Chocolat/SMV: A Trandator from CafeOBJ into SMV

Kazuhiro Ogata
NEC Software Hokuriku, Ltd.
ogatak @acm.org

Abstract

Chocolat/SMV isatrandator that takes a CafeOBJ spec-
ification of a transition system called an OTSand generates
an SMV specification of a finite version of the OTS. The pri-
mary purpose of the trandation is to find errors lurked in
CafeOBJ specifications of OTSswith SMV.

1. Introduction

Interactive theorem provers and model checkers are
complementary. The former can verify that infinite-state
systems have properties, while the | atter can find counterex-
amplesthat finite-state systems do not have properties.

In the OTS/CafeOBJ method[6], a system is modeled as
a transition system called an OTS, the OTS is written in
CafeOBJ[1], an algebraic specification language, and it is
verified that the OTS has properties by using the CafeOBJ
system as an interactive theorem prover. CafeOBJ speci-
fications of OTSs are caled OTS/CafeOBJ specifications.
We have done case studies to demonstrate its effectiveness.

But, there are no model checking facilities available in
the OTS/CafeOBJ method and therefore it may take much
time to notice errorsin OTS/CafeOBJ specifications. In the
course of the verification with the OTS/CafeOBJ method
that an e-commerce protocol has a property[5], it took a
whole week to notice that there exists a counterexample[4].

That is why we begun designing and implementing
Chocolat/SMV that takes an OTS/CafeOBJ specification
plus some annotations and generates an SMV one. An-
notations are used to tell Chocolat/SMV how to finitize
OTSs. Chocolat/SMV uses a simple data abstraction tech-
nigqueto finitize OTSs, which is described in the paper. The
primary purpose of Chocolat/SMV is to find counterexam-
ples in OTS/CafeOBJ specifications with the SMV model
checker[2]. Therefore, it is crucia for the trandation to
havethe property that any counterexamplefoundinan SMV
specification translated from an OTS/CafeOBJoneisalso a
counterexample in the OTS/CafeOBJ one. The paper de-
scribes the proof that the trangation has the property. The

Masahiro Nakano, Masaki Nakamura, Kokichi Futatsugi
School of Information Science, JAIST
{m-nakano, masaki-n, kokichi} @jaist.ac.jp

paper a so reports on a case study that Chocolat/SMV is ap-
plied to the NSPK authentication protocol[3].

2 Preliminaries

Let T be auniversal state space. An OTS[6] S consists
of (O,Z,T) suchthat 1) O : aset of observers, eacho € O
isafunctiono : Y — D, where D is a data type; given
two states vy, v2 € T, the equivalence (v, =g vs) between
them wrt S isdefined as Vo € O.o(v1) = o(v2), 2) Z: the
set of initial statessuchthat Z C Y, and 3) 7 : aset of con-
ditional transitions, each 7 € 7 isafunctiont : ¥ — T
such that 7(v;) =s 7(vy) for each [v] € T/=s and each
v1,v2 € [v]; 7(v) is called the successor state of v € T
wrt 7; the condition ¢, of 7 is called the effective condi-
tion. A predicate p iscalled invariant wrt S iff p(v) holds
for every reachable state v wrt S. Observers and transi-
tions may be parameterized, which are generally expressed
as Od; yeoeydiy, - T - D; and Tdjy yerdy, - T > 7T, pro-
vided that m,n > 0 and there exists a data type D, such
that dj, € Dy (k =1, ... im0y J1s---sjn)-

Abstract machines as well as abstract data types can be
specified in CafeOBJ[1], which has two kinds of sorts: vis-
ible and hidden sorts denoting abstract data types and the
state spaces of abstract machines, and two kinds of opera-
tors wrt hidden sorts: action and observation operators that
denote state transitions of abstract machinesand | et us know
the situation where abstract machines are located. Both
an action operator and an observation operator take a state
of an abstract machine and zero or more data, and return
the successor state and a value that characterizes the situa-
tion where the abstract machine is located. Keyword bop
is used to declare action and observation operators, while
keyword op is used to declare other operators. Operators
are defined with equations. Keyword eq is used to declare
equations, while keyword ceq is used to declare condi-
tional equations; conditions are written after keyword i f .

