
Formal Fault Tree Analysis of State Transition Systems

Jianwen Xiang†, Kazuhiro Ogata†,‡, Kokichi Futatsugi†

† Japan Advanced Institute of Science and Technology (JAIST)
Graduate School of Information Science

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

‡ NEC Software Hokuriku, Ltd.
1 Anyoji, Tsurugi, Ishikawa 920-2141, Japan

{jxiang, ogata, kokichi}@jaist.ac.jp

Abstract

Fault Tree Analysis (FTA) is a traditional deductive
safety analysis technique that is applied during the system
design stage. However, traditional FTA does not consider
transitions between states, and it is difficult to decompose
complex system fault events that are composed of multiple
normal components’ states rather than individual compo-
nent failures. To solve these problems, we first propose two
different fault events of fault trees, and then present a for-
mal fault tree construction model by introducing the con-
cept of transition rules for event decomposition, in which
the semantics of gates and minimal cut sets of fault trees
are revised compared with traditional FTA.

1. Introduction

Fault Tree Analysis was first developed in the 1961 to fa-
cilitate analysis of the Minuteman missile system [14] and
has been widely used in the aerospace, electronics, and nu-
clear industries for safety and reliability analyses for years.
FTA was originally developed for hardware system analy-
sis, and the fault trees were often constructed after a detailed
system operation diagram had been provided, i.e., after the
system design stage. In this case, with respect to a specific
system fault (undesired hazard), we can easily attribute itto
some component (or sub-system) failures straightforward,
and it will not cause any incorrectness problem of the fault
trees supposing the operation diagram itself is correct and
consistent.

However, with respect to software and integrated com-
plex system analysis, the situation changed. And the ap-

proach of carrying out system safety analysis with fault
trees before the system design stage is usually more desir-
able, since it can provide useful information and concrete
safety requirements for the subsequent system design and
implementation. But in this case, an inevitable problem is
how to ensure the generated informal fault trees are correct,
i.e., the sub-events can formally result in their top event with
respect to each logic gate of the fault trees. This is because
the fault trees are usually constructed by intuition and in-
complete information at this stage.

To solve this informal and incorrect problem, several
formal fault tree models have been developed. Examples
of them can be found in [5] (Kirsten M. Hansen and An-
ders P. Ravn, 1998), [3] (David Coppit, Kevin J. Sullivan,
and J. B. Dugan, 2000), and [12] (Gerhard Schellhorn, An-
dreas Thums and Wolfgang Reif, 2002). But these methods
mainly focused on providing formal semantics for fault tree
constructors, such as different logic gates; they seldom con-
sidered how to formally construct the fault tree in a deduc-
tive manner. The common method is to develop the formal
model and the fault trees as separate documents. That is to
say, building up the fault trees is driven by intuition, while
the events and sub-events of a gate are formalized afterward
with respect to the formal model [11]. This approach is ef-
fective for quickly constructing a fault tree, but the informal
construction creates problems later, when verifying its cor-
rectness.

A related issue is that, transitions between states are not
represented in traditional fault trees [7], and thus it is diffi-
cult to resolve a system fault which consists of event com-
bination (several normal object states) rather than depend-
ing on individual component failures. And in a number of
formal approaches of FTA [5, 6], events are just decom-

posed according to the structure of the formula describing
the event. This is especially a problem in distributed sys-
tems which are usually modeled as transition systems. For
example, considering a railway level crossing control sys-
tem, a hazard collision is defined as when a train is on

the crossing, the barriers are open, namelyCollision
def
=

OnCrossing(tr) ∧ Open(ba). The hazard collision con-
sists of two normal object states, and we can not simply
decompose it into two sub-events asCrossing(tr) and
Open(ba), since neither of them is a fault independently
and nobody would like to build a level crossing to ensure
that a train never passes the crossing or the barriers are
never open. Here, one important principle for developing
proper fault trees should be stressed, such as figured out
in the fault tree handbook [13]: “all events/nodes that are
linked together on a fault tree should be written as faults
except, those statements that are added as simply remarks
(e.g., conditioning events)”.

