
A Lightweight Integration of Theorem Proving and Model Checking
for System Verification

Weiqiang Kong1, Kazuhiro Ogata1,2, Takahiro Seino1, and Kokichi Futatsugi1

1 Japan Advanced Institute of Science and Technology (JAIST)
1-1, Asahidai, Nomi, Ishikawa 923-1292, Japan

{weiqiang, t-seino, kokichi}@jaist.ac.jp, Phone: +81(90)3763-9683
2 NEC Software Hokuriku, Ltd.

1 Anyoji, Tsurugi, Ishikawa 920-2141, Japan
ogatak@acm.org

Abstract

Theorem proving and model checking are known as two
formal verification techniques that have complementary
features. In this paper, we describe a lightweight integra-
tion of the two techniques by a translation from theorem
proving formalism to model checking formalism, and then
treating model checking as part of the decision procedure.
In the translation, system and property specifications de-
fined for a theorem prover can be automatically translated
to specifications feedable to a model checker after a sim-
ple data abstraction. The main aim of this integration is to
provide the theorem prover with automatic counter-example
generating capability, thus to be able to find “bugs” in the
early stage of theorem proving and ease the hard-work of
doing theorem proving. A case study is used to demonstrate
how this translation works and what the verification flow is
when using this integration to do system verification.

1. Introduction

Theorem proving and model checking are known as
two formal verification techniques that have complemen-
tary features. The main aspects considered in the compar-
isons of these two techniques include: (1) State space can
be handled (infinite vs. finite), (2) Automation of verifica-
tion procedure (limited automation vs. fully automation)
and (3) Counter-example generating capability (no auto-
matic counter-example vs. automatic counter-example). To
take advantages of each of the two verification techniques,
a number of researches have been reported, proposing dif-
ferent kinds of integration, such as [1, 3, 10, 11, 12].

In contrast to proposing a general-purpose integration as

discussed in the above mentioned works, we consider in
this paper a lightweight integration of the two formal ver-
ification techniques by a translation from theorem proving
formalism to model checking formalism, and then treating
model checking as part of the decision procedure. The main
aim of this integration is to provide the theorem prover with
automatic counter-example generating capability, thus to be
able to find “bugs” in the early stage of theorem proving and
ease the hard-work of doing theorem proving.

Theorem proving is a general formal verification tech-
nique that can be used to verify complex and infinite-state
systems; furthermore, doing theorem proving may help
users have more insight and understanding of the system
to be verified1. However, if a property fails to hold, it is
difficult for unexperienced users to extract enough valuable
information from the verification result returned by a theo-
rem prover. Therefore users must try to determine whether
the fault lies with the system and property specifications
or with the failed proof [12]. Besides, as discussed in [2]
which gives an in-depth comparison of the two techniques
in the hands of experienced users, considerable time is used
during theorem proving to “discover, formalize and prove
auxiliary system invariants, which are required to prove the
property of interest”. We believe that if a counter-example
can be generated automatically, which shows a sequence of
the system’s behaviors that violates the property: (1) on one
hand, by analyzing the counter-example, it will become eas-
ier to find out the reason for the failure, therefore pinpoint
errors; and (2) on the other hand, before putting efforts try-
ing to prove the newly founded invariant that is possibly cor-
rect/incorrect, we can benefit from firstly model checking
the invariant and see whether a counter-example arises. In

1This is also the reason that we use theorem proving to do the main ver-
ification work rather than directly using abstraction and model checking.

case that a counter-example arises, this will serve as an in-
dication of discarding the invariant and switching to finding
alternative ones. As to the case that the verification result
is true, this result can serve as a weak justification showing
that there might exist a possible proof of this invariant.

In our specific lightweight integration, system spec-
ification and property specification defined using the
OTS/CafeOBJ method [9] are automatically translated to
corresponding parts in the OTS/Maude method [7] after a
simple data abstraction. And then, the translated proper-
ties can be checked against the translated model using the
Maude LTL model checker [4, 6]. The integration is con-
sidered to be “lightweight” because of the following rea-
sons: Firstly (for something good), the formalisms of both
the OTS/CafeOBJ method (for theorem proving) and the
OTS/Maude method (for model checking) are quite sim-
ilar (both based on equations). We think, on one hand,
equations are easy to understand and use for unexperienced
users; and on the other hand, similar formalisms will allevi-
ate the burden for users to learn two different formalisms as
discussed in some other integrations. Secondly (for some-
thing bad), the data abstraction method we used to link
an infinite system with its model checkable finite version
may not preserve soundness [10] (the abstracted version
may have some property that does not hold in the original
version). Instead of some non-trivial abstraction methods
which are property-preserving, we employed a simple data
abstraction by means of reducing the infinite domains of
variables to some concrete values. For example, the num-
ber of processes in a mutual exclusion algorithm is reduced
from infinite to 2. As discussed in [10], such simple data
abstraction is effective when we aims to exposing bugs.

