
Chocolat/SMV: A Translator from CafeOBJ into SMV

Kazuhiro Ogata
NEC Software Hokuriku, Ltd.

ogatak@acm.org

Masahiro Nakano, Masaki Nakamura, Kokichi Futatsugi
School of Information Science, JAIST

�m-nakano, masaki-n, kokichi�@jaist.ac.jp

Abstract

Chocolat/SMV is a translator that takes a CafeOBJ spec-
ification of a transition system called an OTS and generates
an SMV specification of a finite version of the OTS. The pri-
mary purpose of the translation is to find errors lurked in
CafeOBJ specifications of OTSs with SMV.

1. Introduction

Interactive theorem provers and model checkers are
complementary. The former can verify that infinite-state
systems have properties, while the latter can find counterex-
amples that finite-state systems do not have properties.

In the OTS/CafeOBJ method[6], a system is modeled as
a transition system called an OTS, the OTS is written in
CafeOBJ[1], an algebraic specification language, and it is
verified that the OTS has properties by using the CafeOBJ
system as an interactive theorem prover. CafeOBJ speci-
fications of OTSs are called OTS/CafeOBJ specifications.
We have done case studies to demonstrate its effectiveness.

But, there are no model checking facilities available in
the OTS/CafeOBJ method and therefore it may take much
time to notice errors in OTS/CafeOBJ specifications. In the
course of the verification with the OTS/CafeOBJ method
that an e-commerce protocol has a property[5], it took a
whole week to notice that there exists a counterexample[4].

That is why we begun designing and implementing
Chocolat/SMV that takes an OTS/CafeOBJ specification
plus some annotations and generates an SMV one. An-
notations are used to tell Chocolat/SMV how to finitize
OTSs. Chocolat/SMV uses a simple data abstraction tech-
nique to finitize OTSs, which is described in the paper. The
primary purpose of Chocolat/SMV is to find counterexam-
ples in OTS/CafeOBJ specifications with the SMV model
checker[2]. Therefore, it is crucial for the translation to
have the property that any counterexample found in an SMV
specification translated from an OTS/CafeOBJ one is also a
counterexample in the OTS/CafeOBJ one. The paper de-
scribes the proof that the translation has the property. The

paper also reports on a case study that Chocolat/SMV is ap-
plied to the NSPK authentication protocol[3].

2 Preliminaries

Let � be a universal state space. An OTS[6] � consists
of ��� �� � � such that 1)� : a set of observers; each � � �
is a function � � � � �, where � is a data type; given
two states ��� �� � �, the equivalence (�� �� ��) between
them wrt � is defined as �� � ������� � �����, 2) � : the
set of initial states such that � 	 �, and 3) � : a set of con-
ditional transitions; each � � � is a function � � � � �
such that ����� �� ����� for each ��� � ���� and each
��� �� � ���; ���� is called the successor state of � � �
wrt � ; the condition �� of � is called the effective condi-
tion. A predicate � is called invariant wrt � iff ���� holds
for every reachable state � wrt �. Observers and transi-
tions may be parameterized, which are generally expressed
as ���� �������� � � � �� and ���� �������� � � � �, pro-
vided that 	�
 
 � and there exists a data type �� such
that �� � �� �� � �� � � � � �� � ��� � � � � ���.

Abstract machines as well as abstract data types can be
specified in CafeOBJ[1], which has two kinds of sorts: vis-
ible and hidden sorts denoting abstract data types and the
state spaces of abstract machines, and two kinds of opera-
tors wrt hidden sorts: action and observation operators that
denote state transitions of abstract machines and let us know
the situation where abstract machines are located. Both
an action operator and an observation operator take a state
of an abstract machine and zero or more data, and return
the successor state and a value that characterizes the situa-
tion where the abstract machine is located. Keyword bop
is used to declare action and observation operators, while
keyword op is used to declare other operators. Operators
are defined with equations. Keyword eq is used to declare
equations, while keyword ceq is used to declare condi-
tional equations; conditions are written after keyword if.

