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Abstract

We are currently working on a project de-
veloping a version of Smalltalk in which
Processes can be executed in parallel as
units of execution. Mach is used as the un-
derlying operating system. Smalltalk run-
ning on the Mach environment is called
HoME. By executing a Smalltalk Process
with a Mach’s thread, Processes can be ex-
ecuted in parallel. The Smalltalk used in
this project is Smalltalk-80 ver. 2.5, which
is generally called HPS, and does not
have a byte-code interpreter. In HPS, the
CPU directly executes the machine-code
by translating byte-code into machine-
code during execution. In this paper, an
outline of the project, its present state,
and plans for the future are described.

1 Introduction

In the Smalltalk system [Goldberg 83|,
the class which represents independent
The class

Semaphore is used for synchronizing these

threads of control is Process.

threads of control. These classes can be
used to program concurrency in Smalltalk
[Doi 89]. Smalltalk’s Process, however, is
not scheduled by time sharing. When a
Process starts executing, the other Pro-
cesses are blocked until it terminates or is
suspended, unless the Process yields the
CPU or a Process with higher priority is
scheduled. Basically, Smalltalk’s Process

only executes sequentially.

An example of Smalltalk where Pro-
cesses (units of executing) execute in par-
allel is Multiprocessor Smalltalk (MS)
[Pallas 88] [Pallas 89]. MS is a sys-
tem which implements Berkeley Smalltalk
[Ungar 83] on the Firefly multiprocessor
[Thacker 87] with the V distributed op-
Berkeley
Smalltalk has a byte-code interpreter. In

erating system [Cheriton 84].

MS, concurrent execution is realized by
replicating the interpreter, having the
same number as the number of physical
processors. The queue for Process is not
replicated. There is only one queue in MS.
Each interpreter gets the next Process to
be executed from the queue, and interprets
the byte-code corresponding to the Pro-
cess.

HoME (HPS on Mach Environment) is
a version of Smalltalk which executes on
the Mach [Tevanian 87] environment and



Processes execute in parallel as units of
execution. In MS, if there are more Pro-
cesses than physical processors, they can-
not run simultaneously. In HoME, theo-
retically an infinite number of Processes
can run simultaneously. The Smalltalk
used in MS is a type which interprets byte-
code. What is used in our research, how-
ever, is a type which dynamically trans-
lates byte-code into machine-code during
execution, and the CPU directly executes
the code [Deutch 84]. The ParcPlace Sys-
tems Smalltalk-80! virtual image ver. 2.5
is used. In HoME, concurrent execution
is realized by having Mach’s thread ex-
ecute Smalltalk’s Process. The machine
used is the OMRON LUNA-88K, which
carries four MC88100 RISC microproces-
sors [Motorola 90].

In the following sections, first the de-
sign policy is given and HoME is compared
with other versions of Smalltalk. Second,
the methods which were used in the im-
plementation, and the present state of the
project is described. Lastly, the future
work and conclusions are stated.

2 Design Policy

HoME is designed and implemented based
on the following four fundamental policies:

1. Theoretically, an infinite number of
Processes can become active.

2. The moment a Process is scheduled,
it becomes active.

3. Theoretically, an infinite number of
processors can be thought to exist,
and the role of the processor is per-
formed by Mach’s thread.

4. No concept of Process switching ex-
ists.

The first policy implies that a great
number of Processes can run in parallel,

1Smalltalk-80 is a trademark of ParcPlace
Systems.

r| lock process2 |

lock := Semaphore forM utual Exclusion.
process2 ;= [20 timesRepeat: [

lock wait.

Transcript show: 'DOG'.

lock signal.]] newProcess.
process2 resume.