Here we use a mutual exclusion algorithm using a queue
to demonstrate how the translation is done by a translator –
Cafe2Maude. We also present what the verification flow is
when using our integration to do system verification.

Organization. Section 2 describes the OTS/CafeOBJ
method, focusing on how to write OTS in CafeOBJ for
system specification and how to write invariants for prop-
erty specification. Section 3 describes how the translator
– Cafe2Maude works. In this section, system specifica-
tion translation, and property translation together with the
data abstraction are mainly introduced. Section 4 describes
the case study to demonstrate how Cafe2Maude works and
what the verification flow is. Section 5 concludes the paper.

2. The OTS/CafeOBJ Method

We have been successfully applying the OTS/CafeOBJ
method [9] to modeling, specification and verification of
distributed systems such as security protocols [8]. In the
OTS/CafeOBJ method, a system is modeled as an observa-
tional transition system (OTS), which is a transition system

that can be straightforwardly written in terms of equations;
and OTS is written in CafeOBJ2 [5], an algebraic specifica-
tion language. Desired properties of the OTS can then be
verified by writing proofs (called proof scores) in CafeOBJ
and executing the proof scores with the CafeOBJ system.

Assume that there exists a universal state space calledΥ.
We also assume that data types used, including the equiva-
lence relation (denoted by =) for each data type, have been
defined in advance. An OTSS consists of〈O, I, T 〉 where:

• O : A set of observers. Eacho ∈ O is a func-
tion o : Υ → D, whereD is a data type and may
differ from observer to observer. Given an OTSS
and two statesυ1, υ2 ∈ Υ, the equivalence (denoted
by υ1 =S υ2) between them wrtS is defined as
∀o ∈ O, o(υ1) = o(υ2).

• I : The set of initial states such thatI ⊆ Υ.

• T : A set of conditional transitions. Eachτ ∈ T is a
function τ : Υ → Υ, provided thatτ(υ1) =S τ(υ2)
for each[υ] ∈ Υ/ =S and eachυ1, υ2 ∈ [υ]. τ(υ) is
called the successor state ofυ ∈ Υ wrt τ . The condi-
tion cτ of τ is called the effective condition. For each
υ ∈ Υ such that¬cτ (υ), υ =S τ(υ).

Observers and transitions may be parameterized. Gen-
erally, observers and transitions are denoted byoi1,...,im

and τj1,...,jn , respectively, provided thatm,n ≥ 0 and
there exist data typesDk such that k ∈ Dk (k =
i1, . . . , im, j1, . . . , jn).

In the OTS/CafeOBJ method, an OTS is described in
CafeOBJ which can be used to specify abstract machines
as well as abstract data types. A visible sort denotes an
abstract data type, and a hidden sort denotes the state space
of an abstract machine. There are two kinds of operators
in hidden sorts: action and observation operators. An
action operator can change a state of an abstract machine;
only observation operators can be used to observe the
inside of an abstract machine. Declarations of observation
and action operators start withbop or bops, and those of
other operators withop or ops. Operators are defined in
equations. Declarations of equations start witheq, and
those of conditional equations withceq. The CafeOBJ
system rewrites a given term by regarding equations as
left-to-right rewrite rules.

The universal state spaceΥ is denoted by a hidden
sort, sayH. An observeroi1,...,im

∈ O is denoted by
a CafeOBJ observation operator. We assume that there
exist visible sortsVk and V denotingDk and D, where
k = i1, . . . , im. The CafeOBJ observation operator is
declared asbop o : H Vi1 . . . Vim -> V .

A transition τj1,...,jn
∈ T is denoted by a CafeOBJ

action operator. We assume that there exists a visible sort
Vk denotingDk, wherek = j1, . . . , jn. The CafeOBJ

2See www.ldl.jaist.ac.jp/cafeobj/.

action operator is declared asbop τ : H Vj1 . . . Vjn -> H.
τj1,...,jn may change the value returned byoi1,...,im if it is
applied in a stateυ such thatcτj1,...,jn

(υ), which can be
written generally as follows:

ceq o(τ(S, Xj1 , . . . , Xjn), Xi1 , . . . , Xim)

= e-τ(S, Xj1 , . . . , Xjn , Xi1 , . . . , Xim)

if c-τ(S, Xj1 , . . . , Xjn) .