This problem also stems from that traditional FTA
mainly focuses on fault occurrence rather than fault exis-
tence as for qualitative analysis of fault trees, and thus all
the fault events (states) are considered as nonrepairable (un-
changeable) [13]. This principle is useful for hardware
system analysis, but it may cause troubles when analyz-
ing transition systems which consist of several objects as
we figured out above. In [11], Reif, et al. noticed this prob-
lem and proposed to “define events and sub-events of a gate
separately, and to check their correct interrelation explic-
itly”, but they did not discuss how to derive the sub-events
in an instructive formal way.

Therefore, in the work described here, based on our pre-
vious work [16], we further propose a formal fault tree
analysis model based on classical propositional logic and
basic concepts of state transition. In this model, the seman-
tics of events, gates, and minimal cut sets of fault trees are
revised and augmented compared with standard FTA, and a
formal fault tree construction procedure is proposed to deal
with the decomposition problem of complex system states.
The example of a distributed radio-based railroad crossing
control system will be used to explain our approach.

The rest of this paper is organized as follows. Section 2
provides background material on FTA. Section 3 elaborates
our formal fault tree analysis of state transition, which con-
sists of the discussion of fault events in fault trees, analy-
sis of transition rules for event decomposition, notation and
semantics of gates, and the formal fault tree construction
model. We conclude with a case study and a discussion in
Section 4 and 5, respectively.

2. Fault Tree Analysis

Fault tree analysis [13] is a deductive safety analysis
technique which is applied during the design phase. The

technique was first developed in the 1960s to facilitate
analysis of the Minuteman missile system [14] and has been
supported by a rich body of research since its inception.
It is a top-down approach; input consists of knowledge of
the system’s functions as well as its failure modes and their
effects. The result of the analysis is a set of combinations
of component failures that can result in a specific malfunc-
tion. The approach is graphical, constructing fault trees us-
ing standardized symbols [13], as shown in Figure 1. There
are several variations and extensions, but in this article we
limit ourselves to the following symbols.

BASIC EVENT – A basic initiating fault requir-
ing no further development.

INTERMEDIATE EVENT – An event that re-
sults from a combination of events through a
logic gate.

CONDITIONING EVENT – Specific condi-
tions or restrictions that apply to any logic gates.

AND gate – The output fault occurs only when
all the input children faults occur.

OR gate – The output fault occurs only when one
or more the input children faults occur.

INHIBIT gate – Output fault occurs if the (sin-
gle) input occurs in the presence of an enabling
condition (the enabling condition is represented
by a CONDITIONING EVENT connected to
the gate)

Figure 1. Fault tree symbols

The goal of the analysis is to find all the minimal cut
sets, where aminimal cut setis a smallest combination (in-
tersection) of component failures (basic fault events) which,
if they all occur, will cause the top event to occur. The com-
bination is a “smallest” combination in that all the failures
are needed for the top event to occur; if one of the failures
in the cut set does not occur, then the top event will not oc-
cur (by this combination) [13].

Essentially, fault tree analysis is a qualitative model
which reveals the possible combinations of identified ba-
sic events sufficient to cause the undesired top event. But
it is also often used in probabilistic analyses, such as fail-
ure rate calculation of the top event (given the failure rates
of basic fault events) [8] and allocation of software reliabil-
ity [15]. In this paper we are not concerned with the proba-
bilistic extensions to our model.

3. Formal FTA of State Transition Systems

3.1. Definition of events

In traditional fault tree analysis terminology, an event in
a fault tree except the conditioning events is calledfault
event, meaning the fault occurrence ofonespecific system
or component state [13, 2]. The event can be understood as
a root node, intermediate node (intermediate event), or leaf
(basic event) in a fault tree, depending on the event is clas-
sified as “state-of-system” or “state-of-component” [13].