20 timesRepeat: [
lock wait.
Transcript show: "CAT'.
lock signal.].
_ J
Figure 1. Concurrent Programming in

Smalltalk

and there is no limit to the number of Pro-
cesses. Sending the resume message to a
Process indicates that it has been sched-
uled. That is, the second policy means
that a new instance of Process is created
by sending a newProcess message to a
block expression (which is enclosed with
‘' and ‘]’), and the new instance starts
executing independently and concurrently
with other Processes when a resume mes-
sage is sent to it. In HoME, Mach’s thread
executes Smalltalk Processes. As threads
are conceptually thought of as processors,
the concept of Process switching disap-
pears in HoME. So, Processes in HoME
truly represent independent threads of
control.

Processes in HoME have no priority,
and all Processes are treated equally. All
Processes, such as those for managing I/O,
for user interface, and those created by
sending a newProcess message to a block
expression, are treated equally.

3 Comparison

HoME can be compared with ordinary
Smalltalk (ST) and MS according to the
above four design policies.

In HoME, more than one Process can
run in parallel. ST’s Process, however, can



only execute sequentially. It is possible for
a multiple number of Processes to execute
in parallel in MS, while there is no limit
to the number of Processes which can run
simultaneously in HoOME, in contrast with
the number in MS being dependent on the
number of physical processors (replicated
interpreters).

As soon as a Process is newly scheduled
in HoME, it can start executing indepen-
dently and concurrently with other Pro-
cesses. In ST, if the priority of a newly
scheduled Process is not higher than the
one running (that is, the active Process),
it is blocked until the active Process ter-
Otherwise, if it is
higher, it becomes newly active and starts
executing. As the byte-code interpreter is
replicated in MS, more than one Process
can run in parallel. Except for this point,
when a Process is newly scheduled, MS be-
haves in the same way as ST.

minates or suspends.

An interpreter can be thought of as a
processor in ST and MS. Always only one
processor exists in ST. The number of pro-
cessors in MS is the same as the number
of the replicated interpreters. In HoME, a
Mach’s thread can be thought of as a pro-
cessor, so an infinite number of processors
can be said to exist.

There is no concept of Process switching
in HoME. In ST, Process switching is per-
formed when a primitive method for Pro-
cess or Semaphore is executed, or a Pro-
cess with a higher priority than the active
Process is scheduled.

For example, consider the program in
Figure 1. A Process executing this pro-
gram is called processl. In this program,
processl creates process2, and schedules
it by sending it the resume message.
Then, processl prints the string “CAT” 20
times on the Transcript. Process2 prints,
independently from processl, the string
“DOG” 20 times on the Transcript.

Since processl and process2 cannot run
simultaneously in ST, first processl prints
CAT 20 times, and then process2 starts

processl
start execution

create and resunme

: bl ocked

lst art execution
(a) In ordinary Smalltalk,
process? is blocked until processl terminates.

processl
start execution
4 process2

create and resune

term’nate

Sl art execution

(b) InHOME,
processl and process2 are running simultaneously.

Figure 2. Behavior of Process

printing DOG (Figure 2 (a)). In HoME,
as soon as the resume message is sent to
process2, it starts executing independently
and concurrently with processl. So, the
strings DOG and CAT are printed in ran-
dom order on the Transcript (Figure 2
(b)).

In the program in Figure 1, the
semaphore ‘lock’ is used to protect the ob-
ject ‘Transcript’ which is shared by pro-
cessl and process2.
Smalltalk, the class Semaphore must be
used to protect shared objects.

As with ordinary

4 Environment

4.1 HPS

The Smalltalk used in this research is gen-
erally called HPS, which does not have
a byte-code interpreter. By dynamically



translating byte-code into machine-code
during execution, the CPU directly exe-
cutes the machine-code. The design pol-
icy of HPS is best expressed by the term
“dynamic change of representation.” This
term means that the same information is
represented in more than one structually
different way during its lifetime, and is
converted transparently between represen-
tations as needed for efficient use at any
moment.