S is a CafeOBJ variable forH and Xk is a
CafeOBJ variable ofVk, where k = j1, . . . , jn.
τ(S, Xj1 , . . . , Xjn

) denotes the successor state ofS
wrt τj1,...,jn

. e-τ(S, Xj1 , . . . , Xjn
, Xi1 , . . . , Xim

) denotes
the value returned byoi1,...,im in the successor state.
c-τ(S, Xj1 , . . . , Xjn) denotes the effective condition
cτj1,...,jn

. τj1,...,jn
changes nothing if it is applied in a state

υ such that¬cτj1,...,jn
(υ).

The properties considered in this paper are invariants.
Since how to prove these properties in the OTS/CafeOBJ
method is not related to the translation for our integration,
we only describe here how to specify an invariant ofS
denoted by a predicatep in the OTS/CafeOBJ method.
Let x1, . . . ,xm whose types areD1, . . . , Dm be all free
variables inp except forv whose type isΥ. The operator
denotingp and its defining equation in a moduleINV (INV
imports the module whereS is written, and the module
writing S is called OTS module) are generally as follows:

op inv : H V1 . . . Vm -> Bool

eq inv(S, X1, . . . , Xm) = p(S, X1, . . . , Xm) .

where Vk (k = 1, . . . ,m) is a visible sort denoting
Dk, and Xk is a CafeOBJ variable whose sort isVk.
p(S, X1, . . . , Xm) is a CafeOBJ term denotingp.

3. Translation

We have designed and implemented a translator –
Cafe2Maude, which can automatically translate the for-
malism of the OTS/CafeOBJ method to the formalism of
the OTS/Maude method. Maude [4, 6] is a specifica-
tion language which has model checking facilities whose
performance is comparable to SPIN. The translation from
OTS/CafeOBJ to OTS/Maude is mainly based on [7], in
which we described the OTS/Maude method of specifying
and model checking OTS using Maude.

Basic units of CafeOBJ (Maude) specifications are mod-
ules. An OTS/CafeOBJ (OTS/Maude) specification con-
sists of a list of modules such that one module specifies an
OTS, some specify data types used in the OTS module, and
one (several in OTS/Maude) specifies the properties.

Let M be a CafeOBJ module andL be a list of
CafeOBJ modules;Cdmod, Comod andCinv be the types
of CafeOBJ modules that specify data types, OTS and
invariant properties, respectively; andListOfCmod and

ListOfMmod be the types of lists of CafeOBJ modules and
Maude modules, respectively. The translator can be formal-
ized by the functionT , such that:

T : ListOfCmod −> ListOfMmod;

T (nil) = nil;
T (M L) = if M : Cdmod

then Td(M) T (L)
else if M : Comod then To(M) T (L)

else Ti(M) T (L);

where functionTd takes a CafeOBJ data type module and
generates a corresponding Maude functional module that
specifies the data type; functionTo takes a CafeOBJ OTS
module and generates a corresponding Maude system mod-
ule that specifies the OTS (therefore also called Maude OTS
module); and functionTi takes a CafeOBJ invariant defin-
ing module and generates one Maude state predicate defin-
ing module and one Maude linear temporal logic (LTL)
property defining modules.nil denotes an empty list of
modules. Next, we introduce the three functions in turn.

3.1 Translation of CafeOBJ Data Type Modules

The translation from CafeOBJ data type modules to
Maude functional modules is very straightforward, which
involves only changes of the manner of expression. An
example of such translation is given as follows, which
translates themodule declarationbetween two notations:

mod module name “{” fmod module name is

. . . −>Td . . .

“}” endfm

Other elements of CafeOBJ data type modules such
as operator declarations are translated with syntactic
changes in a similar way.

3.2 Translation of CafeOBJ OTS Module

Generally, a CafeOBJ OTS module consists of two
parts: a signature and a set of equations. A signature
consists of declarations of a hidden sort, observation
and action operators. Equations can be classified into
equations defining initial values of observation operators
and equations defining action operators. Next, we describe
the translations of these basic elements by the functionTo.

Signature: Declaration of a Hidden Sort
A hidden sort, saySys, in the CafeOBJ OTS module de-
notes the universal state spaceΥ, which in practice denotes
the state space of the system under consideration. The
hidden sortSys is considered as a normal sort of Maude
OTS module (we useSys to denote this sort). Besides,
two additional sortsOValue andTRule are declared as
subsorts ofSys , which denote the sorts of observation and

action operators, respectively. By doing this, we can define
that a snapshot (state) of an OTSS is a multi-set, or a bag
of observers and transitions. The declaration of a hidden
sort can be translated by functionTo as follows:

To(∗[Sys]∗) =

subsort OValue TRule < Sys .
op none : -> Sys .
op : Sys Sys -> Sys [assoc comm id: none] .

where∗[Sys]∗ is the declaration ofSys. The translation
result is the actual Maude specification, and the last two
formulas are declarations of constructors of bags. The three
key flagsassoc, comm andid denote the equational at-
tributes of associativity, commutativity and identity. Gener-
ally, a snapshot (state) ofS is in the following form:

ovalue-1 . . . ovalue-M trule-1 . . . trule-N

where ovalue-i (i = 1, . . . ,M) is a term denoting an
observer, andtrule-j (j = 1, . . . , N) is a term denoting a
transition.