But in the sense of transition systems, a fault event of-
ten refers to a conjunction ofseveral normalobject (sub-
system) states, such as the eventCollision in the cross-
ing control system discussed in the last section. In this case,
an undesired system state which consists of a combination
of several normal object states can not be simply decom-
posed into several sub-events directly, just according to the
structure of the formula describing the event. And generally
speaking, it is also difficult to attribute it to some indepen-
dent component failures directly.

To avoid such misunderstanding and solve the decompo-
sition problem, we classify the fault event into the follow-
ing two cases:

• Single Fault Event: occurrence of asingle faultsys-
tem or object state, which can be represented by a state
predicate,p.

• Conjunct Fault Event: occurrence of a conjunction of
severalnormalobject states, e.g.,p∧q (p andq are state
predicates), in which neitherp norq is a fault event in-
dependently, but their simultaneous occurrence consti-
tutes an undesired system state. In other words, we can
understand it asp occurs in a wrong time whenq holds,
and vice versa.

The importance to distinguish the conjunct fault event
and single fault event is that, with respect to distributed sys-
tem analysis, a system state usually consists of several ob-
ject states which are changed by transitions; and thus an
undesired system state may consist of several object states
which are not fault events independently. Such as the above
example, a train on crossing and the barriers are open are
not fault events with respect to the train and the barriers, re-
spectively. Without such distinction, it is difficult to resolve
a conjunct fault event correctly using traditional FTA as we
discussed above.

3.2. Analysis of transition rules

In our formal fault tree analysis, we define an important
term in our model, namelytransition rule.

Definition 3.1 (Transition Rule) Give an occurrence of a
system or object statec, a transition rule states all the im-
mediate, sufficient, and necessary causes forc.

A standard transition rule can be interpreted by the fol-
lowing formula:

A1 ∨ A2 ∨ . . . ∨ An ⇒ c (1)

whereAi (i = 1, 2, . . . , n) is a conjunction of predicates
which will result in the occurrence ofc, and⇒ denotes a
one-step transition or rewrite relation in a sense of rewrit-
ing logic.

This is similar to the concept oftransition defined in
standard transition system models [9]. One difference is that
from the point of view of fault tree analysis, it stresses that
we should considerall the possibilities (including physical
environment faults such as hardware defects, human errors,
and so on) with respect to the occurrence ofc, not only lim-
ited to the software-to-be or system design. From this stand-
point, a transition rule in FTA can also be regarded as a
union of several transitions which result in the same occur-
rence of a object state in standard transition systems.

Before discussing how to decompose the conjunct fault
event with the transition rule (the decomposition of the sin-
gle fault event can be regarded as a simple instantiation of
the conjunct fault event, and in the following discussions we
focus our attention on the conjunct fault event), one impor-
tantconstraintof the transition rule should be introduced as
follows.

Give a conjunct fault event that consists of two object
state predicatep andqα (we useqα to denote that the ob-
jectq is in its stateα, and useqβ to denote any other differ-
ent state ofq exceptqα. This is because in practice, an ob-
ject may have several different states, and only usingq and
¬q may cause misunderstanding and confusing in the fol-
lowing discussions) , and suppose a transition rule for the
occurrence ofp is in the form of:

A1 ∨ A2 ∨ . . . ∨ An ⇒ p

Then for eachAi (i = 1, 2, . . . , n), it cannot cause any oc-
currence ofqβ , whereqα 6= qβ .

The reason is obvious. IfAi ⇒ qβ , then there is a con-
tradiction between the transition rule and the conjunct fault
event, and it is impossible to derive the previous system
state (predecessor) of the conjunct fault event. And ifAi

violates the constraint, we should removeAi from the tran-
sition rule. In case noAi complies with the constraint, then
we should consider another transition rule forqα instead of
p.

More specifically, the constraint can be classified into the
following three sub-cases depending on whetherAi con-
tainsqα or qβ .

