
JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 1, MARCH 2005 1

Mechanically Supporting Case Analysis for
Verification of Distributed Systems

Takahiro Seino
Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi, Ishikawa 923-1292, JAPAN
t-seino@jaist.ac.jp

Kazuhiro Ogata
NEC Software Hokuriku, Ltd.

1 Anyoji, Hakusan, Ishikawa 920-2141, JAPAN
ogatak@acm.org

and Kokichi Futatsugi
Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi, Ishikawa 923-1292, JAPAN
kokichi@jaist.ac.jp

Received: January XX 2005; revised: November XX 2005

Abstract— The OTS/CafeOBJ method can be used to formally
model, specify and verify distributed systems such as security
protocols and railroad systems. A distributed system is modeled
as an OTS, a kind of transition system, and the OTS is specified
and verified with CafeOBJ, an algebraic specification language.
Case analysis (or case splitting) is one of the most intellectual
pieces of work in verification. Case analysis should be done
entirely by hand in the OTS/CafeOBJ method, which is error-
prone. It is indispensable to cover all cases and find necessary
lemmas for some sub-cases where desired results are not obtained
in case analysis. We propose two methods of mechanically
supporting case analysis, which concern these two issues. A case
study that the proposed methods are effectively applied to a
railroad signaling system is also reported.

Index Terms— Algebraic specification languages, Distributed
systems, Formal methods, Rewriting, Verification

I. INTRODUCTION

In the advanced information society in the 21st century
where the world wide network, namely the Internet, is the
crucial infrastructure and computers pervade all scenes of
our life, namely the pervasive/ubiquitous computing, it will
be often the case that we should develop systems reliably
offering high quality services at any expense. Systems that
should be reliable are often reactive and/or distributed systems,
which change their states from moment to moment and keep
on offering services. Among such systems are electronic
commerce systems and railroad control systems. When such
systems are developed, it is essential to find and correct faults
lurked in the designs and specifications as much as possible at

This paper is a revised version of [21]. This research is partly conducted as
a program for the ”Fostering Talent in Emergent Research Fields” in Special
Coordination Funds for Promoting Science and Technology by Ministry of
Education, Culture, Sports, Science and Technology.

earlier stages of the development process before coding them
in programming languages.

One of the existing approaches to this issue is to formally
model (the designs of) such systems and formally verify
that they have desired properties. Distributed systems are
often modeled as transition systems[2][12][13]. If a distributed
system can be modeled as a finite-state transition system,
model-checking techniques[5] must be one of the best choices.
Otherwise, basically theorem-proving techniques should be
used.

Many tools supporting theorem proving have been proposed
such as Coq[1] and Isabell/HOL[14]. Our method called
the OTS/CafeOBJ method[18] uses CafeOBJ[3], an algebraic
specification language/system. The CafeOBJ’s basic mecha-
nism for theorem proving is rewriting, which is an efficient
way of implementing equational reasoning. Equational rea-
soning is the most fundamental way of reasoning, which
can moderate the difficulties of proofs that might otherwise
become too hard to understand. Consequently, we believe that
our method is easier to learn and use than those based on Coq
and Isabell/HOL that rely on a type theory and a higher-order
logic.

In the OTS/CafeOBJ method, a distributed system is mod-
eled as an OTS (Observational Transition System), which
is a transition system that can be appropriately written in
equations. The OTS is written in equations using CafeOBJ.
Proofs, or proof scores that the OTS has properties are
written in CafeOBJ, while the proof scores are checked
by means of rewriting with the CafeOBJ system. We have
demonstrated the effectiveness of the OTS/CafeOBJ method
by performing case studies that the method has been applied to
electronic commerce protocols[17], distributed mutual exclu-
sion algorithms[16], railroad signaling systems[20], real-time

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 1, MARCH 2005 2

systems[15] and hybrid systems[19].
However, proof scores are basically written by hand, which

may lead to human errors such that some cases to check may
be overlooked. To minimize human errors, writing proof scores
should be mechanically supported. In this paper, we focus on
case analysis, which is one of the most intellectual pieces
of work in verification. Case analysis in the OTS/CafeOBJ
method involves finding appropriate predicates and splitting a
case into multiple sub-cases based on the predicates. Let us
consider a proof of

���������	��

��������� ���������	�	���
where

�������
is

a set of train IDs. To proceed with the proof, we may have
to split the case into two sub-cases based on the predicate
“
�������	�

”, and reduce the proof to two sub-proofs: (1)���������������
and (2)

���������	�	���
where

���! �"�	�
.

When case analysis is performed, it is indispensable to cover
all cases and find necessary lemmas for some sub-cases where
desired results are not obtained. We propose two methods of
mechanically supporting case analysis, which concern these
two issues. The first method uses matrices to cover all cases.
The matrices consist of predicates that come from transitions’
conditions and properties to prove. If it is not sufficient to
split cases with such matrices for verification, we must decide
to split some sub-cases furthermore or find necessary lemmas
for some sub-cases. Given a set of basic predicates found in
the specifications of OTSs modeling distributed systems, the
second method mostly automates case analysis more precisely,
which can help find necessary lemmas.

A case study has been performed to demonstrate the effec-
tiveness of these two methods. In this case study, we verify that
there are no collisions in a railroad where trains run according
to the staff system (or the tablet blocking system) that is a
railroad signaling system. The case study is also reported in
this paper.

The rest of the paper is organized as follows: Section II
mentions the OTS/CafeOBJ method. Section III describes the
proposed methods. Section IV reports on the case study. Sec-
tion V discusses some related work. Section VI concludes the
paper.

II. THE OTS/CAFEOBJ METHOD

A. CafeOBJ: Algebraic Specification Language and System

CafeOBJ1[3] is mainly based on initial algebras[7] and
hidden algebras[4][9]. Abstract machines as well as abstract
data types can be specified in CafeOBJ. There are two kinds
of sorts in CafeOBJ, which are visible and hidden sorts. A
visible sort denotes an abstract data type, while a hidden sort
denotes the state space of an abstract machine. There are two
kinds of operators (or operations) with respect to hidden sorts,
which are action and observation operators. Action operators
denote state transitions of abstract machines, while observation
operators let us know the situation where abstract machines are
located. Both an action operator and an observation operator
take a state of an abstract machine and zero or more data.
The action operator returns the successor state of the state
with respect to the state transition denoted by the action

1See http://www.ldl.jaist.ac.jp/cafeobj/

operator plus the data. The observation operator returns a value
that characterizes the situation where the abstract machine is
located.

Visible sorts are declared by enclosing [and], and hidden
sorts are declared by enclosing *[and]*. Action and
observation operators are declared by starting with bop, and
other operators are declared by starting with op. After bop
or op, an operator name is written, followed by a colon : and
a list of sorts, and then, -> and a sort are written. The list
of sorts is called the arity of the operator, and the sort after
-> is called the coarity of the operator. The pair of the arity
and coarity is called the rank of the operator. When declaring
more than one operator whose rank is the same simultaneously,
bops and ops are used instead of bop and op. Operators
with the empty arity are called constants.

Operators are defined in equations. An equation is declared
by starting with eq, and a conditional equation is declared
by starting with ceq. After eq, two terms connected with
= are written, ended with a full stop. After ceq, two terms
connected with = are written, followed by if, and then, a
term denoting the condition and a full stop are written.