An OTS S is specified in CafeOBJ. T is denoted by a
hidden sort, say H, o4, ,....4;,, by a CafeOBJ observation
operator, say o, and 74, .4, by aCafeOBJ action oper-

G

ator, say a An action operator is basically specified with

equations by describing how the value returned by each ob-
servation operator changes. A typical form of such equa-
tionslookslike

ceq o(&(S, Xjy s - -

7ea(S,le,...,X]-n,Xil,...,

Sand each X, are CafeOBJ variables of H and the visible
sort denoting Dy.. &. . .) denotesthe successor state of Swrt
Tjy i+ €& ..) denotesthe valuereturned by o;, ... ;,, in
the successor state. c-&(. . .) denotesc,;

SMV[2] is a symbolic model checker checki ng if a
finite-state transition system satisfies a property written in
CTL (Computation Tree Logic). A transition system is
written as a module, which consists of a VAR section and
an ASSIGN section. Thetyped variablesdeclaredina VAR
section denote the state space of a transition system and
states are denoted by possible values assigned to the vari-
ables. Initial values of variables and state transitions are
defined in an ASSIGN section. Initial values of variables
are defined with operator i ni t such that init(z) := Exp.
State transitions are defined with operator next such that
next(z) := Exp. Expression Exp can be written with
guarded commands (using case statements). When the
value obtained by evaluating expression Exp is a set, one
value is nondeterministically chosen from the set and as-
signed to variable z. Modules are regarded as records; vari-
ablesin a VAR section are members of arecord.

X5) Xigy s Xiy,)
Xim)if c—a(S,X]-I,...,X]-n).

3 Trandation from OTS/CafeOBJ into SMV

When OTS/CafeOBJ specifications are trandated into
SMV ones, we have two problems to solve: 1) composed
data types such as lists should be encoded in basic data
types such as arrays and integers available in SMV, and 2)
OTSs should be finitized. For the first problem, data types
availablein SMV and those straightforwardly made of such
available data types are only used in OTS/CafeOBJ speci-
fications that are trandated into SMV specifications. Cur-
rently available datatypes are truth values, natural numbers,
lists, records and those made of these data types. The sec-
ond problemisdiscussed in detail inthe coming subsection.
In the rest of this section, we also describe how to generate
SMV specifications of finite OTSs and the proof that the
translation has a desired property.

3.1 Simple Data Abstraction

We describe how to generate a finite OTS S’ = (O,
7', 7"y froman (infinite) OTS S = (O, Z, T). For an OTS
S' to befinite meansthat the coset Y’ /=g consists of finite
elements, where Y’ is the state space of S’.

For each data type D used in S, which is regarded as a
set of values, we choose afinite set D' such that D' C D

and define D" as D' U {outp} where outp ¢ D. outp
denotes an arbitrary element in D but not in D'. We also
define the equivalencerelation = pr as

diy =p d» ifdleDl/\dQEDl
dy =pr doy = true if d € D' Ads ¢ D'
false otherwise

The equivalence relation = can aso be used to check if
two elements of D are equal.

Let Y’ bethe state space of S’ suchthat Y/ = Y U{vout }
and vy € Y. Using the equivalencerelation = p» on each
datatype D, afinite OTS S’ is defined as follows:

e O'is{oy, _.a € 0,d;, € D;

i |0di1,...,di TR
! ! 1 1
D; }. Eachoy, 4 isdefinedas

d;

Tm

€

Od;,,...\diy, (U)
0y, ooy, (V) = if 04, .. di,,
outp,

By defining O’, the equivalencerelation =5 on Y’ isaso
defined, and the coset Y’/ /= isfinite.

e 7' isZ. Notethat although Z/=s may consist of infinite
elements, Z/=s' consists of finite elements.

ev € T'iscalledbeinginsdewrtS"if o, 4 (v) € Dj
forevery oy, 4, € O'.Forv € Y'tobeinsidewrt S’
is denoted by the predicateinsides: that is defined as

€ OI‘(Oiiil,...,dim (U) € D;)