Signature: Declarations of Observation and Action
Operators
We assume that all required data types are predefined and
there exist sorts corresponding to these data types. The
declaration of a CafeOBJ observation operator can be
translated by functionTo to Maude one as follows:

To(bop o : Sys Vi1 . . . Vim -> V) =

if m > 0 then

op (o[,...,] :) : Vi1 ... Vim V -> OValue .
else

op (o :) : V -> OValue .

The declaration of a CafeOBJ action operator can be
translated by functionTo to Maude one as follows:

To(bop τ : Sys Vj1 . . . Vjn -> Sys) =

op τ : Vj1 ... Vjn -> TRule .

Equations Defining Initial Values of Observation Oper-
ators
Actually, the equations defining initial values of observa-
tion operators, together with the declarations of transitions
and data abstraction, are used to define the initial state of
an OTSS in another Maude module instead of the Maude
system (OTS) module. So we suspend the description ofTo

for initial state translation until subsection 3.3.2.

Equations Defining Action Operators
Equations defining action operators describe the state
changes of an OTSS. We assume that observers needed
and affected by the execution of the transitionτj1,...,jn

are o1
i11,...,i1m1

, . . . , ol
il
1,...,il

ml

. The CafeOBJ equations

defining the action operators areceq1, . . . , ceql, where
ceqt (t = 1, . . . , l) is generally in the following form:

ceq ot (τ (Sys, Xj1 , . . . , Xjn), Xit
1
, . . . , Xit

mt
) = Xt

if c- τ (Sys, Xj1 , . . . , Xjn) .

c-τ(Sys, Xj1 , . . . , Xjn
) denotes the effective condition of

transitionτj1,...,jn
. Xk (k = j1, . . . , jn, it1, . . . , i

t
mt

, t) is
a variable or a term for the intended sort. The set of equa-
tionsceq1, . . . , ceql is translated to a Maude rewrite rule by
functionTo as follows:

To(ceq1, . . . , ceql) =

crl[rule- τ] :

τ(Xj1 , . . . , Xjn)

(o1[Xi11
, . . . , Xi1m1

] : X1) . . . (ol[Xil
1
, . . . , Xil

ml
] : Xl)

=>

τ(Xj1 , . . . , Xjn)

(o1[Xi11
, . . . , Xi1m1

] : X
′
1) . . . (ol[Xil

1
, . . . , Xil

ml
] : X

′
l)

if c-τ(Xj1 , . . . , Xjn , Xi11
, . . . , Xi1m1

, X1, . . . , Xil
1
,

. . . , Xil
ml

, Xl) .

rule- τ is the label of the rewrite rule. In the transla-
tion, the name of the action operatorτ is used to denote
this label. X

′

k(k = 1, . . . , l) denotes the value returned
by observerok

ik
1 ,...,ik

mk

in the successor state with respect

to τj1,...,jn . Note that for the situation that the value re-
turned byok

ik
1 ,...,ik

mk

is not affected by transitionτj1,...,jn ,

X
′

k equalsXk.

3.3 Translation of CafeOBJ Property Module

To make the description of the property translation by
function Ti more clear, we firstly introduce how to model
check OTS using Maude [7], by which we set up the context
of the property translation.

3.3.1 How to Model Check OTS using Maude

We assume that an OTS is written in Maude as a sys-
tem module whose name isSYSTEM. We first define state
predicates with which propositional LTL formulas denoting
properties are described. Such state predicates are declared
in a module, saySYSTEM-PREDS, which looks like:

mod SYSTEM-PREDS is
protecting SYSTEM .
including SATISFACTION .
subsort Sys < State .
...

endm

where the dots· · · indicate the part in which the syntax and
semantics of state predicates are specified.

In the Maude moduleSATISFACTION (included in
a Maude file model-checker.maude), the module
LTL (also included in the filemodel-checker.maude)
which describes propositional linear temporal logic (LTL)
is imported, the sortState that denotes states of a system
under consideration is declared and the following satisfac-
tion operator is declared:

op _|=_ : State Formula ˜> Bool .

The sortFormula is declared in the moduleLTL, denoting
propositional LTL formulas. The operator is used to define
state predicates. A state predicate denoted by a termpred
holds in a state denoted bystateis defined as follows:

eq state |= pred = true .

Generally,state is in the following form:

ovalue-1 . . . ovalue-M S

whereovalue-i (i = 1, . . . ,M) is a term forOValue and
S is a variable forSys .