The CafeOBJ system uses declared equations as left-to-
right rewrite rules and rewrites (or reduces) a given term.
The command red is used to reduce a given term. This
executability makes it possible to simulate a specified system
and verify that a specified system has properties.

Basic units of CafeOBJ specifications are modules. The
CafeOBJ system provides built-in modules where basic data
types such as truth values are specified. The module of truth
values is BOOL.

Since truth values are indispensable for conditional equa-
tions, BOOL is automatically imported by almost every module
unless otherwise stated. The import of BOOL lets us use
the visible sort Bool denoting truth values, the constants
true and false denoting true and false, and operators
denoting some basic logical operators. Among the operators
are not_, _and_, _or_, _xor_, _implies_ and _iff_
denoting negation (#), conjunction ($), disjunction (%), ex-
clusive disjunction (xor), implication (&) and logical equiv-
alence ('), respectively. The operator if_then_else_fi
corresponding to if statements in programming languages is
also available. An underscore _ indicates the place where an
argument is put.
BOOL plays an essential role in verification with the

CafeOBJ system. If the equations available in the module
are regarded as left-to-right rewrite rules, they are complete
with respect to propositional logic[11]. Therefore, any term
denoting a propositional formula that is always true (or false)
is surely reduced to true (or false). Generally, a term
denoting a propositional formula is reduced to a term denoting
an exclusively disjunctive normal form of the propositional
formula.

B. Observational Transition Systems

We assume that there exists a universal state space denoted
by (. We also assume that data types used, including the
equivalence relation (denoted by

�
) for each data type, have

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 1, MARCH 2005 3

been defined in advance. Let � and � be the set of truth
values and the set of natural numbers, respectively.

Definition 1 (OTS): An OTS[18] (observational transition
system) � consists of ��� ��� �	��
 where� � : A set of observers. Each

 � is a function
��

(���� , where � is a data type and may differ from
observer to observer. Given two states ��� � ���
 (, the
equivalence between the two states, denoted by ��� ��� ��� ,
with respect to � is defined as

�

 � �
 � ��� � �
 � ��� � .� � : The set of initial states such that
��� (.� � : A set of conditional transitions. Each �
��

is a
function � � (�� (, provided that � � ��� � ��� � � ��� � for
each ! �#"
 (%$ ��� and each �&� � ���
 ! �&" . � � � � is called the
successor state of �
 (with respect to � . The condition')(� (*�+� of �
,� is called the effective condition. �
is required to satisfy the requirement that � � � � � � � for
each �
 (such that # '-(� � � . ./

Definition 2 (Execution): An execution of an OTS � is an
infinite sequence ��0 � �&� � � � � of states satisfying� Initiation : � 0
1� .� Consecution : For each 2
 � , there exists �
3� such

that �#4657� ��� � � ��4 � .
Let 8 � be the set of all executions obtained from � . ./

A state �
 (appears in an execution �#0 � �&� � � � � of an OTS
� , denoted by �
 ��0 � �&� � � � � , if and only if there exists 2
 �
such that � �9� ��4 .

Definition 3 (Reachable state): A state �
 (is called
reachable with respect to an OTS � if and only if there exists
an execution :
 8 � such that �
 : . Let ; � be the set of all
reachable states with respect to � . ./

All properties considered in this paper are invariants.
Definition 4 (Invariant): A predicate <3� (=�>� is called

invariant with respect to an OTS � , denoted by ?A@CBEDGFH? DI@CJ � < ,
if and only if

� �
 ; � � < � � � . � may be omitted from
?A@KBLDMFN? DI@CJ � < if it is clear from context. ./
Let OP� � O&� � � � � , whose data types are �Q� � �1� � � � � , be all free
variables in ?A@CBEDGFH? DI@CJ � < . We suppose that ?A@KBLDMFN? DI@CJ � < is
interpreted as

� OP�
 �R� � � O&�
 �1� � � � � ?A@CBLDMFN? DI@KJ � < � in this
paper. When a proof score of this formula is written, the free
variables are replaced with constants denoting arbitrary values
of the corresponding data types and the universal quantifiers
are eliminated.

Observers and transitions may be parameterized, which are
generally expressed as
 4TSVUXWXWXW U 4ZY and �\[S\UXWXWXW U [^] , respectively,
provided that _ �	`badc and there exists a data type �Re such
that f
 �ge , where f � 2 � � � � � � 2^h ��i � � � � � ��iCj . For example,
an integer array k possessed by a process < may be denoted
by an observer kGl , and the increment of the 2 th element of the
array may be denoted by a transition inc-alLU 4 .
C. Writing Observational Transition Systems

An OTS � is written in CafeOBJ. The universal state space
(is denoted by a hidden sort, say H. An observer
 4mSVUXWXWXW U 46Y

� is denoted by a CafeOBJ observation operator. We assume
that there exist visible sorts V e and V corresponding to the
data types �ge and � , where f � 2 � � � � � � 2^h . The CafeOBJ
observation operator denoting
G4 S UXWXWXW U 4 Y is declared as follows:

n#oGp
o � V 4TS � � � V 46Y H -> V

Any state in
�

, namely any initial state, is denoted by a
constant, say init, which is declared as follows:oGp

init � -> H

The initial value returned by
M4 S UXWXWXW U 4 Y is denoted by the term
o
�
X 4 S � � � � � X 4 Y � init

�
, where X e is a CafeOBJ variable whose

sort is V e , where f � 2q� � � � � � 2 h . The initial value can be
generally specified as follows:
rIs P � � o � X 4 S � � � � � X 4 Y � init

���
Y �	� � � � � � Y �qt S � ��uwvIx r �y-yKyrIs P z � o � X 4 S � � � � � X 4 Y � init
� �

Y z{� � � � � � Y z|t9} � �~uIvIx r �
P e is a predicate that specifies the initial value returned
by
L4 S UXWXWXW U 4 Y , where f � ��� � � � � � and � a�c

. Y � is a
CafeOBJ term (which may be a CafeOBJ variable), where� � ����� � � ��� �C� � � � � � � � ��� � � � � � � z .

A transition �V[SVUXWXWXW U [^]
��
is denoted by a CafeOBJ

action operator. We assume that there exists a visible sort V e
corresponding to the data type � e , where f ��i � � � � � ��i j .
The CafeOBJ action operator denoting � [S UXWXWXW U [] is declared as
follows:n#oGp

a � V [S � � � V [] H -> H

�\[SVUXWXWXW U [�] may change the value returned by
 4TS\UXWXWXW U 4ZY if it
is applied in a state � such that 'K(^� S\� � � � � �] � � � , which can be
written generally as follows:
�GrIs o

�
X 4 S � � � � � X 4 Y � a � X [S � � � � � X [] � S �	��
e-a
�
X[S � � � � � X [] � X 4 S � � � � � X 4 Y � S ��E�
c-a
�
X [S � � � � � X[] � S � �

S is a CafeOBJ variable whose sort is H and X e is a
CafeOBJ variable whose sort is V e , where f ��i � � � � � � 2 j .
a
�
X [S � � � � � X[^] � S � denotes the successor state of S with re-

spect to �V[SVUXWXWXW U [�] plus X [S � � � � � X[^] . e-a
�
X [S � � � � � X [�] � X 4mS �� � � �

