and Yao[4]. The
intruder can do the following:

� Eavesdrop any message flowing in the network.

� Glean any quantity from the message; however the in-
truder can decrypt a ciphertext only if he/she knows the key
to decrypt, and cannot compute preimages of a hash unless
he/she knows the preimages.

� Fake and send messages based on the gleaned informa-
tion; however the intruder can encrypt and/or sign some-

thing only if he/she knows the key to encrypt and/or sign,
and cannot guess unknown secret values.

4.2. Formalization of Messages

Before formalizing messages exchanged in the protocol,
we formalize quantities that constitute messages. We de-
clare the following visible sorts and the corresponding data
constructors for those quantities:

� Principal denotes principals. Two special principals
exist; one is the intruder denoted by intruder and the
other the certificate authority denoted by ca. We suppose
that intruder does not equal ca. Rand denotes random
numbers. Choice denotes cipher suites. Sid denotes ses-
sion IDs. ListOfChoices denotes lists of cipher suites.
Operator _\in_ is the membership predicate of lists.

� Secret denotes secret values that make pre-master se-
cret globally unique and unguessable. Pms denotes pre-
master secrets. Given two principals �� � and a secret value
�, a pre-master secret generated by client � for server � is
denoted by pms��� �� ��.

� PubKey denotes public keys. The principal �’s public
key is denoted by k���.

� Sig denotes digital signatures of pairs of a principal and
a public key. The digital signature of the pair of princi-
pal � and public key � signed by principal � is denoted by
sig��� �� ��.

� Cert denotes certificates of public keys. Given principal
�, public key � and signature �, the certificate that � is �’s,
which is certified by �, is denoted by cert��� �� ��.

� Key denotes hashes used as symmetric keys to encrypt
Finished messages. Given principal �, pre-master secret
pms and two random numbers ��� �#, the hash of those
quantities is denoted by k��� ��� � ��� �#�.

� CFinish denotes ClientFinish’s. Given two principals
�� �, session ID �, list � of cipher suites, cipher suite �, two
random numbers ��� �# and pre-master secret �, the corre-
sponding ClientFinish is denoted by cfin��� �� �� �� �� ���
�#� ��.

� SFinish denotes ServerFinish’s. Given two principals
�� �, session ID �, list � of cipher suites, cipher suite �, two
random numbers ��� �# and pre-master secret �, the corre-
sponding ServerFinish is denoted by sfin��� �� �� �� �� ���
�#� ��.

� CFinish2 denotes ClientFinish2’s. Given two princi-
pals �� �, session ID �, cipher suite �, two random numbers
��� �# and pre-master secret �, the corresponding ClientFin-
ish is denoted by cfin2��� �� �� �� ��� �#� ��.

� SFinish2 denotes ServerFinish2’s. Given two princi-
pals �� �, session ID �, cipher suite �, two random num-
bers ��� �# and pre-master secret �, the corresponding
ServerFinish2 is denoted by sfin2��� �� �� �� ��� �#� ��.



� EncPms denotes pre-master secrets encrypted by public
keys. Pre-master secret pms encrypted by public key � is
denoted by epms��� ����.

� EncCFin denotes ClientFinish’s encrypted by symmet-
ric keys. ClientFinish � encrypted by symmetric key � is
denoted by ecfin��� ��.

� EncSFin denotes ServerFinish’s encrypted by symmet-
ric keys. ServerFinish � encrypted by symmetric key � is
denoted by esfin��� ��.

� EncCFin2 denotes ClientFinish2’s encrypted by sym-
metric keys. ClientFinish2 � encrypted by symmetric key �
is denoted by ecfin2��� ��.

� EncSFin2 denotes ServerFinish2’s encrypted by sym-
metric keys. ServerFinish2 � encrypted by symmetric key
� is denoted by esfin2��� ��.

� Session denotes quadruples of a cipher suite, two ran-
dom numbers and a pre-master secret. A quadruple of ci-
pher suite �, two random numbers ��� �# and pre-master se-
cret pms is denoted by st��� ��� ��� ����.