An OTS � is specified in CafeOBJ. � is denoted by a
hidden sort, say H, ���� �������� by a CafeOBJ observation
operator, say o, and ���� �������� by a CafeOBJ action oper-
ator, say a. An action operator is basically specified with



equations by describing how the value returned by each ob-
servation operator changes. A typical form of such equa-
tions looks like

ceq o�a�S� X�� � � � � � X�� �� X�� � � � � � X�� �
� e-a�S� X�� � � � � � X�� � X�� � � � � � X�� � if c-a�S� X�� � � � � � X�� � �

S and each X� are CafeOBJ variables of H and the visible
sort denoting D�. a�� � �� denotes the successor state of S wrt
���������� . e-a�� � �� denotes the value returned by � ��������� in
the successor state. c-a�� � �� denotes ����������� .

SMV[2] is a symbolic model checker, checking if a
finite-state transition system satisfies a property written in
CTL (Computation Tree Logic). A transition system is
written as a module, which consists of a VAR section and
an ASSIGN section. The typed variables declared in a VAR
section denote the state space of a transition system and
states are denoted by possible values assigned to the vari-
ables. Initial values of variables and state transitions are
defined in an ASSIGN section. Initial values of variables
are defined with operator init such that ������� :=���.
State transitions are defined with operator next such that
������� :=���. Expression Exp can be written with
guarded commands (using case statements). When the
value obtained by evaluating expression Exp is a set, one
value is nondeterministically chosen from the set and as-
signed to variable �. Modules are regarded as records; vari-
ables in a VAR section are members of a record.

3 Translation from OTS/CafeOBJ into SMV

When OTS/CafeOBJ specifications are translated into
SMV ones, we have two problems to solve: 1) composed
data types such as lists should be encoded in basic data
types such as arrays and integers available in SMV, and 2)
OTSs should be finitized. For the first problem, data types
available in SMV and those straightforwardly made of such
available data types are only used in OTS/CafeOBJ speci-
fications that are translated into SMV specifications. Cur-
rently available data types are truth values, natural numbers,
lists, records and those made of these data types. The sec-
ond problem is discussed in detail in the coming subsection.
In the rest of this section, we also describe how to generate
SMV specifications of finite OTSs and the proof that the
translation has a desired property.

3.1 Simple Data Abstraction

We describe how to generate a finite OTS � � � ����
� �� � �� from an (infinite) OTS � � ��� �� � �. For an OTS
� � to be finite means that the coset ������ consists of finite
elements, where �� is the state space of � �.

For each data type � used in �, which is regarded as a
set of values, we choose a finite set �� such that �� 	 �

and define ��� as �� � �out	 where out	 �� �. out	
denotes an arbitrary element in � but not in � �. We also
define the equivalence relation �	�� as

�� �	�� �� �

��
�

�� �	 �� �� �� � �� � �� � ��

true �� �� �� �� � �� �� ��

false ���������

The equivalence relation �	�� can also be used to check if
two elements of � are equal.

Let �� be the state space of � � such that �� � �������
and ���� �� �. Using the equivalence relation �	�� on each
data type �, a finite OTS � � is defined as follows:

� �� is ������ �������� � ���� �������� � �� ��� � ��
��
� � � � � ��� �

��
��
. Each ����� ��������

is defined as

����� ��������
��� �

��
�

���� �������� ���
�� ���� �������� ��� � ��

� � � � �
out	�

���������

By defining ��, the equivalence relation ��� on �� is also
defined, and the coset ������ is finite.

� � � is �. Note that although ���� may consist of infinite
elements, ����� consists of finite elements.

� � � �� is called being inside wrt � � if ����� �������� ��� � ��
�

for every ����� ��������
� ��. For � � �� to be inside wrt � �

is denoted by the predicate inside�� that is defined as

inside����� � ������ �������� � ��������� �������� ��� � ��

��

� � may be omitted from inside�� . � � is �� �
��

��
�������

��

�

���� �������� � � , where each ���� is ��� if ���� � ��
��

and
out	��

otherwise. Each � �
��

��
�������

��

is defined as

� �
��

��
�������

��

��� �

��
�

���� �������� ��� �� ���� � ��
��
�

� � � � ���� � ��
��
� inside�����

���� ���������

According to the definition of � �, a predicate � over � to
be proved invariant wrt � is redefined as