X 4 Y � S � denotes the value returned by
M4 S UXWXWXW U 4 Y in the
successor state. c-a

�
X [S � � � � � X [] � S � denotes the effective con-

dition ' (� S � � � � � �] .
The value returned by
 4TSVUXWXWXW U 4ZY is not changed if �V[S\UXWXWXW U [�]

is applied in a state � such that # 'K(^� S\� � � � � �] � � � , which can be
written generally as follows:
�GrIs o

�
X 4mS � � � � � X 46Y � a � X [S � � � � � X [�] � S �	��
o
�
X 4 S � � � � � X 4 Y � S ��E�R� o u

c-a
�
X [S � � � � � X[] � S � �

The declaration and definition of the CafeOBJ action oper-
ator denoting �V[SVUXWXWXW U [�] can also be written in a more succinct
way as follows:
�#� u a � X [S �V [S � � � X[^]��V[^] S �H -> H

�
� o ��� c-a

�
X [S � � � � � X [] � S � �r �w� o

�
X 4 S � � � � �X 4 Y � S � �

� � e-a
�
X[S � � � � � X[] � X 4 S � � � � � X 4 Y � S � �r �w� � � ���� � �

u �G�
This is translated into the declaration of a and the equations
defining a such as those described above. S � denotes the

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 1, MARCH 2005 4

oMp
s � -> H

�
-- s denotes an arbitrary state.r s q

�
s
� �~uwvIx r � -- q holds in s.r s r

�
s
� � � � ��� r � -- r holds in s.r s q
�
s
� �~uwvIx r � -- p holds in s, which is the I.H.v r � p
�
a
�
s
��� �

-- Check if a preserves p in s.

Fig. 1. A typical passage of proof scores in the OTS/CafeOBJ method.

successor state of S with respect to �)[S)UXWXWXW U [�] .
III. ORGANIZING CASE ANALYSIS

We first review proof scores written in the OTS/CafeOBJ
method. We suppose that we prove a predicate � � (�� �
invariant to an OTS � , namely that we prove ?A@CBEDGFN? DI@KJ � <
by induction on the number of transitions applied. In an
induction case where it is shown that a transition � denoted by
a CafeOBJ action operator a preserves < , we suppose that we
need to perform case analysis based on two predicates � and �
on (. For example, the case is split into the four sub-cases: (1)
��$�� , (2) � $�#�� , (3) #	� $
� and (4) #	� $�#�� . We should write
a (proof) passage of proof scores for each case. We show a
proof passage for case (2) in Fig. 1. A comment starts with --
and terminates at the end of the line. The constant � denotes
an arbitrary state of � . The first two equations say that � holds
but � does not in the state denoted by � . The third equation
denotes the induction hypothesis. Then the last line checks if
� denoted by a preserves < . In our way of writing proof scores
used so far, case analysis should be done entirely by hand and
the proof passage for each case obtained by the case analysis
should be written by hand, which can lead to human errors
such that some cases to check may be overlooked.

In this section, we describe the two methods of mechanically
supporting case analysis.

A. Representing Cases with Operators

Atomic formulas are terms whose sorts are Bool and that
do not include any logical operators. A literal is an atomic
formula (a positive literal) or the negation of an atomic formula
(a negative literal). A literal may be called a basic predicate,
which is denoted by �< , in this paper.

States are denoted by CafeOBJ terms, which are called
state constants. State constants are classified into atomic and
composite ones.

Definition 5 (State constant): An atomic state constant
(ASC) is a constant that denotes an arbitrary state where a
basic predicate holds. Composite state constants (CSCs) are
inductively defined as follows:� An ASC is a CSC.� If � � and � � are CSCs, then � ��
 � � is a CSC.
Only an object that is thus constructed is a CSC. ./

A CSC that denotes an arbitrary state where a predicate <
holds is denoted by � l . A CSC � l�
 ��� denotes an arbitrary
state where both predicates < and � hold. The CSC is also
denoted by �-l�� � . For example, let us consider three basic

predicates �< , �� and �� . Six ASCs ���l , �����l , ���� , ���	�� , ���� and ������
are declared to construct the eight CSCs obtained based on
the three basic predicates. For example, ���l�
 ����
 ���� denotes
an arbitrary state where �<!$��� $��� holds and � ���l
 � ��
 � �	��
denotes an arbitrary state where # �<�$��� $�#��� holds.

CSCs that denote an arbitrary state where a predicate <
holds is constructed as follows:� < is transformed into a logically equivalent disjunctive

normal form
� �< �� $ � � � $!�< �h S � % � � � % � �<

j
� $ � � � $!�<

j
h] �

where each �< [4 is a basic predicate.� Each disjunct �< [� $ � � � $"�< [h � is denoted by the CSC � �l � S
� � �
 � �l � Y � that is obtained by replacing each �< [4 and $
with the ASC � �l � # and
 , respectively.

The
`

CSCs obtained through this procedure denote an arbi-
trary state where < holds.

When a predicate < is transformed into a logically equivalent
disjunctive normal form, some disjuncts of the disjunctive
normal form may include contradictions such as �< [4 $
#$�< [4 .
Since there are no states denoted by such disjuncts, the
disjuncts can be deleted from the disjunctive normal form.
Although contradictions in some disjuncts of the disjunctive
normal form do not affect the soundness of verification at all,
we can save time and space taken by verification by deleting
the disjuncts from the disjunctive normal form. It is extremely
difficult to find all disjuncts that include contradictions. Instead
of finding all conjuncts including contradictions, we use a
simple but useful method. For each ASC � �l � # used to denote
the predicate < , the list %'&�(� � �l � # � of ASCs that contradict � �l � #
is prepared. The list %'&�(� � �l � # � surely includes � ���l � # . Such lists
are constructed by hand, but given such lists, finding disjuncts
that include contradictions is automated.

B. Exhausting All Cases Using Matrices

In this subsection, we describe the first method of mechani-
cally supporting case analysis. We still suppose that we prove
< invariant to � by induction on the number of transitions
applied. Since the base case is often straightforward to prove,
we focus on each induction case where we prove that each
transition preserves < .

The basic idea of the method proposed here is to use a
matrix to represent all possible sub-cases obtained by case
analysis to prove < invariant to � . Each element of such a
matrix is a CSC that denotes an arbitrary state where some
predicate holds. Besides, all the elements of the matrix cover
all the necessary sub-cases to consider.

For each pair
� � � < � of transitions of � and predicates

to be proved invariant to � , one matrix is constructed. We
first construct CSCs that denote an arbitrary state where the
effective condition ' (of � holds. Let the CSCs be ' (� � � � � � ' (h ,
and) be the list of the CSCs. We next construct CSCs that
denote an arbitrary state where < holds. Let the CSCs be
< � � � � � � < j , and

�
be the list of the CSCs. The matrix for the

pair
� � � < � is made of) and

�
, namely)+* � . The matrix

is shown in Fig. 2. Such matrices are called CA-matrices.
For each element ' (4 � � �
 <�[� � � , ' (4 � � � denotes a sub-case
to consider, where ' (holds, and < [� � � denotes an induction

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 1, MARCH 2005 5

<P� � � � � � � < j � � �' (� � � � ' (� � � �
 <�� � � � � � � ' (� � � �
 < j � � �
...