For example, execution code is usually
represented as byte-code (called V-code or
virtual code). However, it is converted
into machine-code (called N-code or na-
tive code) which can be directly executed
by the CPU when actual execution takes
place. The activation record (called Con-
text in Smalltalk) is created whenever a
message is sent. But, most of the Con-
texts are never referred to as objects dur-
ing their lifetimes, resulting in most of
the Contexts being allocated as frames on
activation stacks. Contexts allocated on
stacks are called volatile Contexts. When
Contexts are treated as objects, they are
allocated in the object memory in the
same way as other ordinary objects. Con-
texts allocated in the object memory are
called stable Contexts.
are allocated in stacks, but have a header
as an object, are called hybrid Contexts.
Volatile Contexts are converted to hybrid

Contexts which

Contexts when they are referred to as ob-
jects, for example, when a message is sent.

The automatic storage management
in HPS wuses Generation Scavenging
[Ungar 84], which is
scheme, and not a reference counting
scheme.

a stop-and-copy

4.2 MACH

The concept light-weight process denotes
multiple threads of control. Mach sepa-
rates the traditional process abstraction
into a task and a thread. A task is an acti-
vation environment, which includes an ad-

dress space, file descriptors, etc, and does
not carry out any computing. A task is a
framework for executing threads, and one
with a thread is equal to an ordinary pro-
cess. A thread is the basic unit of exe-
cution, containing the state of a proces-
sor, an activation stack, etc. A thread ex-
ists within exactly one single task. How-
ever, one task may contain any number of
threads. A thread shares all memories and
resources with the other threads executing
within the same task. All threads theoret-
ically execute in parallel. So, when run-
ning on a multiprocessor, multiple threads
may indeed execute in parallel. A thread
may be in a suspended state (prevented
from running), or in a runnable state (run-
ning or scheduled to run). There is a non-
negative suspend count associated with
each thread. The suspend count is zero
for runnable threads and a positive num-
ber for suspended threads.

5 Implementation

In this section, a description of the modi-
fication of certain methods, the resources
to be given to each Process, and modifica-
tions in the virtual image (VI) are given.
The unsuitability for HoME of the win-
dow scheduling scheme in ST is pointed
out, and a new window scheduling scheme
for HoME is described.

5.1 Modified Methods

The modified methods are as follows: in-
stance methods resume and suspend in
the class Process, instance methods wait
and signal in the class Semaphore, and in-
stance methods activeProcess and yield in
the class ProcessorScheduler.

1. Process>>resume — When a resume
message is sent to a Process and no
threads are allocated to the Process, a
thread is newly created and executes
the Process. If a thread is already



allocated to the Process, the Process
is resumed by resuming the thread.

. Process>>suspend — When a sus-
pend message is sent to a Process, if
the Process receiving the message is
the same Process that actually car-
ries out the suspend, the thread cor-
responding to the Process to be sus-
pended is suspended, that is, the sus-
pend count is set to one. If the Pro-
cess receiving the message is differ-
ent from the Process actually exe-
cuting the suspend, the Process exe-
cuting the suspend does not immedi-
ately suspend the thread correspond-
ing to the Process receiving the mes-
sage. A thread corresponding to a
Process cannot be suspended at any
given time because the instance vari-
able suspendedContext of the Process
must contain the Context to be exe-
cuted when the Process starts execut-
ing again. So, the Process executing
the suspend notifies the Process re-
ceiving the message to suspend. The
latter Process checks if it must sus-
pend at a certain point. If it must, it
immediately suspends at that point.

. Semaphore>>wait — When a wait
message is sent to a Semaphore, if
the instance variable excessSignals of
the Semaphore is positive, excessSig-
nals is decremented. If excessSignals
is zero, the Process executing the wait
is appended to the tail of the queue of
the Semaphore and the corresponding
thread is suspended.

. Semaphore>>signal — When a sig-
nal message is sent to a Semaphore, if
the queue of the Semaphore is empty,
excessSignals is incremented. If the
queue contains one or more Processes,
the head of the queue is dequeued and
resumed.