����� � �inside����� � �����

3.2 Generating SMV Specifications

An OTS � � translated from an (infinite) OTS � is finite-
state (precisely the coset ������ is finite) and the data types
used in � � as well as � are available in SMV from the as-
sumption. Therefore, there is a clear correspondence be-
tween � � and an SMV transition system up to data types.
An SMV specification of � � is generated in the way: 1) � � is
represented as an SMV module, 2) a non-parameterized ob-
servation �� � �� � ��� � �� is represented by a variable �
whose type is ���; a parameterized observation ����� ��������

�



�� � ���
� � �� is represented by an 	-dimensional array

� � array � �� ����
��
���� of � � � array � �� ����

��
���� of���

� ,
where ���

��
� is the number of the elements in � �

��
, 3) the ini-

tial states are defined by setting the variables and arrays de-
noting the observations to values with operator init, and
4) the transitions are defined wrt each of the variables and
arrays denoting the observers with operator next.

3.3 Soundness of the Translation

Let� be the SMV transition system into which an OTS
� is translated via a finite OTS � �. Since there is a clear
correspondence between � and � �, any counterexample
found in � is clearly a counterexample in � �. Therefore,
it suffices to prove that any counterexample found in � � is a
counterexample in �. We assume that � � is not empty.

Theorem 1 Any counterexample in � � is also a counterex-
ample in �.

We need two lemmas, which are as follows:

Lemma 1 ���

�� �
�

��� � ����� ���

��
�������

��

� � ��

�inside�����

���� � ���

��� ��� � �
��

��
�������

��

���

����

� inside�����

��

Lemma 2 ���

�� �
�

��� � ����� ���

��
�������

��

� � ������� � ��

�inside�����

���� � ���

��� ��� � �
��

��
�������

��

���

����

� ������ �� ���� �������� ��
�

��� � ����� ��� ��

�����

Proof (Theorem 1) Let � �
� be an arbitrary reachable state

wrt � � such that ������
��. Let ��

�� �
�
�� � � � � �

�
� be an arbitrary

execution fragment starting from an arbitrary initial state
��
� � �

� and ending with � �
�. From the definition of ��, we

have
������

��� �inside�����

�� � ����
�

��� (1)

From Lemma 1 and (1), inside�����

�� holds for every � �
��� �� � � � � 
. Because � � is the same as �, ��

� � �. Be-
sides, from Lemma 2, we can construct an execution frag-
ment ��� ��� � � � � �� of � such that �� ��� ��

� for every
� � ��� �� � � � � 
. From (1), ������. �

Proof (Lemma 1) Let us consider arbitrary � �

�� �
�

��� � ��

and � �
��

��
�������

��

� � � such that the premise holds. From the

assumption, we have inside���� ���

��
�������

��

���

���. From this

and the definitions of inside�� and � ���

��
�������

��

, we have

������ ��������
� ���

�if ���� � ��
��
� � � � � ���� � ��

��
� inside�����

��
then ����� ��������

����� �������� ��
�

��� � ��
�

else ����� ��������
������ � ��

��

From this, since ����� ��������
������ �� ��

� and �� is not
empty, we have inside�����

��. �

Proof (Lemma 2) Let us consider arbitrary � �

�� �
�

��� � ��

and � ���

��
�������

��

� � � such that the premise holds. From

the assumption, we have inside���� ���

��
�������

��

���

�����. From

this and the definition of � �

��

��
�������

��

, � �
��

��
�������

��

���

�� must

be ���� �������� ��
�

��. Let ���� be ���� �������� ��
�

�� as a witness.
Clearly, ���� �� ���� �������� ��

�

��, and from the assumption,
we have ���� ��� ��

���. �

4 A Case Study: The NSPK Protocol

The NSPK authentication protocol[3] can be written as

Msg1 �� � : ������ ��
Msg2 � � � : ������ ���
Msg3 �� � : ������

We suppose that each principal is given a private/public key
pair, and the public key is available to all principals but the
private key to its owner only. A message 	 encrypted with
the principal �’s public key is denoted by �
�	�.

4.1 Modeling and Description of the Protocol

We suppose that there exist the intruder as well as
trustable principals. In addition to the actions specified by
the protocol, the intruder gleans as many nonces as possible
and fakes messages based on gleaned nonces.