1. If Ai containsqα, sayAi = C ∧ qα, whereC is a
conjunction containing no state predicate ofq, then the
formulaC ∧ qα ⇒ qα must hold (some references de-
fined it as a kind of ‘idling transition’ [9], but here we
call it as a formula rather than a transition rule because
in the sense of FTA, it does not cause the occurrence
of qα, and it just states that even with conditionC, qα

will not be changed).

2. If Ai containsqβ , sayAi = C ∧ qβ , the the transition
ruleC ∧ qβ ⇒ qα must also hold.

3. If Ai contains no state predicate ofq, sayAi = C, then
the above two sub-cases may either or both hold. How-
ever, with respect to the second one, i.e.,C∧qβ ⇒ qα,
it is difficult for us to identify qβ and conform the
above transition rule since there is no knowledge about
qβ in Ai at this moment. And actually, this transition
rule can be covered afterward when analyzing the oc-
currence ofqα. To this end, we only require that the
formulaC ∧ qα ⇒ qα holds with respect to this sub-
case.

Based on the above analysis, we present thepatterns of
sub-eventsto the conjunct fault event,p ∧ qα, as follows.

1. If Ai contains no state predicate of the objectq, then
the sub-event is:Ai ∧ qα.

2. If Ai contains eitherqα or qβ , then the sub-event is:
Ai.

The proof of the above patterns is straightforward based
on the discussion of constraint of transition rules as follows.

Pattern-1: SinceAi ⇒ p andAi ∧ qα ⇒ qα, thenAi ∧
qα ⇒ p ∧ qα, and the sub-event isAi ∧ qα.

Pattern-2: SinceAi ⇒ p andAi ⇒ qα, thenAi ⇒ p∧ qα,
and the sub-event isAi.

3.3. Notation and semantics of gates

After discussing the fault events and transition rules for
formal fault tree construction, we should consider how to
represent the transition rule and the event as well as its sub-
events connected by a logic gate in a proper formal way.
The semantics of gates should also be defined as for fault
tree analysis and system safety analysis.

First of all, as for the decomposition of conjunct fault
events, the corresponding transition rule should be recorded
in the fault trees; otherwise it may cause misunderstand-
ing or troubles to check the correctness of the fault tree
when it is reviewed by other analyzers. To this end, we pro-
pose toexplicitly label (or record) the transition rule in (or
besides) the corresponding logic gate for further reviewing
and rechecking.

SC NC
T-AND gate I1 ∧ I2 → O′ O′ → I1 ∧ I2

T-OR gate I1 ∨ I2 → O′ O′ → I1 ∨ I2

T-INHIBIT gate I1 ∧ C → O′ O′ → I1

AND gate I1 ∧ I2 → O O → I1 ∧ I2

OR gate I1 ∨ I2 → O O → I1 ∨ I2

INHIBIT gate I1 ∧ C → O O → I1

Figure 2. Semantics of gates

A gate labeled with a transition rule should be dis-
tinguished from the standard gates of FTA, in which the
semantics of gates are just defined in a simple form of
“Output = Inputs” based on Boolean algebra. With re-
spect to the standard gates, there is no state transition (time-
delay) between the input events and output event, such as
the standard OR-gate can be understood as a kind of fault
space (event) splitting (division), and the input events are
just defined as (more concrete) restatements of the output
event [13]. To this end, we propose that a gate labeled with
a transition rule is atransition gate(short: T-gate), other-
wise it is a standard gate. Both of these two kinds of gates
are used in our formal fault trees.

Two important concepts for defining the formal seman-
tics of gate are the sufficient (correct) and necessary (com-
plete) conditions. Thesufficient condition(SC) states that if
the input events occur, the output event must occur also. The
necessary condition(NC) states that the output event must
not happen without the inputfault events. These two con-
cepts are also useful for the classification and calculationof
minimal cut sets that we will discuss later.