...
. . .

...' (h � � � ' (h � � �
 < � � � � � � � ' (h � � �
 < j � � �

Fig. 2. A matrix for the pair ��������� .

hypothesis. The CA-matrix) * � covers all the necessary
cases for the induction case showing that � preserves < . The
reason is as follows:� From Definition 1, � does not change anything if it is

applied in a state where ' (does not hold. Consequently,
� surely preserves < in an arbitrary state where 'K(does
not hold, which means that we do not have to consider
such a state.� The induction used guarantees that we only have to
consider an arbitrary state � where < holds; we can use
the induction hypothesis saying that < holds in � .� From the above two facts, we only need to consider
an arbitrary state where both ' (and < hold. The CSCs' (� � � � � � ' (h cover all the cases where ' (holds by con-
struction and the CSCs < � � � � � � < j cover all the cases
where < holds by construction. Therefore, all the elements
of the CA-matrix) * � overs all the necessary cases for
the induction case showing that � preserves < .

For each element ' (4 � � �
 < [� � � , < � � � ' (4 � � �
 < [� � �	��� is
reduced. If the result is as expected, namely true, it is shown
that � preserves < in the sub-case denoted by ' (4 � � �
 < [� � � . If
the result is false, there are two possibilities that an arbitrary
state corresponding to ' (4 � � �
 <�[� � � is unreachable and there
is a counterexample showing that < is not invariant to � ,
respectively. The first possibility is usually much more than the
second one from our experiences. We only examine the first
possibility unless we can easily find such a counterexample.
For the first possibility, we should find a lemma and prove the
lemma invariant to � likewise. It is often the case that two
ASCs in ' (4 � � �
 < [� � � contradict each other. Therefore, such
a lemmas is most likely the negation of the predicate denoted
by two such ASCs. If the result is neither true nor false, we
should split the sub-case denoted by ' (4 � � �
 < [� � � furthermore,
which is described in the coming subsection.

CA-matrices are straightforwardly implemented in CafeOBJ
as terms, and reducing < � � � ' (4 � � �
 <�[� � ���	� and checking if the
result is true can be automated by the CafeOBJ system.

Case analysis with CA-matrices has two advantages.

1) All necessary sub-cases to consider are surely covered,
which prevents users from overlooking some sub-cases.

2) CA-matrices constructed for a predicate to be proved
invariant to � can be reused for other predicates to be
proved.

Since the first advantage has been described in detail, we
describe the second advantage in detail. In order to prove
a predicate invariant to � , we often need to prove other
predicates invariant to � as lemmas. We thus usually prove

multiple predicates invariant to � . On the other hand, transi-
tions are fixed to � . Therefore, we make a predicate part a
parameter when constructing CA-matrices for the transitions
of � and construct templates of CA-matrices. Given a concrete
predicate < , the templates of CA-matrices are instantiated to
construct the CA-matrices for the pair

� � � < � for each transition
� of � .

For convenience, we actually make one CA-matrix to prove
a predicate < invariant to � by concatenating multiple CA-
matrices each of which is constructed for the pair

� � � < � for
each transition � of � .

C. More Precise Case Analysis

As described in the previous subsection, for the result
obtained by reducing < � � � ' (4 � � �
 < [� � �	��� for some element' (4 � � �
 < [� � � of the CA-matrix for the pair

� � � < � to be neither
true nor false indicates that the sub-case corresponding to the
element should be split furthermore. In order to split a sub-
case more precisely, we find a set of basic predicates from
the specification of � . Based on the set of basic predicates,
we construct a list 	 ��
 � � �� � � �	�� ��� � � ��� of complementary
pairs of ASCs. Each pair

� � �� � � �	�� � is a candidate that can be
used for more precise case analysis. We describe a method of
mechanically selecting the most likely useful candidates from
	 .

Let ' (4 � � �
 <�[� � � be an element of the CA-matrix for the pair� � � < � such that the result obtained by reducing < � � � ' (4 � � �
<�[� � �	�	� is neither true nor false. For each pair
� ���� � ���	�� �

	 , we reduce the two terms < � � � ' (4 � � �
 < [� � �
 � �� �	� and
< � � � ' (4 � � �
 < [� � �
 � �	�� �	� . Based on the results obtained by
reducing the two terms, we decide what to do next as follows:

1) If both results are true, then we have successfully
finished showing that � preserves < in an arbitrary state
where the predicate denoted by ' (4 � � �
 <�[� � � holds.

2) If one of the results is true and the other is false, then
the sub-case where the result is false deserves to be
considered. Let ��
 be the CSC corresponding to the
sub-case. An arbitrary state corresponding to ��
 may
be unreachable. In order to show this, we should find a
lemma and prove the lemma invariant to � in the same
way of proving < invariant to � . It is often the case that
two ASCs in ��
 contradict each other. Therefore, such
a lemma is most likely the negation of the predicate
denoted by two such ASCs.
Perhaps �
 may indicate a counterexample showing that
< is not invariant to � . But this possibility is usually
much less than the first one from our experiences.

3) If one of the results is true and the other is neither true
nor false, then the sub-case where the result is neither
true nor false should be split furthermore using 	 .

4) If both results are false, we do the same thing as we do
for the sub-case denoted by ��
 .

5) If both results are neither true nor false, the both sub-
cases are split furthermore using 	 .

We first try to find a candidate that belongs to category 1)
from 	 . If no such a candidate is found, we next try to find
a candidate that belongs to category 2) from 	 . If no such

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 1, MARCH 2005 6

a candidate is found, we repeatedly do the same thing until
we pick up an arbitrary candidate that belongs to category 5).
From our experiences, it is very often the case that we can
find a candidate that belongs to category 1), 2) or 3) from 	 .

The two ASCs � �� and � �	�� surely cover the whole cases
because � �� corresponds to an arbitrary state where �� holds
and � �	�� to an arbitrary state where �� does not. Therefore,
the case splitting based on a complementary pair

� � �� � � �	�� � of
ASCs does not break the desired property that CA-matrices
have, i.e. CA-matrices cover all necessary cases for induction
cases showing that transitions preserve predicates.

Given 	 , which is implemented in CafeOBJ as a CafeOBJ
term, what was described in this subsection is mostly auto-
mated by the CafeOBJ system.

D. How to Use Lemmas

We suppose that �
 is a CSC such that the result of reducing
< � � � ��
 ��� is false in the proof that < is invariant to � , and that
a predicate � , which is supposed to have been proved invariant
to � , is used as a lemma for the case corresponding to the CSC
�
 . We construct CSCs that denote an arbitrary state where �
holds. Let the CSCs be �E� � � � � � �)� . Instead of < � � � ��
 �	� , we
reduce the

�
terms < � � � ��

 �C� �	��� � � � � < � � � �

 �)� �	� because

since � is invariant to � , we only need to consider an arbitrary
state where � holds and the

�
CSCs cover all cases such that

� holds by construction. If all the results are true, we can
conclude that � preserves < in an arbitrary state corresponding
to the CSC �
 , or such a state is not reachable with respect
to � .