Principals are denoted by visible sort Nat for natu-
ral numbers; 0 denotes the intruder and positive integers
trustable principals. Nonces are denoted by Nat. Mes-
sages are denoted by visible sort Msg; the data construc-
tor of messages is m; m��� �� 
�� 
	� �� denotes ���
�� ��
if � � �, ���
�� 
	� if � � � and ���
�� if � � 	;
given m��� �� 
�� 
	� ��, projections tag, key, nonce1,
nonce2 and id return �, �, 
�, 
	 and �. Used nonces
are denoted by visible sort UNonce; the constructor of used
nonces are n; n�
� �� �� denotes the used nonce 
 that has
been generated by principal � to send to principal �; given
n�
� �� ��, nonce, creator and receiver return 
, �
and �. We use three kinds of lists, which are those of natural
numbers (denoted by visible sort Natlist), those of mes-
sages (by visible sort Msglist) and those of used nonces
(by visible sort Nlist); for either kind of lists empty de-
notes the empty list, c is the data constructor of non-empty
lists and isin is the membership predicate; for lists of un-
used nonces used takes a nonce 
 and a list of unused
nonces and checks if there exists a used nonce whose first
argument is 
 in the list.

The OTS modeling the protocol consists of three obser-
vations and six parameterized transitions. The correspond-
ing CafeOBJ observation and action operators are

bop usedNonces : Sys -> Nlist
bop gleanedNonces : Sys -> Natlist



bop network : Sys -> Msglist
bop sendMsg1 : Sys Nat Nat Nat -> Sys
bop sendMsg2 : Sys Nat Nat Msg -> Sys
bop sendMsg3 : Sys Nat Msg Msg -> Sys
bop fakeMsg1 : Sys Nat Nat Nat -> Sys
bop fakeMsg2 : Sys Nat Nat Nat -> Sys
bop fakeMsg3 : Sys Nat Nat -> Sys

Sys is the hidden sort denoting the state space. Given a
state �, usedNonces��� is the list of used nonces in state
�, gleanedNonces��� is the list of nonces gleaned by the
intruder in state �, and network��� is the list of messages
sent until state �, denoting the network. The first three ac-
tion operators formalize sending messages following to the
protocol, and the remaining the intruder’s faking messages.
sendMsg2 is defined as

ceq usedNonces(sendMsg2(S,Q,N,M))
= c(n(N,Q,id(M)),usedNonces(S))
if c-sendMsg2(S,Q,N,M) .

ceq gleanedNonces(sendMsg2(S,Q,N,M))
= c(N,gleanedNonces(S)) if c-sendMsg2(S,Q,N,M)
and (Q == 0 or id(M) == 0).

ceq gleanedNonces(sendMsg2(S,Q,N,M))
= gleanedNonces(S) if c-sendMsg2(S,Q,N,M)
and not(Q == 0 or id(M) == 0).

ceq network(sendMsg2(S,Q,N,M))
= c(m(1,id(M),nonce1(M),N,0),network(S))
if c-sendMsg2(S,Q,N,M) .

ceq sendMsg2(S,Q,N,M) = S
if not c-sendMsg2(S,Q,N,M) .

c-sendMsg2(S,Q,N,M) denotes the effective condition
of the transition denoted by sendMsg2, defined as

isin(M,network(S)) and tag(M) == 0 and
key(M) == Q and not(used(N,usedNonces(S)))

c-sendMsg2��� �� 
�	� means that in a state �, there ex-
ists a Msg1 	 in the network that is addressed to �, 	 is
encrypted with �’s public key, and a nonce 
 generated by �
for replying to 	 is really fresh. If this condition holds, the
Msg2 denoted by the term m��� � � �� is put into the network
and the nonce N used is put into the list of unused nonces. In
addition to the condition, if the principal Q who generated N
is the intruder or the public key id(M) used for m��� � � �� is
the intruder’s, then N is put into the list of gleaned nonces.
fakeMsg2 is defined as

eq usedNonces(fakeMsg2(S,Q,N1,N2))
= usedNonces(S) .

eq gleanedNonces(fakeMsg2(S,Q,N1,N2))
= gleanedNonces(S) .

ceq network(fakeMsg2(S,Q,N1,N2))
= c(m(1,Q,N1,N2,0),network(S))
if c-fakeMsg2(S,Q,N1,N2) .

ceq fakeMsg2(S,Q,N1,N2) = S
if not c-fakeMsg2(S,Q,N1,N2) .

c-fakeMsg2(S,Q,N1,N2) denotes the effective condi-
tion of the transition denoted by fakeMsg2, defined as

isin(N1,gleanedNonces(S))
and isin(N2,gleanedNonces(S))

The equations say that if two nonces are available to the
intruder, the intruder can fake and send a Msg2. The re-
maining action operators are defined likewise.