Suppose there are two input fault eventsI1 andI2, an
output fault eventO, and a conditioning (normal) eventC,
the formal semantics of the T-gates as well as the standard
gates are listed in Figure 2 (for simplification, we use the
symbol’ to denote the successor state).

It should be noted that in Figure 2, with respect to the
conditioning eventC in the T-INHIBIT and INHIBIT gates,
we do not consider it in the necessary conditions of the
gates. This is because the main goal of FTA is to find the
primary fault events; and to ensure the top undesired event
never happens, we usually focus on how to prevent the pri-
mary fault events rather than those normal (conditioning)
events. This point is also illustrated by the definition of nec-
essary condition of gate.

Based on Figure 2 and the above discussions, we further
propose two kinds of minimal cut sets of fault trees as fol-
lows.

Sufficient Minimal Cut Set : A sufficient minimal cut set
SMCS is a smallest combination of primary events (in-
cluding conditioning events) which, if they all occur,
will cause the top eventT to occur, namelySMCS→ T

Necessary Minimal Cut Set : A necessary minimal cut set
NMCS is a smallest combination of only primaryfault
events which, if the top event occurs, then they must
also occur, namelyT→ NMCS.

The sufficient minimal cut sets can help us understand
under which conditions, the primary fault events will result
in the top hazard event, and thus makes the analysis more
comprehensively. In contrast, because of¬NMCS → ¬T,
the necessary minimal cut sets can help us focus on and
derive more manageable and concrete sub safety require-
ments as for system safety analysis. Both of them comple-
ment each other and can be calculated by the sufficient and
necessary conditions of gates defined in Figure 2, respec-
tively.

It should be noted that in standard FTA, the definition
of minimal cut set is a combination of primary fault events
‘sufficient’ for the top event [13]. This definition seems no
problem if we limit ourselves to only AND and OR gates for
analysis such as discussed in [13]. However, in case a fault
tree consists of conditioning events and some other gates,
e.g., INHIBIT gate, such a definition is not precise enough
and may cause confusion and contradiction.

3.4. Formal fault tree construction model

Based on the above discussion and analysis, we present
our formal fault tree construction model below.

We take a catastrophic failure as the root node of the fault
tree, namelyR. AssumeR is a conjunct fault event consist-
ing of two state predicates, i.e.,p ∧ qα, whereqα denotes
that objectq is in its α state as we defined in Section 3.2,
the regression procedure for the formal fault tree construc-
tion is as follows (in caseR is a single fault event consist-
ing of only one state predicatep, the regression procedure
can follow the traditional fault tree construction fundamen-
tals [13], and it can be regarded as a simple instantiation of
the following procedure).

Initial step Define the formal specification ofR = p∧ qα.

Deductive step LetA1∨. . .∨An ⇒ p be the transition rule
selected, andAi (i = 1, . . . , n) complies with the con-
straint, that is,Ai ; qβ , whereqβ denotes any other
state of objectq exceptqα.

• For eachAi, if Ai does not containqα or anyqβ,
thenMi := Ai ∧ qα, elseMi := Ai, whereMi

is a intermediate variable.

• R := M1 ∨ M2 ∨ . . . ∨ Mn

Iteration step

(1) Decompose the resultingR to some sub-events
by anappropriatelogic gate or edge;

radio communication

center office

Figure 3. An railway crossing control system

(2) Integrate and record the corresponding transition
rule into the logic gate or edge for further revis-
ing;

(3) Then for each sub-event, redo the inductive and
iteration steps recursively until a basic event or
the chosen abstraction level is reached.

To help engineers construct the fault tree more effi-
ciently, we present two important general guidelines for se-
lecting the “appropriate logic gate or edge” in iteration step
(1) as follows.

• If the antecedent of the transition rule consists of more
than one conjunctions or causes, i.e.,i ≥ 2, then a T-
OR gate should be introduced.

• Otherwise the resultingR is still a conjunction, and
there are three possibilities to decompose the conjunc-
tion and connect the corresponding sub-events as fol-
lows.