(v)yeD;AveT
otherwise

insides (v) = Voiiil vonds,

S’ may be omitted from insides.. T is {Td/ o |
Td;, ...d;, € T} whereeachd), isd;, ifdj € D’k and

outp, otherwise. Each ;, a is defined as

j1e
Tdjyedjn (’U) if dlj1 € D;-lf\
AN d}n € D;.n A insides: (v)
Vout otherwise

Rj

&
=
I

According to the definition of S’, apredicate p over T to
be proved invariant wrt S is redefined as

p'(v) = (insides: (v) = p(v))
3.2 Generating SMV Specifications

An OTS S’ trandated from an (infinite) OTS S isfinite-
state (precisely thecoset Y/ /=g isfinite) and the datatypes
used in &’ aswell as S are available in SMV from the as-
sumption. Therefore, there is a clear correspondence be-
tween S’ and an SMV transition system up to data types.
AnSMV specification of S’ isgeneratedintheway: 1) S’ is
represented as an SMV module, 2) anon-parameterized ob-
servationo’ : T' — D" € O' isrepresented by avariable x
whosetypeis D"; aparameterized observationog, ;.

im

Y’ — D} : O'isrepresented by an m-dimensional array
a:array0..(|D; |-1)of ... array0..(|D; |-1)of D,
where|D; | isthe number of theelementsin D} , 3) theini-
tial states are defined by setting the variables and arrays de-
noting the observations to values with operator i ni t , and
4) the transitions are defined wrt each of the variables and
arrays denoting the observers with operator next .

3.3 Soundnessof the Trandation

Let M bethe SMV transition system into which an OTS
S is trandated via a finite OTS S’. Since there is a clear
correspondence between M and S’, any counterexample
found in M is clearly a counterexamplein S’. Therefore,
it sufficesto prove that any counterexamplefoundin S’ isa
counterexamplein S. We assume that O’ is not empty.

Theorem 1 Any counterexamplein S’ is also a counterex-
amplein S.
We need two lemmas, which are as follows:
o €T
(insides: (v 1) A (Vo =50 7y (V1))
= insides: (vy},)

Lemmal Vuy, v, € T'.V7,,

Lemma2 Vv, vy, € Y'.V7, 0 €T'Jug €.

seeealy

. . 71
(insides (V1) A (Vs = Ty oy (V1))

= (k41 =5 Ta;, ..z, (V) A (Vkt1 =57 Uy 1))

Proof (Theorem1) Let v, be an arbitrary reachable state
wrt S’ such that —p'(v},). Let v, v, ..., v, bean arbitrary
execution fragment starting from an arbitrary initial state
vy € 7' and ending with v/,. From the definition of p’, we
have

=p'(vy,) & (insides (vy,) A =p(vy,)) D
From Lemmal and (1), insides: (v},) holds for every k €
{0,1,...,n}. Because 7' isthesame as Z, v, € Z. Be-
sides, from LemmaZ2, we can construct an execution frag-
ment vy, v1,...,v, Of S such that v, =s v}, for every
ke {0,1,...,n}. From (1), ~p(v,). O

Proof (Lemmal) Letusconsider arbitrary vy, vp , € T’
andr), . € T’ suchthat the premise holds. From the

Jpom

assumption, we have insides/ (7}, , (v},)). From this
J1°7 " in
and the definitions of insides: and 7, ~ ,, , wehave
J1°7 " in

voiiil,--qdi e 0.

(if ,E Dl A...Nd; € D,}" A insildegr(v;c)
then Odil,...,dim (delnn,djn (Uk)) € Di

dseoy, 4. (Vout) € D))

From this, since oy, 4, (vour) ¢ Dj and O’ is not
empty, we haveinsides: (vy,). O

Proof (LemmaZ2) Letusconsider arbitrary vy, vy, € T’
and 7}, € T' such that the premise holds. From
J1°° in
the assumption, we haveinsides: (7, , (vj,,)). From
J1° " in
this and the definition of 7/, . , 7, . (v;) must
17 in 17 in

beta,d;, (V). Letvpyr beTq, q; (v})@sawitness.
Clearly, vey1 =s Ta;, ,....a;, (v},), and from the assumption,

Jion

wehave vy =s V) - O

4 A Case Study: The NSPK Protocol

The NSPK authentication protocol[3] can be written as

Msgl p—gq &Eq(np, p)
Msg2 q—p Ep(np,ng)
Msg3 p—gq Eq(nq)

We suppose that each principal is given a private/public key
pair, and the public key is available to al principals but the
private key to its owner only. A message m encrypted with
the principal p’s public key is denoted by £,(m).

4.1 Modeling and Description of the Protocol

We suppose that there exist the intruder as well as
trustable principals. In addition to the actions specified by
the protocol, the intruder gleans as many nonces as possible
and fakes messages based on gleaned nonces.