One of the desired properties to verify for the protocol is
the (nonce) secrecy property, which is expressed as

(isin(n(N,P,Q),usedNonces(S)) and isin(N,
gleanedNonces(S))) implies (P == 0 or Q == 0)

This means that an arbitrary nonce that the intruder can
glean has been generated by the intruder or by trustable
principals for sending to the intruder.

4.2 Model-Checking the Protocol

We specify that the number of principals involved is
3 (0, 1 and 2 are used), the number of nonces gener-
ated is 3 (0, 1 and 2 are used), the length of the list (for
usedNonces) of used nonces is 2, the length of the list
(for gleanedNonces) of gleaned nonces is 2 and the
length of the list (for network) of messages is 4, and
then translate the OTS/CafeOBJ specification of the proto-
col into an SMV specification with Chocolat/SMV.

The CafeOBJ module where visible sort Msg and its re-
lated operators and equations are declared is translated into
this SMV module

MODULE Msg
VAR tag : 0 .. 2; key : 0 .. 2;
nonce1 : 0 .. 2; nonce2 : 0 .. 2; id : 0 .. 2;

The variables in module Msg correspond to the arguments
of data constructor m for messages in the OTS/CafeOBJ
specification. We also have the predicate Msg eq that
checks if two instances of module Msg are the same;
Msg eq is defined as

#define Msg_eq(m, n) (m.tag = n.tag &
m.key = n.key & m.nonce1 = n.nonce1 &
m.nonce2 = n.nonce2 & m.id = n.id)

The CafeOBJ module where visible sort Msglist and its
related operators and equations are declared is translated
into this SMV module

MODULE Msglist
VAR _c : 0 .. 5; _ar : array 1 .. 4 of Msg;

Variable c records how many elements of the array ar
are occupied; if c is 0, no elements are used and if c is 4,
an overflow has occurred. Predicate Msglist isin eq
checking if two instances of module Msglist are the same
and predicate Msglist isin checking if there exists an
instance of module Msg in the array ar of an instance of
module Msglist are defined as

#define Msglist_isin_eq(v, e) (Msg_eq(v, e))
#define Msglist_isin(e, a)
(a._c >= 1 & Msglist_isin_eq(e, a._ar[1]) |
a._c >= 2 & Msglist_isin_eq(e, a._ar[2]) |
a._c >= 3 & Msglist_isin_eq(e, a._ar[3]) |
a._c >= 4 & Msglist_isin_eq(e, a._ar[4]))



The CafeOBJ modules for visible sorts UNonce, Nat-
list and Nlist are translated into SMV modules like-
wise. Visible sorts Nat and Bool (the visible sort for truth
values) are translated into (bounded) integers and truth val-
ues in SMV.

The CafeOBJ module where the OTS modeling the pro-
tocol is written is translated into the SMV module NSPK
whose VAR section is

MODULE NSPK
VAR gleanedNonces : Natlist; network : Msglist;
usedNonces : Nlist;
_va0 : 0 .. 2; _va1 : 0 .. 2; _va2 : Msg;
_va3 : Msg; _va4 : Msg; _va5 : 0 .. 2;
action : {fakeMsg1, fakeMsg2, fakeMsg3,

sendMsg1, sendMsg2, sendMsg3};

The three CafeOBJ observation operators are translated
into variables gleanedNonces, network and used-
Nonces. Variables va0, . . . , va5 are used in assign-
ments implementing state transitions as arbitrary values of
their corresponding types. Variable action corresponds
to an arbitrary one of the six action operators.

In the ASSIGN section of module NSPK, assignments
implementing state transition are written. The assignments
for variable action are

init(action) := fakeMsg1;
next(action) := {fakeMsg1, fakeMsg2, fakeMsg3,

sendMsg1, sendMsg2, sendMsg3};

which mean that the initial value of action is fakeMsg1
and a sate transition arbitrarily chooses one among the six
values as its value. The assignments for variable va2 are

init(_va2.tag) := 0; init(_va2.key) := 0;
init(_va2.nonce1) := 0; init(_va2.nonce2) := 0;
init(_va2.id) := 0;
next(_va2.tag) := {0, 1, 2};
next(_va2.key) := {0, 1, 2};
next(_va2.nonce1) := {0, 1, 2};
next(_va2.nonce2) := {0, 1, 2};
next(_va2.id) := {0, 1, 2};

Assignments for variables va0, va1, va3, va4 and
va5 are made likewise.