For each data constructor such as pms, projection opera-
tors such as client, server and secret that return ar-
guments are also defined. For example, client�pms��� ��
��� � �, server�pms��� �� ��� � � and secret�pms���
�� ��� � �.

Since we suppose that the cryptosystem used is perfect,
we can suppose that, given any two different values, the two
results of a hash function are different. Therefore, we use
the five different visible sorts Key, CFinish, SFinish,
CFinish2 and SFinish2 for the five kinds of hashes.
For a similar reason, we use the four different visible sorts
EncCFin, EncSFin, EncCFin2 and EncSFin2 for the
four kinds of ciphertexts encrypted by symmetric keys.

We have the 10 operators (data constructors) to denote
the 10 kinds of messages. The data constructors are de-
clared as follows:

op ch : Prin Prin Prin Rand ListOfChoices -> Msg
op sh : Prin Prin Prin Rand Sid Choice -> Msg
op ct : Prin Prin Prin Cert -> Msg
op kx : Prin Prin Prin EncPms -> Msg
op cf : Prin Prin Prin EncCFin -> Msg
op sf : Prin Prin Prin EncSFin -> Msg
op ch2 : Prin Prin Prin Rand Sid -> Msg
op sh2 : Prin Prin Prin Rand Sid Choice -> Msg
op cf2 : Prin Prin Prin EncCFin2 -> Msg
op sf2 : Prin Prin Prin EncSFin2 -> Msg

Msg is the visible sort denoting messages. For data con-
structor � �� � ch� sh� ct� kx� cf� sf� ch2� sh2� sf2�
cf2�, predicate �? is defined, which checks if a given
message is � message. Given a term denoting a message,
projections crt, src and dst return the first, second
and third arguments of the term, respectively, and projec-
tions rand, list, choice, sid, cert, epms, ecfin,
esfin, ecfin2 and esfin2 return other arguments, re-
spectively, if any.

The first, second and third arguments of each data
constructor mean the actual sender (creator), the seeming
sender and the receiver of the corresponding message. The
first argument is meta-information that is only available to
the outside observer and the principal that has sent the cor-
responding message, and that cannot be forged by the in-
truder, while the remaining arguments may be forged by the
intruder. Therefore suppose that there exists a message in
the network. It is true that the principal denoted by the first
argument has sent the message. If the first argument is the
intruder and the second one is not, the message has been
faked by the intruder.

This formalization of messages makes it possible to de-
scribe properties such as one that a message received by a
principal really originates from the seeming sender of the
message. For example, suppose that a principal � receives a
message denoted by ����#� ��� �� �����. Since messages
are supposed to be never deleted from the network (see
the next subsection), if there exists a message denoted by
������ ��� �� ����� in the network, we can conclude that the
message received by � really originates from ��.

4.3. Formalization of the Network

The network is modeled as a bag (multiset) of messages,
which is used as the storage that the intruder can use. The
network is also used as each principal’s private memory that
reminds the principal to send messages, whose first argu-
ments denote the principal. Any message that has been
sent or put once into the network is supposed to be never
deleted from the network because the intruder can replay
the message repeatedly, although the intruder cannot forge
the first argument. Consequently, the emptiness of the net-
work means that no messages have been sent.

The intruder tries to glean seven kinds of quantities from
the network as much as possible. The seven kinds of quanti-
ties are pre-master secrets, digital signatures and five kinds
of ciphertexts.