Principals are denoted by visible sort Nat for natu-
ral numbers; O denotes the intruder and positive integers
trustable principals. Nonces are denoted by Nat . Mes-
sages are denoted by visible sort Msg; the data construc-
tor of messages is m m(t, k,nl,n2,p) denotes £ (nl,p)
if t = 0, E&((nl,n2) ift = 1 and E(nl) if t = 2;
given m(t, k,nl,n2,p), projections t ag, key, noncel,
nonce2 and i d return ¢, k, nl, n2 and p. Used nonces
are denoted by visible sort UNonce; the constructor of used
nonces are n; n(n, p, q) denotes the used nonce n that has
been generated by principal p to send to principa ¢; given
n(n,p,q), nonce, creat or andr ecei ver returnn, p
and g. We use threekinds of lists, which are those of natural
numbers (denoted by visible sort Nat | i st), those of mes-
sages (by visible sort Msgl i st) and those of used nonces
(by visiblesort NI i st); for either kind of listsenpt y de-
notes the empty list, ¢ isthe data constructor of non-empty
listsandi si n isthe membership predicate; for lists of un-
used nonces used takes a nonce n and a list of unused
nonces and checks if there exists a used nonce whose first
argumentisn in thelist.

The OTS modeling the protocol consists of three obser-
vations and six parameterized transitions. The correspond-
ing CafeOBJ observation and action operators are

bop usedNonces
bop gl eanedNonces :

: Sys -> Nist
Sys -> Natli st

bop network : Sys -> Msglist
bop sendMsgl : Sys Nat Nat Nat -> Sys

bop sendMsg2 : Sys Nat Nat Msg -> Sys
bop sendMsg3 : Sys Nat Msg Msg -> Sys
bop fakeMsgl : Sys Nat Nat Nat -> Sys
bop fakeMsg2 : Sys Nat Nat Nat -> Sys
bop fakeMsg3 : Sys Nat Nat -> Sys

Sys is the hidden sort denoting the state space. Given a
state s, usedNonces(s) isthelist of used noncesin state
s, gl eanedNonces(s) isthelist of nonces gleaned by the
intruder in state s, and net wor k(s) isthelist of messages
sent until state s, denoting the network. The first three ac-
tion operators formalize sending messages following to the
protocol, and the remaining the intruder’s faking messages.
sendMsg2 isdefined as

ceq usedNonces(sendMsg2(S,Q N, M)
= c(n(N, Qid(M), usedNonces(S))
if c-sendMsg2(S, QN M .

ceq gl eanedNonces(sendMsg2(S, Q N, M)
= c(N, gl eanedNonces(S)) if c-sendMsg2(S, QN M
and (Q==0or id(M == 0).

ceq gl eanedNonces(sendMsg2(S, Q N, M)
= gl eanedNonces(S) if c-sendMsg2(S, QN M
and not(Q==0 or id(M == 0).

ceq network(sendMsg2(S,Q N, M)
= c(m1,id(M, noncel(M, N, 0), network(S))
if c-sendMsg2(S, QN M .

ceq sendMsg2(S,Q NNM =S
if not c-sendMsg2(S, QN M .

c-sendMsg2(S, Q N, M denotesthe effective condition
of the transition denoted by sendMs g2, defined as

isin(Mnetwork(S)) and tag(M == 0 and
key(M == Q and not (used(N, usedNonces(S)))

c- sendMsg2(s, ¢,n,m) meansthat in a state s, there ex-
ists a Msgl m in the network that is addressed to ¢, m is
encrypted with ¢’s public key, and anonce n generated by ¢
for replying to m isreally fresh. If this condition holds, the
Msg2 denoted by the term m(1, . ..) is put into the network
and thenonce N used is put into thelist of unused nonces. In
addition to the condition, if the principal Qwho generated N
istheintruder or the publickeyi d(M usedform(1,...)is
the intruder’s, then N is put into the list of gleaned nonces.
f akeMsg2 isdefined as

eq usedNonces(fakeMsg2(S, Q N1, N2))
= usedNonces(S) .
eq gl eanedNonces(fakeMsg2(S, Q N1, N2))
= gl eanedNonces(S) .
ceq networ k(fakeMsg2(S, Q N1, N2))
= c(m1, Q N1, N2, 0), network(S))
if c-fakeMsg2(S, Q N1, N2) .
ceq fakeMsg2(S, Q N1, N2) = S
if not c-fakeMsg2(S, Q N1, N2) .

c-fakeMsg2(S, Q N1, N2) denotesthe effectivecondi-
tion of the transition denoted by f akeMs g2, defined as

i si n(N1, gl eanedNonces(S))
and i sin(N2, gl eanedNonces(S))

The equations say that if two nonces are available to the
intruder, the intruder can fake and send a Msg2. The re-
maining action operators are defined likewise.