Some of the assignments for variable network look
like
next(network._c) :=
case
...
action = fakeMsg2 & Natlist_isin(_va1,gleanedNonces) &
Natlist_isin(_va5,gleanedNonces) & TRUE :
case network._c < 4 : network._c + 1; 1 : 5; esac;

action = fakeMsg2 & ! (Natlist_isin(_va1,
gleanedNonces) & Natlist_isin(_va5,gleanedNonces)) &
TRUE : network._c;

...
action = sendMsg2 & Msglist_isin(_va2,network)
& _va2.tag = 0 & _va2.key = _va0 & ! Nlist_used(_va1,
usedNonces) & TRUE : case network._c < 4 : network._c
+ 1; 1 : 5; esac;

action = sendMsg2 & ! (Msglist_isin(_va2,network) &
_va2.tag = 0 & _va2.key = _va0 & ! Nlist_used(_va1,
usedNonces)) & TRUE : network._c;

...

esac;
next(network._ar[1].tag) :=
case
...
action = fakeMsg2 & Natlist_isin(_va1,gleanedNonces) &
Natlist_isin(_va5,gleanedNonces) & TRUE :
case network._c = 4 : 0; network._c = 0 : 1 + 0; 1 :
network._ar[1].tag; esac;

action = fakeMsg2 & ! (Natlist_isin(_va1,
gleanedNonces) & Natlist_isin(_va5,
gleanedNonces)) & TRUE : network._ar[1].tag;

...
action = sendMsg2 & Msglist_isin(_va2,network)
& _va2.tag = 0 & _va2.key = _va0 & ! Nlist_used(_va1,
usedNonces) & TRUE : case network._c = 4 : 0;
network._c = 0 : 1 + 0; 1 : network._ar[1].tag; esac;

action = sendMsg2 & ! (Msglist_isin(_va2,network)
& _va2.tag = 0 & _va2.key = _va0 & ! Nlist_used(_va1,
usedNonces)) & TRUE : network._ar[1].tag;

...
esac;

The omitted parts are made likewise and so are the remain-
ing assignments for variable network. Assignments for
the remaining variables are also made likewise.

We used NuSMV (see nusmv.irst.itc.it), an im-
plementation of SMV, to model-check the SMV specifica-
tion translated from the OTS/CafeOBJ specification of the
protocol wrt the secrecy property. It took about 15 min-
utes for NuSMV to model-check the SMV specification on
a computer with 4.3GHz Pentium 4 and 1GB memory and
report on a counterexample. The counterexample says that
four state transitions lead to a state where the secrecy prop-
erty does not hold.

5 Conclusion

We have described how OTS/CafeOBJ specifications are
translated into SMV ones and the proof that the transla-
tion has the desired property that any counterexample found
in the SMV specification translated from an OTS/CafeOBJ
one is also a counterexample in the OTS/CafeOBJ one. We
have also reported on the case study that Chocolat/SMV is
applied to the NSPK authentication protocol.

References

[1] R. Diaconescu and K. Futatsugi. CafeOBJ report. AMAST
Series in Computing, 6. World Scientific, 1998.

[2] K. L. McMillan. Symolic Model Checking: An Approach to
the State Explosion Problem. Kluwer, 1993.

[3] R. M. Needham and M. D. Schroeder. Using encryption
for authentication in large networks of computers. CACM,
21(12):993–999, 1978.

[4] K. Ogata and K. Futatsugi. Flaw and modification of the �KP
electronic payment protocols. IPL, 86:57–62, 2003.

[5] K. Ogata and K. Futatsugi. Formal analysis of the �KP elec-
tronic payment protocols. In 1st ISSS, LNCS 2609, pages
441–460. Springer, 2003.

[6] K. Ogata and K. Futatsugi. Proof scores in the OTS/Cafe-
OBJ method. In 6th FMOODS, LNCS 2884, pages 170–184.
Springer, 2003.