Random numbers, session IDs, cipher suites, lists of ci-
pher suites and public keys are supposed to be guessable be-
cause they are sent in clear and the intruder can glean them
without any difficulties. Since symmetric keys, namely
ClientKey’s and ServerKey’s, are never included by any
messages, they are never gleaned by the intruder, except
those computed from pre-master secrets known by the in-
truder. Such symmetric keys available to the intruder can
be easily computed from pre-master secrets. Therefore, it is
not necessary for the intruder to glean symmetric keys. In
order that a faked ciphertext used in Finished messages is
useful for attacking the protocol, the pre-master secret used
to compute the symmetric key must equal that used to com-
pute the hash such as ClientFinish and ServerFinish. Since
the pre-master secret used to compute any symmetric key



available to the intruder is also known by the intruder, the
pre-master secret must be used to compute a hash such as
ClientFinish and ServerFinish so that the hash encrypted by
the symmetric key can be useful. Therefore, it is not nec-
essary for the intruder to glean four kinds of hashes used in
Finished messages.

The collections of the seven quantities gleaned by the
intruder from the network are denoted by the following op-
erators, respectively:

op cpms : Network -> ColPms
op csig : Network -> ColSig
op cepms : Network -> ColEncPms
op cecfin : Network -> ColEncCFin
op cesfin : Network -> ColEncSFin
op cecfin2 : Network -> ColEncCFin2
op cesfin2 : Network -> ColEncSFin2

Network is the visible sort denoting networks. Col� is
the visible sort denoting collections of quantities denoted
by visible sort � .

The operators are defined with equations. In this paper,
we show the equations that define cpms.

eq PMS \in cpms(void) = (client(PMS) = intruder) .
ceq PMS \in cpms(M,NW) = true

if (kx?(M) and owner(k(epms(M))) = intruder
and PMS = pms(epms(M))) .

ceq PMS \in cpms(M,NW) = PMS \in cpms(NW)
if not(kx?(M) and owner(k(epms(M))) = intruder

and PMS = pms(epms(M))) .

Constant void denotes the empty bag. Operator _\in_
is the membership predicate of collections. Operator _,_
of M,NW is the data constructor of bags. The first equation
says that any pre-master secret generated by the intruder is
always available to the intruder, and any other pre-master
secrets are not at any initial state. Messages from which
pre-master secrets can be gleaned are Certificate messages
only. If there exits a Certificate message in the network
and the ciphertext in the message is encrypted with the in-
truder’s public key, then the pre-master secret in the mes-
sage can be available to the intruder, which is denoted by
the second equation. The third equation says that no pre-
master secrets cannot be gleaned from any non-Certificate
messages and any Certificate messages whose ciphertexts
are not encrypted with the intruder’s public key. The re-
maining operators are defined likewise.

4.4. Formalization of Trustable Principals

Before modeling the behavior of trustable principals, we
describe the values observable from the outside of the pro-
tocol. We suppose that the network, session states between
two principals, the set of used random numbers, the set of
used session IDs and the set of used secrets are observable.
The observers are denoted by CafeOBJ observation oper-
ators nw, ss, ur, ui and us, respectively, which are de-
clared as follows:

bop nw : Protocol -> Network
bop ss : Protocol Prin Prin Sid -> Session
bop ur : Protocol -> URand
bop ui : Protocol -> USid
bop us : Protocol -> USecret

Protocol is the hidden sort denoting the state space.
URand, USid and USecret are the visible sorts denot-
ing sets of random numbers, ones of session IDs and ones
of secrets. Let 	 denote a state of the protocol. nw�	� de-
notes the network, ur�	� the set of used random numbers,
ui�	� that of used session IDs and us�	� that of used se-
crets in the state. Besides, let �� � denote principals and �
a session ID. ss�	� �� �� �� denotes the principal �’s session
state identified by session ID � with principal � in the state.