E. How to Deal with Non-state Basic Predicates

Basic predicates that can be well dealt with by the two meth-
ods described in the previous two subsections are state basic
predicates, which take a state as one of their parameters. But,
non-state basic predicates are also used in specifications and
predicates to prove. For example, the equivalence predicate
= for each data type is a non-state basic predicate. Case
analysis based on non-state basic predicates should be done
manually. After the first method is used, manual case analysis
based on non-state basic predicates are done.

F. CafeOBJ Representation of ASCs and CSCs

We describe how to represent ASCs and CSCs as CafeOBJ
terms.

CafeOBJ is order-sorted, meaning that partial order among
sorts can be defined. By declaring S � < S � , every term whose
sort is S � is also a term whose sort is S � . ASCs are denoted by
a hidden sort, say A, and CSCs are denoted by a hidden sort,
say C. Besides, C is declared as a subsort of the hidden sort
H denoting the state space (and A is declared as a subsort
of C. A and C, together with H, are declared as follows:

[A < C < H]

The composition operator
 is denoted by the CafeOBJ
operator declared as follows:
oMp

o � C C -> C

assoc comm coherent

�

a b c

d
e

t1 t3

t2

sab sbc

sbd
sbe

sde

Fig. 3. An example of single-track railroads.

assoc, comm and coherent are attributes given to the
operator o . assoc declares that the operator is associative
(namely

�
c � o c � � o c � � c � o

�
c � o c � �), comm declares that

the operator is commutative (namely c � o c � � c � o c � , and
coherent declares that the operator is neither observation
nor action operators.

Let �p be the CafeOBJ operator that denotes a basic predicate
�< , and s �p and s � �p be the CafeOBJ constants that denote the
two ASCs � �l and � ���l for the basic predicate �< . Basically the
two ASCs are then defined with the following two equations,
respectively:

�GrIs �p � s �p o C � � �duwv x r �E� comp
�
s �p
�
C � � ��GrIs �p � s � �p o C � � � � � ��� r �L� comp
�
s � �p

�
C � � �

C � is a CafeOBJ variable whose sort is C. comp is the
CafeOBJ operator that returns true if an ASC � �l given as
its first argument and a CSC){� given as its second argument
are composable. The operator comp searches the lits % & (� � �l �
(see Subsect. III-A) to check if � �l and)|� are composable. If
an ASC in) � is found in the list, then ���l and) � are not
composable. Otherwise, they are composable.

IV. A CASE STUDY

We describe formal verification that no collisions occur in
any single-track railroad that adopts the staff system, which is
a railroad signaling system, with the proposed methods.

A. The Staff System

The staff system (or the tablet blocking system) is a railroad
signaling system for single-track railroads. It prevents trains
from colliding on the railroad track between arbitrary two
adjacent stations.

We model single-track railroads as undirected graphs. Fig-
ure 3 shows an undirected graph that represents a single-track
railroad. Nodes represent stations. There are five stations in the
single-track railroad shown in Fig. 3, which are represented by
the five nodes k , � , ' , � and : . Edges represent railroad tracks.
There are five railroad tracks in the single-track railroad, which
are represented by the five edges :���� , :��
	 , :��
� , :��
� and :���� .
We suppose that there exists at most one edge between any
two nodes O and � , and the edge is denoted by :���� if any. We
also suppose that any two edges do not cross at grade.

In any single-track railroad that we are going to consider,
there are the same number of tokens as that of edges, each
token exactly corresponds to one of the edges and vice versa,

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 1, MARCH 2005 7

and there are an arbitrary number of trains. If a train has a
token, the train is allowed to enter the edge corresponding to
the token. In the single-track railroad shown in Fig. 3, there
are three trains that are denoted by

� � , � � and
� � , which are to

have the tokens corresponding to : � � , : �
	 and : ��� , respectively.
Initially, each train stops at a node and does not have any
tokens, and each token is owned by one of the nodes connected
to the edge corresponding to the token.

Trains move according to the following rules:� If a train is at a node and has the token corresponding to
an edge connected to the node, then the train can move
to the edge.� If a train is at an edge, then the train can move to one of
the nodes connected to the edge.� If a train is at a node and the node has a token, then the
train can obtain the token.� If a train is at a node and has a token, then the train can
return the token to the node.

B. Modeling and Specification

We model an arbitrary single-track railroad that adopts the
staff system as an OTS, and the OTS is specified in CafeOBJ.

The two parameterized observes pos ��� and staff ��� are used,
which are defined as follows:� pos ��� takes a state � and returns the ID of the place (either

a station or a railroad track) where the train denoted by a
train ID tr is in the state � . Note that stations are denoted
by nodes and railroad tracks are denoted by edges in
undirected graphs modeling single-track railroads.� staff ��� takes a state � and returns the ID of the current
owner (either a station or a train) of the token corre-
sponding to the edge denoted by an edge ID ed in the
state � .

The two parameterized observers are denoted by the two
CafeOBJ observation operators declared as follows:

bop pos : TrID State -> TcID
bop staff : EdgeID State -> StaffPos

State is the hidden sort denoting the state space. TrID and
EdgeID are the visible sorts denoting train IDs and edge
IDs, respectively. TcID is a super sort of the two visible
sorts EdgeID and NodeID, where NodeID denotes node
IDs, which means that TcID denotes both edge IDs and node
IDs. StaffPos is a super sort of the two visible sorts TrID
and NodeID.

Let init be the constant denoting an arbitrary initial state.
The initial conditions satisfied by the single-track railroad is
defined as follows:

eq isNode(pos(TR,init)) = true .
eq isNode(staff(ED,init)) = true .
eq isAdjacent(staff(ED,init),ED) = true .

TR and ED are CafeOBJ variables whose sorts are TrID and
EdgeID, respectively. isNode is the predicate that checks
if a given argument is a node, and isAdjacent is the
predicate that checks if one argument is a node, the other
is an edge and they are connected. The first equation says
that every train denoted by TR is initially at a node and the

remaining two equations say that the initial owner of each
token corresponding to the edge denoted by ED is a node
connected to the edge.

The four parameterized transitions move-to-edge ��� U ��� ,
move-to-node ��� U � � , catch ��� U �	� U � � and release ��� U ��� U � � are used,
which are defined as follows:� move-to-edge ��� U ��� takes a state � and makes the train

denoted by a train ID tr move to the edge denoted by an
edge ID ed in the successor state if the train is at a node
connected to the edge and has the token corresponding
to the edge in the state � .� move-to-node ��� U � � takes a state � and makes the train
denoted by a train ID tr move to the node denoted by
a node ID nd in the successor state if the train is at an
edge connected to the node in the state � .� catch ��� U ��� U � � takes a state � and makes the train denoted
by a train ID tr obtain the token corresponding to the
edge denoted by an edge ID ed from the node denoted
by a node ID nd in the successor state if if the train is at
the node and the node has the token in the state � .� release ��� U ��� U � � takes a state � and makes the train denoted
by a train ID tr return the token corresponding to the edge
denoted by an edge ID ed to the node denoted by a node
ID nd in the successor state if the train is at the node and
has the token.

The four parameterized transitions exactly correspond to the
four rules described in the previous subsection.

The four parameterized transitions are denoted by the four
CafeOBJ action operators, whose declarations are shown in
Fig. 4. Let STAFFSYSTEM be the module where the OTS
under consideration is specified in CafeOBJ.