. ProcessorScheduler>>activeProcess
— When an activeProcess message

is sent to Processor, the only in-
stance of the class ProcessorSched-
uler in ST, the value of the instance
variable activeProcess is returned. In
ST, only one active Process can ex-
ist at one time, and the instance vari-
able activeProcess points to the active
Process. In HoME, the method ac-
tiveProcess has been modified to re-
turn the Process which executes it.
So, this method is implemented as a
primitive method, unlike ST.

. ProcessorScheduler>>yield — In ST,

the yield method is used so that the
active Process can give the other Pro-
cesses a chance to execute. In HoME,
as all Processes can run simultane-
ously, this method is of no use. So,
the method has been modified so as
to do nothing.

5.2 Resources Given to Each

Process

Resources and data structures given to
each Process are as follows:

1. Stack — A stack for allocating

Contexts suitable for execution (i.e.
volatile Contexts) is given to each
Process. A different stack for exe-
cuting functions written in C, such as
those for primitive methods, is also
given to each Process.

. Region for N-code — In HPS, V-code

is dynamically translated into N-code
during execution. It is enough to have
just one region for N-code for a sys-
tem to be global, if Processes can only
run sequentially. If Processes can
run simultaneously, this region may
be shared by multiple Processes. In
HoME, however, for simplicity a re-
gion is given to each Process.



5.3 Shared Resource

Object memory is shared by all Processes.
In HPS, automatic storage management
uses Generation Scavenging. We plan to
give each Process a new space, so that
there will be an improvement in perfor-
mance. Also, some new features will
be added to the Generation Scavenging
scheme. This will be further discussed in

section 6.

5.4 Synchronization

As all Processes shared object memory,
object allocations are mutually excluded
for synchronization. Processes may trans-
late V-code into N-code in parallel. How-
ever, for simplicity, mutual exclusion is
carried out between Processes that actu-
ally translate V-code into N-code.

There is a special thread for executing
Generation Scavenging, and it is differ-
ent from the threads executing Smalltalk’s
This thread is usually sus-
pended. When Generation Scavenging
must be carried out, it starts by resuming
the thread. The thread does the following:

Processes.

1. It notifies all currently running Pro-
cesses to suspend. A running Process
is one whose thread’s suspend count
is zero. All threads executing the no-
tified Processes are registered in the
array suspendThreads.

2. If there are any threads left which are
executing a Smalltalk Process, which
is not in suspendThreads and whose
suspend count is zero, the Genera-
tion Scavenging thread notifies it to
suspend. The Generation Scaveng-
ing thread waits until all the sus-
pend counts of threads executing Pro-
cesses become positive, that is, un-
til all threads executing Processes are
suspended.

3. After all Processes are suspended,
the Generation Scavenging actually

starts. The Generation Scavenging

scheme is the same as in HPS.

4. When the Generation Scavenging is
finished,
ing to the threads registered in sus-
pendThreads resume processing. The
Generation Scavenging thread is sus-
pended until the next scavenging.

all Processes correspond-

5.5 Modification in VI

A new instance variable thread is added
to the class Process so that a Process
can identify itself. A new instance vari-
able hoMEProcessList in the class Proces-
sorScheduler represents the hash table in
which current active Processes are regis-
tered. The value of the instance variable
thread is used as a hash value. In or-
der to point to the next Process in the
hoMFEProcessList, a new instance variable
nextProcess is added to the class Process.
The instance variable thread of a Pro-
cess contains the id number of the thread
executing it. For example, when send-
ing a activeProcess message to Processor,
which is the only instance of the class Pro-
cessorScheduler, the returned value is a
thread corresponding to the Process. The
following are carried out in the activePro-
cess method:

1. Get the id number of the thread exe-
cuting the activeProcess method by
using Mach’s
thread self().

system call

2. Find the Process corresponding to the
id number in the instance variable
hoMEProcessList of Processor, and
return it.

Instance variables activeProcess and
quiescentProcessLists in Processor are not
used in HoME.