The behavior of trustable principals is modeled by 12
kinds of transitions. 10 of them correspond to sending
the 10 kinds of messages. The remaining two corre-
spond to clients’ receiving ServerFinished messages and
servers’ receiving ClientFinished2 messages, respectively.
The 12 kinds of transitions are denoted by CafeOBJ ac-
tion operators chello, shello, cert, kexch, cfin,
sfin, compl, chello2, shello2, sfin2, cfin2 and
compl2. The operators are declared as follows:

bop chello : Protocol Prin Prin Rand
ListOfChoices -> Protocol

bop shello : Protocol Prin Rand Sid Choice
Msg -> Protocol

bop cert : Protocol Prin Msg Msg -> Protocol
bop kexch : Protocol Prin Secret Msg Msg

Msg -> Protocol
bop cfin : Protocol Prin Secret Msg Msg

Msg Msg -> Protocol
bop sfin : Protocol Prin Msg Msg Msg Msg

Msg -> Protocol
bop compl : Protocol Prin Secret Msg Msg

Msg Msg Msg Msg -> Protocol
bop chello2 : Protocol Prin Prin Secret Rand

Sid -> Protocol
bop shello2 : Protocol Prin Rand Msg -> Protocol
bop sfin2 : Protocol Prin Msg Msg -> Protocol
bop cfin2 : Protocol Prin Secret Msg Msg

Msg -> Protocol
bop compl2 : Protocol Prin Msg Msg Msg Msg -> Protocol

The 12 action operators are defined with equations. In
this paper, we show the equations for cert, which are de-
clared as follows:

op c-cert : Protocol Prin Msg Msg -> Bool
eq c-cert(P,B,M1,M2) = (M1 \in nw(P) and M2 \in nw(P)

and ch?(M1) and sh?(M2) and dst(M1) = B and
crt(M2) = B and src(M2) = B and src(M1) = dst(M2)
and choice(M2) \in list(M1)) .

ceq nw(cert(P,B,M1,M2))
= ct(B,B,dst(M2),cert(B,k(B),sig(ca,B,k(B))))

, nw(P) if c-cert(P,B,M1,M2) .
eq ss(cert(P,B,M1,M2),A2,B2,I2) = ss(P,A2,B2,I2) .
eq ur(cert(P,B,M1,M2)) = ur(P) .
eq ui(cert(P,B,M1,M2)) = ui(P) .
eq us(cert(P,B,M1,M2)) = us(P) .
ceq cert(P,B,M1,M2) = P if not c-cert(P,B,M1,M2) .

That principal � has sent message 
� to principal � is de-
noted by that 
� exists in the network, both crt�
�� and



src�
�� equal � and dst�
�� equals �. In order for prin-
cipal � to receive message 
� from principal �, there must
exist 
� in the network such that src�
�� equals � and
dst�
�� equals �. But, crt�
�� may not equal � but the
intruder. The other action operators are defined likewise.

4.5. Formalization of the Intruder

Part of the intruder has been modeled as the network. We
have defined what information the intruder can glean from
the network. We next describe what messages the intruder
fakes based on the gleaned information.

We have 15 kinds of transitions that denote the intruder’s
faking messages, which are denoted by 15 CafeOBJ action
operators. The effective condition of any transition corre-
sponding to each of the action operators is that the neces-
sary information is available to the intruder.

In this paper, we show the two action operators for faking
ServerFinished messages, which are declared as follows:

bop fakeSfin1 : Protocol Prin Prin EncSFin -> Protocol
bop fakeSfin2 : Protocol Prin Prin Sid ListOfChoices

Choice Rand Rand Pms -> Protocol

The 15 action operators are defined with equations. In
this paper, we show the equations for fakeSfin2, which
are declared as follows:

op c-fakeSfin2 : Protocol Prin Prin Sid ListOfChoices
Choice Rand Rand Pms -> Bool

eq c-fakeSfin2(P,B,A,I,L,C,R1,R2,PMS)
= PMS \in cpms(nw(P)) .

ceq nw(fakeSfin2(P,B,A,I,L,C,R1,R2,PMS))
= sf(intruder,B,A,esfin(k(B,PMS,R1,R2),

sfin(A,B,I,L,C,R1,R2,PMS))) , nw(P)
if c-fakeSfin2(P,B,A,I,L,C,R1,R2,PMS) .

eq ss(fakeSfin2(P,B,A,I,L,C,R1,R2,PMS),B2,A2,I2)
= ss(P,B2,A2,I2) .

eq ur(fakeSfin2(P,B,A,I,L,C,R1,R2,PMS)) = ur(P) .
eq ui(fakeSfin2(P,B,A,I,L,C,R1,R2,PMS)) = ui(P) .
eq us(fakeSfin2(P,B,A,I,L,C,R1,R2,PMS)) = us(P) .
ceq fakeSfin2(P,B,A,I,L,C,R1,R2,PMS)

= P if not c-fakeSfin2(P,B,A,I,L,C,R1,R2,PMS) .