C. Verification

We describe the verification that no collisions occur in any
single-track railroad that adopts the staff system. For the ver-
ification, it suffices to prove that the OTS under consideration
has the invariant property described as follows:

?A@CBEDGFN? DI@KJ � postr � � � � ��

� $ postr � � � � ��

��� & tr
� �

tr
���

(1)

The invariant says that if a train denoted by tr
�

is at an edge
denoted by cs and a train denoted by tr

�
is also at the same

edge, then the two trains are always the same, which means
that for each edge there is always at most one train at the
edge, implying that no collisions occur.

1) Representing Cases with Operators: We declare a mod-
ule CASES that imports the module STAFFSYSTEM. In the
module CASES, hidden sorts Atom (denoting ASCs) and
Case (denoting CSCs) are declared as a subsort of Case and
a subsort of State, respectively, and necessary operators such
as _o_, comp and tbl and necessary constants denoting ar-
bitrary values are declared. Besides, ASCs for basic predicates
used in the predicate to prove and the effective conditions of
the transitions of the OTS under consideration are declared
and defined. We are about to describe these ASCs.

The predicate to be proved invariant to the OTS under
consideration contains three basic predicates, which are as
follows:

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 1, MARCH 2005 8

act move-to-edge : TR’:TrID ED’:EdgeID S:State -> State .
cond (isAdjacent(pos(TR’,S),ED’) and staff(ED’,S) = TR’) .
eff pos(TR:TrID,S’:State) := if TR = TR’ then ED’ else pos(TR,S) fi .
eff staff(ED:EdgeID,S’:State) := staff(ED,S) .

tca

act move-to-node : TR’:TrID ND’:NodeID S:State -> State .
cond isAdjacent(pos(TR’,S),ND’) .
eff pos(TR:TrID,S’:State) := if TR = TR’ then ND’ else pos(TR,S) fi .
eff staff(ED:EdgeID,S’:State) := staff(ED,S) .

tca

act catch : TR’:TrID ED’:EdgeID ND’:NodeID S:State -> State .
cond (pos(TR’,S) = ND’ and staff(ED’,S) = ND’) .
eff pos(TR:TrID,S’:State) := pos(TR,S) .
eff staff(ED:EdgeID,S’:State) := if ED = ED’ then TR’ else staff(ED,S) fi .

tca

act release : TR’:TrID ED’:EdgeID ND’:NodeID S:State -> State .
cond (pos(TR’,S) = ND’ and staff(ED’,S) = TR’) .
eff pos(TR:TrID,S’:State) := pos (TR,S) .
eff staff(ED:EdgeID,S’:State) := if ED = ED’ then ND’ else staff(ED,S) fi .

tca

Fig. 4. Specification of the four CafeOBJ action operators.

� tr1 = tr2� pos(tr1,s) = cs� pos(tr2,s) = cs
tr1 and tr2 are constants whose sorts re TrID, cs is a
constant whose sort is EdgeID and s is a constant whose sort
is State.

The first basic predicate does not include any constants
(namely s) denoting states, and we do not use any ASCs
for it. For the second basic predicate, we use the two ASCs
tr1@cs and ˜tr1@cs, which denote an arbitrary state where
the predicate holds and it does not hold, respectively. For
the third basic predicate, we use the two ASCs tr2@cs and
˜tr2@cs, which denote an arbitrary state where the predicate
holds and it does not hold, respectively.

We also make ASCs for the basic predicates appearing
in the effective conditions of the transitions of the OTS
under consideration. In this paper, we only show the basic
predicates appearing in the effective condition of the transition
move-to-edge ��� U ��� . The basic predicates are as follows:� isAdjacent(pos(tr,s),ed)� staff(ed,s) = tr
tr and ed are constants whose sorts are TrID and EdgeID,
respectively. For the first predicate, we use the two ASCs adj
and ˜adj. For the second predicate, we use the two ASCs
sted@tr and ˜sted@tr.

The ASCs are defined with equations. In this paper, we
only show the equations that define the two ASCs tr1@cs
and ˜tr1@cs, which are as follows:

ceq (pos(tr1,(tr1@cs o C)) = cs)
= true if comp(tr1@cs,C) .

ceq (pos(tr1,(˜tr1@cs o C)) = cs)
= false if comp(˜tr1@cs,C) .

C is a CafeOBJ variable whose sort is Case.

2) Exhausting All Cases: We declare a module PROOF that
imports the module CASES. In the module PROOF, we declare
the constants INI and IND whose sorts are Bool, which
denote the base case and the induction cases, respectively.
Besides, a template of CA-matrices is made in the module.
We are about to describe the template.

For each parametrized transition, we declare an operator
denoting the corresponding induction case that the transition
preserves the predicate concerned. For example, for the tran-
sition move-to-edge ��� U ��� , we declared the following operator:

op MOVE-TO-EDGE :
TrID EdgeID Case Case -> Bool

The operators denoting the induction cases are defined in equa-
tions. For example, MOVE-TO-EDGE is defined as follows:

ceq MOVE-TO-EDGE (TR,ED,C,C’) = true
if comps(C,C’) implies

(p(C o C’) implies
p(move-to-edge(TR,ED,(C o C’)))) .

TR, ED, C and C’ are CafeOBJ variables whose sorts are
TrID, EdgeID, Case and Case, respectively.

Given the operators denoting the induction cases, we can
construct a template of CA-matrices, which is denoted by the
following declared and defined operator:

op FORALL-ACTION : Case -> Bool
eq FORALL-ACTION(C) =

MOVE-TO-EDGE(tr,ed,
adj o tr@nd o sted@tr,C)

| MOVE-TO-NODE(tr,nd,adj o tr@ed,C)
| CATCH(tr,ed,nd,tr@nd o sted@nd,C)
| RELEASE(tr,ed,nd,tr@nd o sted@tr,C) .

C is a CafeOBJ variable whose sort is Case, which is the
parameter of the template of CA-matrices. The operator _|_

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 1, MARCH 2005 9

mod CLAIM1 { ex(PROOF)
-- the predicate to prove
eq p(S:State) = (tr1 = tr2) or

not(pos(tr1,S) = cs) or
not(pos(tr2,S) = cs) .

-- assumption
eq (tr1 = tr2) = false .
-- base case
eq INI = p(init) .
-- induction hypotheses.
ops hyp1 hyp2 : -> Case
eq hyp1 = ˜tr1@cs .
eq hyp2 = ˜tr2@cs .
-- induction cases.
eq IND = FORALL-ACTION(hyp1)

| FORALL-ACTION(hyp2) .
}

Fig. 5. The module CLAIM1.

is the constructor of sets of terms whose sorts are Bool and
basically equivalent to _and_.