– If the resultingR can be decomposed into sev-
eral meaningful fault events completely, then a
T-AND gate should be used.

– If the resultingR can be identified as one or sev-
eral fault events together with some normal (con-
ditioning) events, then a T-INHIBIT gate should
be introduced.

– If the resultingR can only be understood as one
conjunct fault event, then we should use an edge
labeled with the corresponding transition rule to
connect the sub-event.

4. Example

In this section, we illustrate the formal fault tree analy-
sis of state transition by analyzing the hazards of a railway
crossing control system [1]. An overview of this system is
given in Figure 3, and its brief informal description is as fol-
lows [12, 11].

Shortly before the train approaches the level crossing, it
sends a ‘secure’ signal to the level crossing in order to check
the status of the crossing. When the level crossing receives
the command ‘secure’, it switches on the traffic lights, and

then closes the barriers. After they have been closed, the
level crossing is safe for a certain period of time and a ‘re-
lease’ signal is sent to the train, which indicates that the
train may pass the crossing. After the train has passed the
crossing, it sends back a ‘passed’ signal, which allows the
crossing to open the barriers and switch back to its initial
state. If no signal is received, the crossing waits for some
minutes and then opens the barriers to protect cars against
endless waiting (and is then unsafe).

In the crossing control system, the main task is to pre-
vent the collision event, i.e., when a train is on crossing, but
the barriers are open. The root nodeR of the fault tree is
then formally defined as the following conjunct fault event:

R : OnCrossing(tr) ∧ Open(ba)

wheretr and ba represent the train and barriers, respec-
tively.

Focused on the predicate “OnCrossing(tr)” to analyze
which conditions will cause a train on crossing, we derive
the following transition rule:

T1 : (BypassSignal∨BrakeFailure∨Release(tr)) ⇒
OnCrossing(tr)

which states that either the driver bypasses the stop sig-
nal (illegal driving or human misoperation), or the brake
of the train fails (hardware failure), or the train has got a
permission – ‘release’ signal (system design) will cause the
train on crossing. This transition rule complies with the con-
straint since none of these three causes will not change the
state of barriers, therefore we get three corresponding sub-
events connected by an T-OR gate as follows.

S1a : BypassSignal ∧ Open(ba)

S1b : BrakeFailure ∧ Open(ba)

S1c : Release(tr) ∧ Open(ba)

Here, we regardBypassSignal and BrakesFailure

as basic fault events, and sinceOpen(ba) itself is a nor-
mal event, an INHIBIT-gate connected with the condition-
ing eventOpen(ba) can be introduced to further simplify
both S1a andS1b (shown in Figure 4). The corresponding
events are defined as follows.

B1 : BypassSignal

B2 : BrakeFailure

C1 : Open(ba)

Then focused onRelease(tr) of S1c, we derive another
transition rule which states that, the causes for a train to get
a ‘release’ signal are the level crossing has sent this signal
and there is no radio communication failure between them.

T2 : Release(cr) ∧ ¬RadioFailure ⇒ Release(tr)

wherecr represents the level crossing.
RegressingS1c with T2, we derive a sub-eventS2 and

a conditioning eventC2 which are connected with an IN-
HIBIT gate as follows.

S2 : Release(cr) ∧ Open(ba)

C2 : ¬RadioFailure

Notice here we regardC2 as a conditioning event because it
is a normal event, andS2 can be identified as a fault event
regardless ofC2.

Focused onRelease(cr) of S2, we derive another transi-
tion rule, that is, only after the crossing hasconfirmed(ac-
cepted) a ‘secure’ request from a train, it can send a ‘re-
lease’ signal to the train. The transition rules is defined as
follows.

T3 : Secure(cr) ⇒ Release(cr)

And we derive the corresponding sub-event as:

S3 : Secure(cr) ∧ Open(ba)

Notice here we use a edge to connectS2 andS3 sinceS3

can not be further divided into smaller ones. In this case,
T3 should also be labeled besides the edge for revising (see
Figure 4).