One of the desired propertiesto verify for the protocol is
the (nonce) secrecy property, which is expressed as
(isin(n(N, P,Q, usedNonces(S)) and isin(N,
gl eanedNonces(S))) inplies (P == 0 or Q == 0)
This means that an arbitrary nonce that the intruder can
glean has been generated by the intruder or by trustable
principals for sending to the intruder.

4.2 Mode-Checking the Protocol

We specify that the number of principas involved is
3 (0, 1 and 2 are used), the number of nonces gener-
ated is 3 (0, 1 and 2 are used), the length of the list (for
usedNonces) of used nonces is 2, the length of the list
(for gl eanedNonces) of gleaned nonces is 2 and the
length of the list (for net wor k) of messages is 4, and
then trand ate the OT S/CafeOBJ specification of the proto-
col into an SMV specification with Chocolat/SMV.

The CafeOBJ module where visible sort Msg and its re-
lated operators and equations are declared is translated into
this SMV module

MODULE Msg
VAR tag : 0 .. 2; key : 0 .. 2
noncel : 0 .. 2; nonce2: O .. 2; id: 0.. 2

The variables in module Msg correspond to the arguments
of data constructor mfor messages in the OTS/CafeOBJ
specification. We also have the predicate Msg_eq that
checks if two instances of module Msg are the same;
Msg_eq isdefined as

#define Msg_eq(m n) (mtag = n.tag &
m key = n.key & mnoncel = n.noncel &
m nonce2 = n.nonce2 & mid = n.id)

The CafeOBJ module where visible sort Msgl i st and its
related operators and eguations are declared is translated
into this SMV module

MODULE Msgl i st

VAR _c: 0.. 5 _ar : array 1 .. 4 of Msg;

Variable _c records how many elements of the array ar
are occupied; if _c is0, no elementsare used and if € is4,
an overflow has occurred. Predicate Msgl i st i si neq
checkingif two instances of moduleMs gl i st arethesame
and predicate Msgl i st _i si n checking if there exists an
instance of module Msg in the array _ar of an instance of
module Msgl i st aredefined as
#define Msglist_isin_eq(v, e)
#define Msglist_isin(e, a)
(a._c >= 1 & Msglist_isin_eq(e, a._ar[1]) |
a._c >= 2 & Msglist_isin_eq(e, a._ar[2]) |
1) |
1)

(Msg_eq(v, e))

a._ ¢ > 3 & Msglist_isin_eq(e, a._ar[3
a._c > 4 & Msglist_isin_eq(e, a._ar[4

The CafeOBJ modules for visible sorts UNonce, Nat -
list and Nl i st are trandated into SMV modules like-
wise. Visible sorts Nat and Bool (thevisible sort for truth
values) are trandated into (bounded) integers and truth val-
uesin SMV.

The CafeOBJ module where the OTS modeling the pro-
tocol is written is trandated into the SMV module NSPK
whose VAR section is

MODULE NSPK

VAR gl eanedNonces : Natlist; network : Msglist;
usedNonces : Nist;
va0 : 0.. 2, _val: O.. 2; _va2: MsgQ;
_va3 : Msg; _vad : Msg; _va5: 0 .. 2
action : {fakeMsgl, fakeMsg2, fakeMsg3,

sendMsgl, sendMsg2, sendMsg3};

The three CafeOBJ observation operators are trandlated
into variables gl eanedNonces, net wor k and used-
Nonces. Variables vaO0, ..., .va5 are used in assign-
ments implementing state transitions as arbitrary values of
their corresponding types. Variable act i on corresponds
to an arbitrary one of the six action operators.

In the ASSIGN section of module NSPK, assignments
implementing state transition are written. The assignments
for variableact i on are
init(action) := fakeMsgl;
next (action) := {fakeMsgl, fakeMsg2, fakeMsg3,

sendMsgl, sendMsg2, sendMsg3};
which mean that theinitial valueof act i onisf akeMsgl
and a sate transition arbitrarily chooses one among the six
values asits value. The assignmentsfor variable va2 are
init(_va2.tag) := 0; init(_va2.key) := 0;
init(_va2.noncel) := 0; init(_va2.nonce2) := 0;
init(_va2.id) := 0;

next(_va2.tag) := {0, 1, 2};
next (_va2. key) := {0, 1, 2};
next (_va2.noncel) := {0, 1, 2};
next (_va2.nonce2) := {0, 1, 2};
next(_va2.id) := {0, 1, 2};

Assignments for variables va0, val, va3, va4 and
_vab aremade likewise.