In order to prove the predicate concerned invariant to the
OTS under consideration, we declare a module CLAIM1,
which is shown in Fig. 5. ex(PROOF) declares the impor-
tation of the module PROOF. The operator p denotes the
predicate concerned, and S is a CafeOBJ variable whose
sort is State. The term on the right-hand side of the
equation defining p denotes an disjunctive normal form of
the predicate. The two constants hyp1 and hyp2 denote ar-
bitrary states (defined as ˜tr1@cs and ˜tr2@cs) where the
two induction hypotheses (not(pos(tr1,S) = cs) and
not(pos(tr2,S) = cs)) hold, respectively. By using the
two constants, the template of CA-matrices is instantiated.
One of the three disjuncts of the predicate (namely tr1 =
tr2) does not have any states and then its truth value does
not change at all as state transitions go on. Consequently,
if the disjunct is used as the induction hypothesis, then
every transition surely preserves the predicate. Therefore, we
assume that the disjunct does not hold for the verification. The
assumption is given as the equation in the module CLAIM1.

The term INI | IND denotes the proof candidate of the
invariant. If the result obtained by reducing the term is true,
then the term is surely the proof. Otherwise, basically we
should do more case analysis and find necessary lemmas. The
actual result obtained by reducing the term is as follows:

MOVE-TO-EDGE(tr,ed,
adj o tr@nd o sted@tr,˜tr1@cs)

| MOVE-TO-NODE(tr,nd,adj o tr@ed,˜tr1@cs)
| MOVE-TO-EDGE(tr,ed,

adj o tr@nd o sted@tr,˜tr2@cs)
| MOVE-TO-NODE(tr,nd,adj o tr@ed,˜tr2@cs)

The result means that four out of nine cases (namely one for
the base case and eight for the induction cases) have not been
proved yet.

What to do next is manual case analysis based on non-
state basic predicates. Based on the equivalence predicates for
TrID and EdgeID plus the five constants tr, tr1, tr2, cs

and ed, we consider the following five cases:
1) tr

 �
tr1 $ tr � tr2

2) tr
�
tr1 $ tr � tr2 $ cs � ed

3) tr
�
tr1 $ tr � tr2 $ cs � ed

4) tr
 �
tr1 $ tr � tr2 $ cs � ed

5) $ tr �
tr1 $ tr � tr2 $ cs � ed

For the cases 1), 2) and 4), INI | IND is reduced to true
as expected. For the remaining cases 3) and 5), we use the
second method, namely the more precise case analysis.

Let us show the proof passage of the case 3), which is as
follows:

open CLAIM1
eq (tr = tr1) = true .
eq (tr = tr2) = false .
eq (cs = ed) = true .
red INI | IND .

close

The command open makes a temporary module that imports
a module taken as the argument, and the command close
destroys the temporary module.

For the case 3), the result is as follows:

MOVE-TO-EDGE(tr,ed,
adj o tr@nd o sted@tr,˜tr1@cs)

The result says that it is not shown yet that the transition
move-to-edge ��� U ��� preserves the predicate concerned in the
case characterized by the CSC adj o tr@nd o sted@tr
plus the three equations appearing in the proof passage.

3) More Precise Case Analysis: We describe the more
precise case analysis for the case 3). For the more precise
case analysis, we first select the five basic predicates. The
pairs of the ASCs corresponding to the five basic predi-
cates are

�
tr@nd

�
˜tr@nd

�
,
�
tr@ed

�
˜tr@ed

�
,
�
tr1@cs

�
˜tr1@cs

�
,
�
tr2@cs

�
˜tr2@cs

�
and

�
adj

�
˜adj

�
.

The following CafeOBJ passage is used to do the more
precise case analysis for the case 3):

open CLAIM1
eq (tr1 = tr2) = false .
eq (tr = tr1) = true .
eq (tr = tr2) = false .
eq (cs = ed) = true .
eq act(S:State) = move-to-edge(tr,ed,S) .
red traverse(atomlist,

adj o tr@nd o sted@tr o ˜tr1@cs) .
close

The constant atomlist is defined as the following term:

< tr@nd,˜tr@nd > :: < tr@ed,˜tr@ed > ::
< tr1@cs,˜tr1@cs > :: < tr2@cs,˜tr2@cs > ::
< adj,˜adj > :: empty

The term denotes the list of the pairs of the ASCs corre-
sponding to the five basic predicates. The operator traverse
performs the more precise case analysis. Given a list of ASC
pairs and a CSC c, for each ASC a in the list the operator
traverse reduces the following term:

comp(a,c) implies
(p(a o c) implies p(act(a o c)))

The result obtained by reducing the term traverse(...)
in the CafeOBJ passage is as follows:

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 1, MARCH 2005 10

< tr@nd,tt > :: < tr@ed,˜tr@ed > ::
< tt,˜tr1@cs > :: < ff,tt > ::
< adj,tt > :: empty

The constants tt and ff are ASCs corresponding to true and
false, respectively.

We turn our attention to the pair < ff,tt > in the result,
which corresponds to the pair < tr2@cs,˜tr2@cs > in
the list denoted by atomlist. The pair in the result suggests
that an arbitrary state corresponding to the CSC tr2@cs
o adj o tr@nd o sted@tr o ˜tr1@cs plus the four
equations appearing in the CafeOBJ passage may be unreach-
able and we may find some contradictions in the CSC plus
the four equations, from which a necessary lemma may be
conjectured.

Considering the equations tr
�
tr1 and cs

�
ed, we

know that tr2@cs and sted@tr contradict each other. Since
we assume that tr1 is different from tr2, we can conjecture
the following lemma:

?A@CBEDGFH? DI@CJ � tr � � tr
� % postr � � � � �
 � % staff ���

� � � � tr
���

(2)

(2) is used to rewrite the proof passage of the case 3) as
follows:

open CLAIM1
eq (tr = tr1) = true .
eq (tr = tr2) = false .
eq (cs = ed) = true .
eq IND = FORALL-ACTION (hyp1 o ˜tr2@cs)

| FORALL-ACTION (hyp1 o ˜stcs@tr1)
| FORALL-ACTION (hyp2) .

eq ˜stcs@tr1 = ˜sted@tr .
red INI | IND .

close

In the case 3), since tr1 is different from tr2, we only
consider the last two disjuncts in (2). The two disjuncts are
used to split the case using the induction hypothesis hyp1 into
the two sub-cases. Besides, since cs

�
ed and tr1

�
tr,

˜stcs@tr1 should be equal to ˜sted@tr, which is needed
to obtain the desired result. The result obtained by reducing
the term INI | IND in the proof passage is true as expected.

We also perform the more precise case analysis for the case
5), from which in addition to (2) we know that we need another
lemma, which is as follows:

?A@CBEDGFN? DI@KJ � postr � � � � �
 � % staff ���
� � � ����� �

(3)

In order to prove (2) and (3), we need other lemmas. To
complete the verification, we need three more lemmas, which
are as follows:

?A@KBLDMFN? DI@CJ � tr � � tr
� % staff ���

� � � � tr
� % staff ���

� � � � tr
���

?A@KBLDMFN? DI@CJ � postr � � � � ��
 � % postr � � � � ����� �
?A@KBLDMFN? DI@CJ � staff ���

� � � ����� % staff ���
� � � � tr

� �
The lemmas can be verified as (1).

V. RELATED WORK

Several proof assistants have been proposed. Among them
are Coq[1] and Isabell/HOL[14]. They provides some auto-
matic proof mechanisms to some extent, but basically help

users construct their proofs. Users feed commands called
tactics into a proof assistant to make progress on their proofs.
Tactics usually reduce a proof goal into possibly multiple and
hopefully simpler proof sub-goals. But, users should select
appropriate tactics in order to succeed in their proofs. This
means that users are required to complete their proofs on their
own without any proof assistants. One of the benefits of the
use of proof assistants is that proof assistants formally assure
that proofs constructed are really correct.