The other action operators are defined likewise.

5. Analysis

5.1. Verified Properties

The informal descriptions of the verified properties for
the protocol are first given.

1. Pre-master secrets cannot be leaked.

2. If a trustable client receives a ServerFinished message
that conforms to the protocol and seems to have been sent
by a server, then the message really originates from the
server.

3. If a trustable client receives a ServerFinished2 message
that conforms to the protocol and seems to have been sent

by a server, then the message really originates from the
server.

4. If a trustable client receives a ServerHello message, a
Certificate message and a ServerFinished message that con-
form to the protocol and seem to have been sent by a server,
then the ServerHello and Certificate messages really origi-
nate from the server.

5. If a trustable client receives a ServerHello2 message and
a ServerFinished2 message that conform to the protocol and
seem to have been sent by a server, then the ServerHello2
message really originate2 from the server.

Pre-master secrets are the most fundamental parameters
in the protocol because all security parameters are com-
puted based on them. The first property assures the users
of the protocol that secret security parameters are really se-
cret. The second property guarantees that when a client
has negotiated a cipher suite and security parameters with
the corresponding server by a full handshake process, the
server has really agreed on them. The third property guar-
antees that when a client has negotiated a cipher suite and
security parameters with the corresponding server by an ab-
breviated handshake process, the server has really agreed
on them. The fourth property guarantees that when a client
has negotiated a cipher suite and security parameters with
the corresponding server by a full handshake process, the
cipher suite and some of the security parameters have been
suggested by the server. The fifth property guarantees that
when a client has negotiated a cipher suite and security pa-
rameters with the corresponding server by an abbreviated
handshake process, the cipher suite and some of the secu-
rity parameters have been suggested by the server.

The properties are formalized as CafeOBJ terms in order
to be formally verified. In this paper, we show the defini-
tions of the first and second properties.

The CafeOBJ term denoting the first property is as fol-
lows:

op inv1 : Protocol Pms -> Bool
eq inv1(P,PMS) = (PMS \in cpms(nw(P)) implies

(client(PMS) = intruder or server(PMS) = intruder)) .

The term says that if a pre-master secret is available to the
intruder, the pre-master secret has been generated by the
intruder or a client has generated it for a session with the
intruder. This implies that the intruder cannot obtain any
pre-master secrets for sessions in which the intruder is not
involved.

The CafeOBJ term denoting the second property is as
follows:

op inv2 : Protocol Prin Prin Prin Rand Rand
ListOfChoices Choice Sid Secret -> Bool

eq inv2(P,A,B,B1,R1,R2,L,C,I,S)
= (not(A = intruder) and

sf(B1,B,A,esfin(k(B,pms(A,B,S),R1,R2),
sfin(A,B,I,L,C,R1,R2,pms(A,B,S)))) \in nw(P)

implies



sf(B,B,A,esfin(k(B,pms(A,B,S),R1,R2),
sfin(A,B,I,L,C,R1,R2,pms(A,B,S)))) \in nw(P)) .

The term says that if a trustable client, which means that
the client is not the intruder, receives a ServerFinished mes-
sage that seems to have been sent by a server, which means
that the actual sender denoted by B1 may be the intruder,
conforms to the protocol, and uses a pre-master secret gen-
erated by the client for the server, then the message really
originates from the server.

We need 13 more properties to prove the five properties.
Five of the properties, including the fourth and fifth ones,
have been proved by case analyses with other properties,
and the remaining ones by induction on the number of tran-
sitions applied.