Some of the assignments for variable net wor k ook
like

next (network._c) :=
case

action = fakeMsg2 & Natlist_isin(_val, gl eanedNonces) &
Nat i st _i si n(_vab5, gl eanedNonces) & TRUE :
case network._c < 4 : network._c + 1; 1 : 5; esac;
action = fakeMsg2 & ! (Natlist_isin(_val,
gl eanedNonces) & Natlist_isin(_vab, gl eanedNonces)) &
TRUE : network. _c;

action = sendMsg2 & Msgli st_isin(_va2, network)

& _va2.tag = 0 & _va2.key = _va0 & ! Nist_used(_val,
usedNonces) & TRUE : case network._c < 4 : network._c
+ 1, 1: 5; esac;

action = sendMsg2 & ! (Msglist_isin(_va2, network) &
_va2.tag = 0 & _va2.key = _va0 & ! Nist_used(_val,
usedNonces)) & TRUE : network._c;

esac;
next (network._ar[1].tag) :=
case

action = fakeMsg2 & Natlist_isin(_val, gl eanedNonces) &
Nat | i st _i si n(_vab, gl eanedNonces) & TRUE :
case network._c = 4 : 0; network._c =0 :
network. _ar[1].tag; esac;

action = fakeMsg2 & ! (Natlist_isin(_val,
gl eanedNonces) & Natlist_isin(_vabs,
gl eanedNonces)) & TRUE : network. _ar[1].tag;

1+0; 1:

action = sendMsg2 & Msgl i st_i si n(_va2, networ k)
& _va2.tag = 0 & _va2.key = _va0 & ! Nist_used(_val,
usedNonces) & TRUE : case network._c = 4 : 0;
network. ¢ =0 : 1+ 0; 1: network._ar[1].tag; esac;
action = sendMsg2 & ! (Msglist_isin(_va2, network)
& _va2.tag = 0 & _va2.key = _va0 & ! Nist_used(_val,
usedNonces)) & TRUE : network._ar[1].tag;
esae;
The omitted parts are made likewise and so are the remain-
ing assignments for variable net wor k. Assignments for
the remaining variables are also made likewise.

We used NUSMV (see nusnv.irst.itc.it), anim-
plementation of SMV, to model-check the SMV specifica
tion translated from the OTS/CafeOBJ specification of the
protocol wrt the secrecy property. It took about 15 min-
utes for NuSMV to model-check the SMV specification on
a computer with 4.3GHz Pentium4 and 1GB memory and
report on a counterexample. The counterexample says that
four state transitions lead to a state where the secrecy prop-
erty does not hold.

5 Conclusion

We have described how OTS/CafeOBJ specifications are
trandlated into SMV ones and the proof that the tranda-
tion hasthe desired property that any counterexamplefound
in the SMV specification translated from an OTS/CafeOBJ
oneis aso acounterexamplein the OTS/CafeOBJ one. We
have also reported on the case study that Chocolat/SMV is
applied to the NSPK authentication protocol.

References

[1] R. Diaconescu and K. Futatsugi. CafeOBJ report. AMAST
Seriesin Computing, 6. World Scientific, 1998.

[2] K.L.McMillan. Symolic Model Checking: An Approach to
the State Explosion Problem. Kluwer, 1993.

[3] R. M. Needham and M. D. Schroeder. Using encryption
for authentication in large networks of computers. CACM,
21(12):993-999, 1978.

[4] K. Ogataand K. Futatsugi. Flaw and modification of the iKP
electronic payment protocols. 1PL, 86:57-62, 2003.

[5] K. Ogataand K. Futatsugi. Formal analysis of the iKP elec-
tronic payment protocols. In 1st ISSS LNCS 2609, pages
441-460. Springer, 2003.

[6] K. Ogata and K. Futatsugi. Proof scores in the OTS/Cafe-
OBJ method. In 6th FMOODS, LNCS 2884, pages 170-184.
Springer, 2003.