On the other hand, the proof-score approach to verification
of distributed systems, or the OTS/CafeOBJ method does not
require users to have sophisticated knowledge on theorem
proving in a sense that we do not have to know what
deductive rules (i.e. equations) should be applied to terms
denoting formulas to prove. But, the OTS/CafeOBJ method
does no have any mechanisms to help users write proof scores
and then writing proof scores are subject to human errors.
The proposed two methods, which mechanically support case
analysis, substantially reduces human errors.

Among the existing tools supporting verification of (dis-
tributed) systems with algebraic specification languages are
Larch Prover (LP)[6][10] and BOBJ[8]. The design policy of
LP is to make proof assistants easier-to-use especially for en-
gineers, but users of LP are basically required to have similar
skills as those needed to use other proof assistants. BOBJ is a
sibling language/system of CafeOBJ. System verification with
BOBJ is also another proof-score approach. Given a set of
predicates, BOBJ automatically splits the case into multiple
sub-cases, each of which denotes an arbitrary state where
one of the predicates holds, generates the proof passage of
each sub-case and check the proof passage. But, users are
responsible for covering all necessary cases.

VI. CONCLUSION

We have proposed two methods of supporting case analysis
for verifying invariant properties of distributed systems with
algebraic specification languages. The first method uses CA-
matrices to cover all cases. The second method, given a set
of basic predicates, mostly automates splitting cases more
precisely, which also can help find necessary lemmas. We have
reported on a case study, showing the effectiveness of these
methods.

We have also applied the two proposed methods to the
verification of another railroad signaling system called the
automatic block system. We have verified seven invariants
related to its safety plus 36 lemmas (which are also invariants).
We can verify 12 out of the 43 invariants fully automatically
with CA-matrices.

The two proposed methods cannot treat non-state basic
predicates because such a predicate does not have any states
and it is difficult to represent a non-state basic predicate as
a constant denoting a set of state where the predicate holds.
Therefore, we still need some manual case analysis for such
predicates, which may cause human errors. One piece of our
future work is to devise a way of mechanically supporting case
analysis based on non-state basic predicates.

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 1, MARCH 2005 11

ACKNOWLEDGMENT

The authors wish to thank anonymous referees who com-
mented on drafts of this paper.

REFERENCES

[1] Y. Bertot and P. Castéran. Interactive Theorem Proving and
Program Development – Coq’Art: The Calculus Inductive Con-
structions. Springer, 2004.

[2] K. M. Chandy and J. Misra. Parallel Program Design: A
Foundation. Addison-Wesley, 1988.

[3] R. Diaconescu and K. Futatsugi. CafeOBJ Report, volume 6 of
AMAST Series in Computing. World Scientific, 1998.

[4] R. Diaconescu and K. Futatsugi. Behavioural coherence in
object-oriented algebraic specification. J.UCS, 6:74–96, 2000.

[5] J. Edmund M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 2001.

[6] S. J. Garland and J. V. Guttag. A guide to LP, the Larch prover.
MIT Laboratory for Computer Science, 1991.

[7] J. A. Goguen. Theorem Proving and Algebra. MIT Press, (to
appear).

[8] J. A. Goguen and K. Lin. Behavioral verification of distributed
concurrent systems with BOBJ. In 3rd QSIC, pages 216–235.
IEEE CS Press, 2003.

[9] J. A. Goguen and G. Malcolm. A hidden agenda. TCS, 245:55–
101, 2000.

[10] J. V. Guttag, J. J. Horning, S. J. Garland, K. D. Jones, A. Modet,
and J. M. Wing. Larch: Languages and Tools for Formal
Specification. Springer, 1993.

[11] J. Hsiang and N. Dershowitz. Rewrite methods for clausal and
nonclausal theorem proving. In 10th ICALP, volume 154 of
LNCS, pages 331–346. Springer, 1983.

[12] L. Lamport. Specifying Systems: The TLA+ Language and Tools
for Hardware and Software Engineers. Addison-Wesley, 2002.

[13] N. A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.
[14] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A

Proof Assistant for Higher-Order Logic, volume 2283 of LNCS.
Springer, 2002.

[15] K. Ogata and K. Futatsugi. Modeling and verification of
distributed real-time systems based on CafeOBJ. In 16th ASE,
pages 185–192. IEEE CS Press, 2001.

[16] K. Ogata and K. Futatsugi. Formal analysis of Suzuki&Kasami
distributed mutual exclusion algorithm. In 5th FMOODS, pages
181–195. Kluwer, 2002.

[17] K. Ogata and K. Futatsugi. Formal analysis of the � KP
electronic payment protocols. In 1st ISSS, volume 2609 of
LNCS, pages 441–460. Springer, 2003.

[18] K. Ogata and K. Futatsugi. Proof scores in the OTS/CafeOBJ
method. In 6th FMOODS, volume 2884 of LNCS, pages 170–
184. Springer, 2003.

[19] K. Ogata, D. Yamagishi, T. Seino, and K. Futatsugi. Modeling
and verification of hybrid systems based on equations. In DIPES
2004, pages 43–52. Kluwer, 2004.

[20] T. Seino, K. Ogata, and K. Futatsugi. Specification and verifi-
cation of a single-track railroad signaling in CafeOBJ. IEICE
Trans. Fundamentals, E84-A(6):1471–1478, 2001.

[21] T. Seino, K. Ogata, and K. Futatsugi. Supporting case analysis
with algebraic specification languages. In 4th CIT, pages 1100–
1107. IEEE CS Press, 2004.

PLACE
PHOTO
HERE

Takahiro Seino is a postdoc researcher at Graduate
School of Information Science, JAIST (Japan Ad-
vanced Institute of Science and Technology). He re-
ceived his PhD in information science from Graduate
School of Information Science, JAIST in 2003. His
research interests include formal methods for safety
critical systems such as railroad signaling systems.

PLACE
PHOTO
HERE

Kazuhiro Ogata is a research expert at NEC Soft-
ware Hokuriku, Ltd. He is also a visiting Associate
Professor at JAIST (Japan Advanced Institute of
Science and Technology). He received his PhD in
engineering from Graduate School of Science and
Technology, Keio University in 1995. He was re-
search associate at JAIST from 1995 to 2001 and
a researcher at SRA Key Technology Laboratory,
Inc. from 2001 to 2002. Among his research inter-
ests are parallel and distributed programming lan-
guages&systems, their formal analyzes, and formal

methods and tools for the analyses.

PLACE
PHOTO
HERE

Kokichi Futatsugi is a professor at Graduate
School of Information Science, JAIST (Japan Ad-
vanced Institute of Science and Technology). Be-
fore getting a full professorship at JAIST in 1993,
he was working for ETL (Electrotechnical Lab.)
of Japanese Government and was assigned to be
Chief Senior Researcher of ETL in 1992. His re-
search interests include formal methods, software
requirements&specifications, language&system de-
sign, concurrent and cooperative computing. His
primary research goal is to design and develop new

languages which can open up new application areas, and/or improve the
current software technology. His current approach for this goal is CafeOBJ
formal specification language.