We next define propositional LTL formulas denoting
properties to be checked for the OTS and also initial states
of the OTS. Such formulas and initial states are described
in a module, saySYSTEM-CHECK, which looks like:

mod SYSTEM-CHECK is
including SYSTEM-PREDS .
including MODEL-CHECKER .
...

endm

where the dots· · · indicate the part in which operators de-
noting propositional LTL formulas to be checked for the
OTS and initial states of the OTS, and the corresponding
equations are declared.

In the moduleMODEL-CHECKER(included in the file
model-checker.maude), the operatormodelCheck
is declared, which takes two arguments denoting an initial
state and a propositional LTL formula, and returns the result
of the model checking.

Propositional LTL formulas are constructed of state
predicates declared inSYSTEM-PREDS, Boolean connec-
tives and temporal operators declared inLTL. Among tem-
poral operators are “Eventually” denoted by<> , “Hence-
forth” (or “Always”) denoted by[] and “Leads-to” denoted
by |-> .

The term denoting an initial state is generally in the fol-
lowing form:

ovalue-1 . . . ovalue-M trule-1 . . . trule-N

whereovalue-i (i = 1, . . . ,M) is a term forOValue , and
trule-i (i = 1, . . . , N) is a term forTRule .

Let init be a term denoting an initial state andproperty
be a term denoting a propositional LTL formula. We model
check, in the Maude environment, that ifproperty holds at
stateinit as follows:

red modelCheck(init, property) .

3.3.2 Invariant Property Translation

We are now ready to describe property translation based
on previous preliminary knowledge. Given a CafeOBJ in-
variant defining module, what we need to do is to firstly
construct a Maude module that defines state predicates,
and secondly construct another Maude module that defines
propositional LTL formulas denoting properties using these
state predicates. Note that a CafeOBJ invariant for property
consists of a set of predicates and logical connectives, and
each predicate of the set can be represented as a state pred-
icate of the system. So our strategy to property translation
is: (1) classify predicates in a given invariant; (2) declare
state predicate for each of the predicates according to its
kind; (3) replace the predicates in the invariant with corre-
sponding declared state predicates, and also replace logical
connectives with corresponding Maude ones; (4) to simu-
late the semantics of the invariant that a property holds in
any reachable state, we add a temporal operator “Always”
[] in front of the replaced invariant. Thus we get a Maude
propositional LTL formula denoting property correspond-
ing to the invariant.

In the following, we classify the predicates in a given in-
variant into several kinds, and for each kind of predicates
we declare corresponding state predicates in the Maude
SYSTEM-PREDSmodule (suppose the name of the Maude
module that specifies the OTS isSYSTEM). The classifi-
cation method is based on an assumption: each predicate
has at most one observation operator, while predicates with
two or more observation operators should be written sepa-
rately. Such aso1(S, . . .) = o2(S, . . .) should be written as
o1(S, . . .) = value ando2(S, . . .) = value separately.

The first kind of predicates are thosewithout observation
operator. Such predicates can be generally formalized
as bool(V1, . . . , Vm), where V1, . . . , Vm are variables
occurring in this predicate. The functionTi for this kind of
predicates is shown as follows:

Ti(bool(V1, . . . , Vm)) =

S | = prop(V1, . . . , Vm) = true if bool(V1, . . . , Vm) .

the generated formula says that: the state predicate
prop(V1, . . . , Vm) holds at arbitrary stateS as long as the
conditionbool(V1, . . . , Vm) is satisfied.

The predicateswith observation operatorcan be further
classified into two kinds: (1) predicates that are in the form
of normal observation equations, which can be generally
formalized aso(S, V1, . . . , Vm) = term; and (2) other
non-normal ones, which can be generally formalized as
pred(. . . , o(S, V1, . . . , Vm), . . .). The function Ti for
“normal form” predicates is shown as follows:

Ti(o(S, V1, . . . , Vm) = term) =

(o[V1, . . . , Vm] : term) S | =

prop(V1, . . . , Vm, X1, . . . , Xn) = true .

where X1, . . . , Xn are variables possibly contained by
term. The generated formula says that: the state predicate
prop(V1, . . . , Vm, X1, . . . , Xn) holds at arbitrary state as
long as this state contains(o[V1, . . . , Vm] : term) as a
fragment of it. The functionTi for “non-normal form”
predicates is shown as follows:

Ti(pred(. . . , o(S, V1, . . . , Vm), . . .)) =

(o[V1, . . . , Vm] : VAR) S | =

prop(V1, . . . , Vm, X1, . . . , Xn) = true

if pred(. . . , VAR, . . .) .

whereX1, . . . , Xn are variables possibly contained by the
omitted part of this predicate, andVAR is a newly generated
variable denoting the return value of the observation for-
mulao(S, V1, . . . , Vm). As in the condition, we just rewrite
the original predicate but replace the observation formula
with the variableVAR. The generated formula says that:
if the conditionpred(. . . , VAR, . . .) is satisfied, the state
predicateprop(V1, . . . , Vm, X1, . . . , Xn) holds at arbitrary
state as long as this state contains(o[V1, . . . , Vm] : VAR)
as a fragment of it.