Further analysis will try to regressSecure(cr), and we
would get a transition as follows, that is, when the cross-
ing receives a ‘secure’ request from a train andthe barri-
ers are open, the crossing will accept this request (notice
here for simplicity,Open(ba) is regarded as shared variable
to ensure that there is no train on the crossing at this mo-
ment).

Secure(tr)∧¬RadioFailure∧Open(ba) ⇒ Secure(cr)

However, based on the system design knowledge, we
know that once the crossing has accepted a ‘secure’ request,
then it must close the barriers until it gets a ‘passed’ sig-
nal from the train. In other words, this transition rulevio-
latesthe constraintA ; qβ . Therefore, we should focus on
Open(ba) and derive another transition rule as follows.

T4 : (T imeOut ∨ Passed(cr)) ⇒ Open(ba)

T4 states that two possibilities for the barriers to open are
either a time-out event (the crossing has been waiting for
the ‘passed’ signal over a designed timed, and then opens
the barriers to protect cars against endless waiting) occurs,
or the crossing has just received a ‘passed’ signal from a
train. Use this transition rule to regressS3, we get two cor-
responding sub-events connected by an T-OR gate below.

S4a : Secure(cr) ∧ T imeOut

S4b : Secure(cr) ∧ Passed(cr)

Keep doing analysis in the similar way, finally we derive
all the transition rules and events as follows, and the entire
fault tree is shown in Figure 4.

R

S1b S1c

C1

T1

B2

T2

T3

T4

T6

S1a

C1

S2

S3

B1

C3

B3

T5

C2

C2

S5

S6

T7 C4

B4

S4b S4b

Figure 4. Formal fault tree of collision

C3 : Secure(cr)

B3 : T imeOut

T5 : Passed(tr) ∧ ¬RadioFailure ⇒ Passed(cr)

S5 : Passed(tr) ∧ Secure(cr)

T6 : OnCrossing(tr) ⇒ Passed(cr)

S6 : OnCrossing(tr) ∧ Secure(cr)

T7 : Secure(tr) ∧ ¬RadioFailure ∧ Open(ba) ⇒
Secure(cr)

C4 : Secure(tr) ∧ ¬RadioFailure

B4 : Open(ba) ∧ OnCrossing(tr)

We regardT imeOut as a basic fault event because to
solve it need human intervention rather than system (soft-
ware) design. And from Figure 4, several important issues
are disclosed as follows.

• Somemutual exclusionproblems have been discov-
ered , such as the eventS6, which states that when a
train on the crossing, the crossing can not responds a
‘secure’ request from another train.

• From R to B4, an mutual dependencybetween the
fault events has been discovered. In contrast, the cor-
responding safety properties (the negations of the fault
events) are also mutual dependent, which has been for-
mally verified in our previous work [16].

• There are four minimal cut sets in the fault tree, i.e.,
B1, B2, B3, andB4 , each of them is a basic fault event.
Therefore, to ensure the system is safety, we need only
focus our attention on these basic fault events; while to
understand what will cause the collision hazard more
comprehensively, we can deduce the sufficient mini-
mal cut sets, in which the conditioning events should
be taken into account, such as the sufficient minimal
cut setBrakeFailure ∧ Open(ba).

5. Concluding Remarks

In this paper we have presented a formal fault tree analy-
sis of state transition, and our main technical contributions
can be summarized as follows.

• We extend traditional FTA for transition system analy-
sis, which is supported by our augmented and refined
formal semantics of fault tree constructors (events,
gates, and minimal cut sets), and the introduction of
transition rules for event decomposition and fault tree
construction.