5.2. Verification

We describe part of the proof score of inv2. We declare
the operator denoting the basic formula to prove in each
inductive case as follows:
op istep2 : Prin Prin Prin Rand Rand ListOfChoices

Choice Sid Secret -> Bool
eq istep2(A,B,B1,R1,R2,L,C,I,S)

= inv2(p,A,B,B1,R1,R2,L,C,I,S)
implies inv2(p’,A,B,B1,R1,R2,L,C,I,S) .

p and p’ are constants of hidden sort Protocol. p de-
notes an arbitrary state, and p’ a successor state of p.

Let sfin1, sfin2 and sfin3 be the following terms,
respectively:
sf(intruder,b10,a10,esfin(k(b10,pms10,r10,r20),

sfin(a10,b10,i10,l10,c10,r10,r20,pms10)))

sf(b1,b,a,esfin(k(b,pms(a,b,s),r1,r2),
sfin(a,b,i,l,c,r1,r2,pms(a,b,s))))

sf(b,b,a,esfin(k(b,pms(a,b,s),r1,r2),
sfin(a,b,i,l,c,r1,r2,pms(a,b,s))))

where all the constants except for intruder denote arbi-
trary values of the intended sorts. For example, r1, r2,
r10 and r20 denote arbitrary values of visible sort Rand.

Let us consider the inductive case that action operator
fakeSfin2 preserves inv2. When the effective condi-
tion of fakeSfin2 is true, the case is split into the fol-
lowing five sub-cases:

1. �sfin1 �� sfin2� � �sfin1 �� sfin3�

2. �sfin1 �� sfin2� � �sfin1 � sfin3�

3. �sfin1 � sfin2� � �b � intruder�

4. �sfin1 � sfin2� � �b �� intruder� � �a �
intruder�

5. �sfin1 � sfin2� � �b �� intruder� � �a ��
intruder�

The first 4 sub-cases do not need any other predicates to
strengthen the inductive hypothesis, but the fifth sub-case
needs inv1 to strengthen the inductive hypothesis.

We show the proof passage corresponding to the fifth
sub-case.

open ISTEP
-- arbitrary objects
ops a10 b10 : -> Prin . op i10 : -> Sid .
op l10 : -> ListOfChoices . op c10 : -> Choice .
ops r10 r20 : -> Rand . op pms10 : -> Pms .

-- assumptions
eq pms(a,b,s) \in cpms(nw(p)) = true .
--
eq b1 = intruder . eq r10 = r1 . eq i10 = i .
eq l10 = l . eq c10 = c . eq pms10 = pms(a,b,s) .
eq r20 = r2 . eq a10 = a . eq b10 = b .
--
eq (b = intruder) = false . eq (a = intruder) = false .

-- successor state
eq p’ = fakeSfin2(p,b10,a10,

i10,l10,c10,r10,r20,pms10) .
-- check if the predicate is true.
red inv1(p,pms(a,b,s))

implies istep2(a,b,b1,r1,r2,l,c,i,s) .
close

Constants such as r1 and r2 that are not declared in
this proof passage are declared in a module, say INV,
imported by ISTEP. The first equation means that the
effective condition is true, and the second through 10th
equations mean that sfin1 equals sfin2. The equa-
tion ����� � ����� can be deduced from the 9 equa-
tions by rewriting, but the nine equations cannot be de-
duced from the one equation by rewriting. That is why
the nine equations are used. In this passage, inv1(p,
pms(a,b,s)) is used to strengthen the inductive hypoth-
esis inv2(p,a,b,b1,r1,r2,l,c,i,s).

5.3. Other Results

We attempted to verify the servers’ counterparts of the
second and third properties, which are informally described
as follows:

2�. If a trustable server receives a ClientFinished message
that conforms to the protocol and seems to have been sent
by a client, then the message really originates from the
client.

3�. If a trustable server receives a ClientFinished2 mes-
sage that conforms to the protocol and seems to have been
sent by a client, then the message really originates from the
client.