After constructing the moduleSYSTEM-PREDSthat
defines state predicates, we can now construct the module
SYSTEM-CHECKthat defines LTL formulas and initial
state. A CafeOBJ invariant for property can be generally
formalized as a tupleinv = (PRED, ◦), wherePRED is
a set of predicates, and◦ is a set of logical connectives.
Assume that the set of state predicatesPROP , each ele-
ment of which corresponds to a predicate in the setPRED,
has been declared in theSYSTEM-PREDSmodule. The
functionTi for the invariant translation is shown as follows:

Ti(inv) = [] (PROP, •) .

where the mapping between logical connectives◦ and• is,
for example,and to /\ , or to \/ and implies to -> .
[] is the Maude notation for LTL operator “Always”.

To make the generated LTL formula model checkable,
we need to instantiate the variables occurring in the LTL for-
mula. We use a simple data abstraction method by means of
reducing the infinite domain of each sort to some concrete
values, where the sort is the sort (or constructive sort) of the
variable occurs in the formula. For example, assume that a
variablesX is contained by a LTL formula, whose sort isD
and the sortD is not constructed by other sorts. We make
the infinite domain ofD finite by selecting some concrete
values, such asd1 andd2 from D. And then we instan-
tiate the variable using these values. Although such simple
data abstraction might not preserve soundness, it is effective
when we aims to finding bugs [10] as in our integration.

The last work left for us is to define initial state in the
Maude moduleSYSTEM-CHECK. Recall that an initial
state of systemS is represented as a bag of observers and
transitions. Given a CafeOBJ OTS module that hasx

observers andy transitions, the equations in the CafeOBJ
OTS module defining initial state, sayinit, are as follows:

eq ot (init, Xit
1
, . . . , Xit

mt
) = Xt .

where t = 1, . . . , x. Also assume that the transitions
in the CafeOBJ OTS module are in the form of
τc(S, Xjc

1
, . . . , Xjc

nc
), where c = 1, . . . , y. The ini-

tial state generated in the Maude moduleSYSTEM-CHECK
by functionTi is shown as follows:

τ1(Xj11
, . . . , Xj1n1

) . . . τy(Xj
y
1
, . . . , Xj

y
ny

)

(o1 [Xi11
, . . . , Xi1m1

] : X1) . . . (ox [Xix
1
, . . . , Xix

mx
] : Xx)

where the firsty terms denote all possible transitions that
may change the state ofS, and the lastx terms denote the
initial values ofS returned by all observers.

To instantiate the variables occurring in the formula for
initial state, we employ the same data abstraction method as
used in generating LTL formula denoting property. Thus,
we can get the instantiated version of the initial state.

As a summary, the translator Cafe2Maude is imple-
mented in Java using Java DOM API for XML type3. Cur-
rent version of the translator consists of about 3000 lines.

4. Case Study: a Mutual Exclusion Algorithm

In this section, we describe a case study on a mutual ex-
clusion algorithm using a queue. The pseudo-code executed
by each processi repeatedly can be described as follows:

l1: put(queue, i)
l2: repeat until top(queue) = i

Critical Section
cs: get(queue)

queue is the queue of process IDs shared by all pro-
cesses. put(queue, i) puts a process IDi into queueat
the end,get(queue) deletes the top element fromqueue,
andtop(queue) returns the top element ofqueue. They are
atomically processed. Moreover, each iteration of the loop
at label l2 is supposed to be atomically processed. Initially
each processi is at label l1 andqueue is empty.

4.1. OTS/CafeOBJ Specification of the Algorithm

The algorithm is modeled as an OTS with two observers
and three transitions. Observerqueue returns the queue of
process IDs shared by all processes. It initially returns the
empty queue; observerpci(i ∈ Pid) returns the label of
a command that processi will execute next, wherePid is
the sort of process IDs. Eachpci initially returns labell1.
Transitionwaiti(i ∈ Pid) denotes that processi executes
the command at labell1; transitiontryi(i ∈ Pid) denotes

3Actually the OTS/CafeOBJ specification is firstly represented as a
XML version of it for the purpose to parse the specification.

that processi executes one iteration of the loop at labell2;
transitionexiti(i ∈ Pid) denotes that processi executes the
command at labelcs. Besides the observers and transitions
of the OTS, some data types used in the OTS, such as labels
of commands, process IDs and queues, are also defined.