5.5.1 Window Scheduler

The window scheduling scheme in ST is
fairly different from the ones used in con-



ventional window systems. In ST, usually
there is only one active window. A Process
for the controller controlling the window is
created and runs. The other windows do
not have any functions as a window, and
are just Forms. When a mouse cursor is
moved from active window A to nonactive
window B and the mouse is clicked, the al-

gorithm of B becoming active is as follows:

1. The controller of window A looks for
a controller requesting control, that is
the controller of window B.

2. The controller of window A creates a
new Process for the new controller.

3. The controller of window A kills the
Process allotted to itself. Then, the
process for window B starts execu-
tion.

All controllers of the windows are reg-
istered in the instance variable scheduled-
Controllers of the class ControlManager.
The controller of window A can find the
controller of window B by scanning sched-
uledControllers.

From the algorithm,
moves from window A to window B, and

when control

back to window A, the Process previously
used for window A is not used again.
Whenever an active window changes, the
previously used Process is killed and a new
Process is created (Figure 3 (a)).

As creating a Process and executing it
is a heavy load in HOME, creating and dis-
carding Processes frequently causes a de-
cline in performance. Thus, we have re-
designed the window scheduler for HoME,
by attaching a private Process to each win-
dow as in conventional window systems
(Figure 3 (b)).

In the new window scheduler, a new
class variable WindowTable is added to
the class ControlManager, in which all
controllers of windows and Processes for
Pro-
cesses for nonactive windows are sus-
pended. When there is a change in active

those controllers are registered.

window A new progess is create

new processis created

new processis created

(a) Window scheduler for ordinary Smalltalk

L |
X =

process A is used again

process A is used

(b) Window scheduler for HOME

Figure 3. Window Scheduler

windows, the controller for the currently
active window looks for the Process for the
next one by scanning WindowTable, and
then sends a resume message to it.

By redesigning the window scheduler,
Processes are not created each time there
is a change in active windows.

6 Future Work

In the present implementation of HoME,
since each Process has a region for N-code,
there is no need for mutual exclusion in
accessing N-code.
that there may be a great amount of the
same N-code in the N-code regions. So, we
must consider the trade-off between space
efficiency and the overhead for mutual ex-

However, this means

clusion needed when sharing a region for
N-code. As most N-codes can be used by
all Processes, it seems more appropriate to
share one region for N-code with all Pro-
cesses.



Actual translations from V-code into N-
code are mutually excluded. However,
taking concurrency and performance into
consideration, it seems more desirable to
be able to translate in parallel.

When multiple Processes are able to
run simultaneously, the creation of objects
is in proportion to the number of Pro-
cesses (physical processors). If one cre-
ation space is shared with all Processes,
mutual exclusion is needed whenever ob-
jects are created. There is no limit as
to the number of Processes able to run
simultaneously, so the overhead for mu-
tual exclusion increases considerably. It
seems, then, more desirable to give a cre-
ation space to each Process so that there is
no overhead for mutual exclusion when an
object is allocated. And by giving a new
space in addition to a creation space, all
Processes do not have to be suspended for
each Generation Scavenging. When scav-
enging is needed, a Process can do it in
its own new space independent of other
Processes. Generation Scavenging only ac-
cesses the new space. Garbage collection
for old space is done only during global
GC. Taking space efficiency and access fre-
quency into consideration, it seems desir-
able to share old space with all Processes.

7 Conclusion

The four fundamental policies for design
and implementation of HoME was de-
scribed, and HoME was compared with
ordinary Smalltalk and Multiprocessor
Smalltalk.  In the implementation of
HoME, the methods to be modified and
how they are to be modified, the resources
to be given to each Process and those
shared with all Processes were described.
Also, modifications in the virtual image
were mentioned.

We explained that the window schedul-
ing scheme of ST is not suitable for HoME.
The window scheduler for HoOME has been
redesigned under the new process sched-

uler based on time sharing.

In the of
HoME, there are some problematic parts.
We described how these are to be im-
proved in the future.

present implementation
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