The verifications did not succeeded, however, and we found
that the properties do not hold for the protocol.

There is a counterexample of property 2�, which is shown
as follows:

(1) ch���� �� �� ��� � ��
(2) sh��� �� �� ��� ��	 � ��
(3) ct��� �� ��cert��� ���sig�ca� �� �����
(4) kx���� �� ��epms���� ��� ���
(5) cf���� �� ��ecfin����� ��� �� ��� � ����

cfin��� �� ��	 � �� �� ��� � ��� ��� ����

This shows that even if server � receives a ClientFinished
message that the server expects to receive from client �, the
message actually originates from client ��.



Suppose that there exists a session between server � and
client �� but � believes that he/she has established the ses-
sion with client �. Such a session can be established as
shown in the just mentioned example. There is then a coun-
terexample of property 3�, which is shown as follows:

(1) ch2���� �� �� ��� � ��	�
(2) sh��� �� �� ��� ��	 � ��
(3) sf��� �� ��esfin2����� ��� �� ��� � ����

sfin2��� �� ��	 � �� ��� � ��� ��� ����
(4) cf���� �� ��ecfin2����� ��� �� ��� � ����

cfin2��� �� ��	 � �� ��� � ��� ��� ����

Since clients are not authenticated in the protocol that
has been analyzed, it might be obvious that properties 2�

and 3� do not hold in the protocol. While we were reading
the specification of TLS, however, we did not notice that
the two properties do not hold in TLS where clients are not
authenticated. We believe that formal analyses of security
protocols also help engineers notice what they might not
notice just by reading informally written specifications of
the protocols. The two counterexamples demonstrate this.

The two examples also guarantee that if clients use TLS
where they are not authenticated, they cannot be identified
and they are anonymous.

In the protocol shown in Figure 2, a ServerFinished2
message precedes a ClientFinished2 message. We have also
verified that the five properties described in the previous
subsection hold in the protocol where a ClientFinished2
message precedes a ServerFinished2 message. When a
specification is slightly changed, our method, namely the
OTS/CafeOBJ method, makes it possible to easily adjust
proof scores.

6. Related Work

Mitchell, et al.[7] use the model checker Mur�[3] to
check seven simple protocols derived from the SSL 3.0
handshake protocol. The primal reason why they have ana-
lyzed the protocols is to identify the purpose of certain mes-
sage fields (version number, nonce, etc.) in some steps of
the protocol. The analysis starts with the simplest version of
the handshake protocol from which some fields are omitted,
and the fields are gradually added to the protocol. The first
six protocols have been found badly flawed and the model
checker has found many attacks. The model checker has
been used to check the final protocol with two clients, one
server, no more than two simultaneous open sessions per
server and no more than one resumption per session, and no
attacks have been discovered.

Paulson[11] analyzes the TLS handshake protocol with
his inductive method[10] that is supported by the proof as-
sistant Isabelle/HOL[8]. In the protocol analyzed by Paul-
son, servers always sent their certificates to clients, the key

exchange method considered is RSA, and clients optionally
send their certificates and ClientKeyExchange messages to
servers. In his model of the protocol, a malicious princi-
pal called the spy, which corresponds to the intruder in our
model, is taken into account and it is supposed that any ses-
sion key, if used, may end up in the hands of the spy, which
is denoted by the rule Oops. One of the results of the analy-
sis is that session resumption turns out to be safe even if the
spy has obtained session keys from earlier sessions.

7. Conclusion

It took a couple of weeks to read the TLS specifica-
tion and obtain the abstract handshake protocol, and it took
about one week to complete the analysis. Among the rea-
sons why the analysis was completed in such period are that
(1) most part of a proof score that an OTS has a property
can be reused for other proof scores that the OTS has other
properties and (2) the method used allows us to write proofs
even if we do not know how to construct the proofs in very
detail, namely what equations (or deductive rules) should
be applied to terms denoting formulas to prove.
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