The OTS/CafeOBJ specification of the mutual exclusion
algorithm consists of three data type modules (with the
namesLABEL, PID andQUEUE), one OTS module (with
the nameQLOCK) and one invariant property defining mod-
ule (with the nameINV). The three data type modules de-
fine sortsLabel , Pid andQueue, respectively. We show
the data type moduleLABEL as an example, and the other
two data type modules are defined similarly.

The data type module defining sortLabel is written in
CafeOBJ as follows:

mod! LABEL {
[Label]
ops l1 l2 cs : -> Label
op _=_ : Label Label -> Bool comm
var L : Label
eq (L = L) = true .
eq (l1 = l2) = false .
eq (l1 = cs) = false .
eq (l2 = cs) = false . }

The OTS module specifies behaviors (state transitions)
of the algorithm. The hidden sort denoting the states of the
OTS is declared asSys . The operators denoting the ob-
servers and transitions are declared as follows (where ‘-- ’
marks the rest of the line as a comment):

-- observers
bop pc : Sys Pid -> Label
bop queue : Sys -> Queue
-- transitions
bop want : Sys Pid -> Sys
bop try : Sys Pid -> Sys
bop exit : Sys Pid -> Sys

In the following, letI , J be CafeOBJ variables forPid ,
andS be a CafeOBJ variable for the hidden sortSys of the
OTS. Operatorwant is defined with these equations:

op c-want : Sys Pid -> Bool
eq c-want(S,I) = (pc(S,I) = l1) .
ceq pc(want(S,I),J) =

(if I = J then l2 else pc(S,J) fi)
if c-want(S,I) .

ceq queue(want(S,I)) = put(queue(S),I)
if c-want(S,I) .

ceq want(S,I) = S if not c-want(S,I) .

The other two operatorstry andexit are defined with
CafeOBJ equations in a similar way, which are omitted here
due to space limitation.

The specification for a desired property – mutual exclu-
sion property, is shown as follows as an example, which is
defined in the CafeOBJ invariant defining moduleINV :

eq inv(S,I,J) = (pc(S,I)=cs and pc(S,J)=cs
implies I=J) .

The formula says that if two processesI andJ are both in
the critical sectioncs , then the two processes are same.

4.2. Verification of the Algorithm

Let us firstly see the verification flow of our integra-
tion using Cafe2Maude. Before proving the desired prop-
erty by writing proof scores in CafeOBJ, we would like
to firstly check whether there exists a possible proof for
this property using model checking technique. This can
be done by translating the OTS/CafeOBJ specification to
the OTS/Maude specification, which can then be model
checked. If a counter-example arises, we should analyze
the counter-example, and pinpoint the errors and revise the
system (or property) specification; otherwise, if the verifi-
cation result istrue, we make a weak justification that there
might exist a possible proof for this property. We can then
start writing proof scores to give a full-scale proof on infi-
nite state space. Also, during writing proof scores of the de-
sired property, we may need to discover auxiliary invariants
to support the main proof. During this course, the “transla-
tion/model checking” process is employed iteratively.

Back to the case study. Firstly the data type modules
are translated by the functionTd with only changes of the
manner of expression. The data type moduleLABEL as an
example is translated as follows, where the CafeOBJ decla-
ration of equivalence relation for data type and the equations
defining such equivalence relation are ignored because they
are not necessary in Maude functional module:

fmod LABEL is
sort Label .
ops l1 l2 cs : -> Label .
endfm

The hidden sortSys is translated by functionTo exactly
as described in subsection 3.2.

The operator declarations of observers and transitions
are translated as follows (where ‘*** ’ marks the rest of the
line as a comment) :

*** Observers
op pc[_] : _ : Pid Label -> OValue .
op queue : _ : Queue -> OValue .
*** transitions
op want : Pid -> TRule .
op try : Pid -> TRule .
op exit : Pid -> TRule .

Transitionwant as an example is translated as follows,
whereLABELandQUEUEare variables of sortsLabel and
Queue, respectively, which are generated by the translator
denoting the values returned by observation operators be-
fore the transitionwant happens.

crl[want] :
want(J)(pc[J] : LABEL)(queue : QUEUE)
=>
want(J)(pc[J] : l2)(queue : put(QUEUE,J))
if LABEL == l1 .

The translation of the desired property involves the
construction of two modules –QLOCK-PREDSand
QLOCK-CHECK. The module QLOCK-PREDSis con-
structed as follows, where state predicatesprop1(I) ,
prop2(J) and prop3(I,J) correspond to the pred-
icates pc(S,I)=CS , pc(S,J)=CS and I=J in the
CafeOBJ invariant, respectively.

mod QLOCK-PREDS is
...
op prop1 prop2 prop3 : Pid -> Prop .
vars I J : Pid .
var S : Sys .
eq (pc[I] : cs) S |= prop1(I) = true .
eq (pc[J] : cs) S |= prop2(J) = true .
eq S |= prop3(I,J) = true if (I = J) .

endm

To make the infinite domain of the variables finite, we
assign the sortPid with two concrete valuesp1 andp2 ,
for simplicity. And then we use these two values to instan-
tiate the variablesI andJ . The moduleQLOCK-CHECKis
constructed as follows:

mod QLOCK-CHECK is
...
ops p1 p2 : -> Pid .
op init : Sys .
op inv : -> formula .
eq init = want(p1)try(p1)exit(p1)

want(p2)try(p2)exit(p2)
(pc[p1] : l1)(pc[p2] : l1)
(queue : empty) .

eq inv = []((prop1(p1) /\ prop2(p2))
-> prop3(p1,p2)) .

endm

By model checking the property in Maude environment,
we get the verification resulttrue, which convinces us to
start writing proof scores of the property in CafeOBJ.

Let us consider now another example where there ex-
ist errors in the definition of initial state. We name this
initial state asbadinit , which is got by partly changing
init from (pc[p2] : l1) to (pc[p2] : cs) . We
get a counter-example by checking the same mutual exclu-
sion property in Maude environment, which can be repre-
sented as shown in Figure 1 (whereE denotes theempty
element of a queue).

5. Conclusion and Future Work

We described a lightweight integration of theorem prov-
ing and model checking by a translation of the formalisms

pc[p1]: cs
pc[p2]: cs
queue: p1E

pc[p1]: l1
pc[p2]: cs
queue:E

pc[p1]: l2
pc[p2]: cs
queue: p1E

pc[p1]: l2
pc[p2]: l1
queue:E

pc[p1]: l2
pc[p2]: cs
queue: p1E

pc[p1]: l1
pc[p2]: cs
queue:E

pc[p1]: l2
pc[p2]: cs
queue: p2E

pc[p1]: l2
pc[p2]: l2
queue: p2E

badinit

want(p1)

try(p1)

exit(p1) want(p1) exit(p2)

want(p2)

try(p2)

exit(p2)

- - -

� �

6

?��
����*

Figure 1. Counter-example

from the former to the latter, which is done by the translator
Cafe2Maude. In the future, we plan to introduce other ab-
straction methods, such aspredicate abstractioninto our
translator, which can provide users astrong justification
when model checking the abstracted model returnstrue.
Besides, although we have successfully employed our inte-
gration on several case studies, such as formal verification
of secure workflow system, a formal correctness proof of
the translation is needed and will be more convincing.

References

[1] H. Amjad. Combining model checking and theorem prov-
ing. Technical Report, Number 601, University of Cam-
bridge, 2004.

[2] D. Basin, H. Kuruma, K. Takaragi, and B. Wolff. Verifi-
cation of a signature architecture with HOL-Z. InFM05,
LNCS, pages 269–285, 2005.

[3] S. Berezin. Model checking and theorem proving: a unified
framework. PhD thesis, Carnegie Mellon University, 2002.

[4] M. Clavel, F. Duŕan, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and C. Talcott.Maude 2.0 manual: Version 2.1.
http://maude.cs.uiuc.edu/maude2-manual/, March 2004.

[5] R. Diaconescu and K. Futatsugi.CafeOBJ report. Number 6
in AMAST Series in Computing. World Scientific, 1998.

[6] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude
LTL model checker. InWRLA 2002, volume 71 ofENTCS.
Elsevier Science Publishers, 2002.

[7] W. Kong, K. Ogata, and K. Futatsugi. Model-checking ob-
servational transition system with maude. InITC-CSCC
2005, pages 5–6, 2005.

[8] K. Ogata and K. Futatsugi. Rewriting-based verification
of authentication protocols. InWRLA 2002, volume 71 of
ENTCS. Elsevier Science Publisher, 2002.

[9] K. Ogata and K. Futatsugi. Proof scores in the
OTS/CafeOBJ method. InFMOODS ’03, volume 2884 of
LNCS, pages 170–184. Springer, 2003.

[10] J. Rushby. Integrated formal verification: Using model
checking with automated abstraction, invariant generation
and theorem proving. InSPIN 1999, volume 1680 ofLNCS,
pages 1–11. Springer, 1999.

[11] N. Shankar. Combining theorem proving and model check-
ing through symbolic analysis. InCONCUR 2000, volume
1877 ofLNCS, pages 1–16. Springer, 2000.

[12] T. E. Uribe. Combinations of model checking and theorem
proving. In FroCoS 2000, volume 1794 ofLNCS, pages
151–170. Springer, 2000.