• The correctness of our formal fault tree is guaranteed
by the construction process itself, thus avoiding the
problems that often arise with traditional methods. At
the same time, it gives domain experts the ability to
discover transition rules, design principles, and hidden
relationship between the fault events in a stepwise and
instructive way, which are also useful and important
knowledge for the subsequent formal system specifi-
cation and verification;

We realize that one important advantage of FTA is the
ease with which the trees can be read and understood and
thus reviewed by experts and used by designers [7]. This
is one reason that we further develop our formal fault tree
analysis based on basic concepts of state transition instead
of temporal logic as we proposed in our previous work [16].

Another more important motivation is that currently, we
are focusing on how to formally model, specify, and verify
different systems and applications more efficiently and ef-
fectively with OTS/CafeOBJ (observational transition sys-
tem) [4, 10], therefore to propose a formal FTA based on the
common framework — state transition systems or OTSs,
may make the combination of these two techniques more
consistent, i.e., the results of system safety analysis (FTA)
can be used directly for formal system specification and ver-
ification with OTS/CafeOBJ, and in reverse, formal system

specification can help us develop more reliable fault trees.
This is also one of our future works.

It should be noted that our work has not yet been ap-
plied in full scale industrial practice, although it has been
demonstrated by one case in this paper. Our next step is try-
ing to find more (big scale) case studies to further improve
our study.

6. Acknowledgement

This research is conducted as a program for the ”Foster-
ing Talent in Emergent Research Fields” in Special Coor-
dination Funds for Promoting Science and Technology by
Ministry of Education, Culture, Sports, Science and Tech-
nology (MEXT, Japan).

References

[1] Betriebliches lastenheft für funkfahrbetrieb. stand1.10,
1996.

[2] N. J. Bahr. System Safety Engineering and Risk Assesment:
A Practical Approach, chapter Fault Tree Analysis. Taylor
& Francis, 1997.

[3] D. Coppit, K. J. Sullivan, and J. B. Dugan. Formal semantics
of models for computational engineering: A case study on
dynamic fault trees. InProc. of The 11th International Sym-
posium on Software Reliability Engineering, pages 270–282,
San Jose, California, USA, Oct 2000.

[4] K. Futatsugi, A. T. Nakagawa, and T. Tamai.CAFE: an
Industrial-Strength Algebraic Formal Method. Elsevier Sci-
ence, Amsterdam, 2000.

[5] K. M. Hansen and A. P. Ravn. From safety analysis to soft-
ware requirement.IEEE Transactions on Software Engineer-
ing, 24(7):573–584, Jul 1998.

[6] A. Lankenau and O. Meyer. Formal methods in robotics:
Fault tree based verification. InProc. of The Third Interna-
tional Software Quality Week Europe, 1999.

[7] N. G. Leveson. Safeware: System Safety and Computers.
Addison-Wesley Pub., Sep 1995.

[8] M. R. Lyu, editor. Handbook of Software Reliability Engi-
neering. McGraw-Hill, 1995.

[9] Z. Manna and A. Pnueli.The Temporal Logic of Reactive
and Concurrent Systems. Springer-Verlag, New York, 1992.

[10] K. Ogata and K. Futatsugi. Proof scores in the ots/cafeobj
method. InProc. of The 6th IFIP WG6.1 International
Conference on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS 2003), volume 2884 ofLNCS,
pages 170–184. Springer, 2003.

[11] W. Reif, G. Schellhorn, and A. Thums. Safety analysis of
a radio-based crossing control system using formal meth-
ods. InProc. 9th IFAC Symposium Control in Transporta-
tions Systems 2000, pages 289–294, Braunschweig, Ger-
many, 2000.

[12] G. Schellhorn, A. Thums, and W. Reif. Formal fault tree se-
mantics. InProc. of The 6th World Conference on Integrated
Design and Process Technology, Pasadena, CA, 2002.

[13] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F.
Haasl. Fault tree handbook. Technical Report NUREG-0492,
U.S. Nuclear Regulatory Commission, Washington, D.C, Jan
1981.

[14] H. A. Watson and B. T. Laboratories. Launch control safety
study. Technical report, Bell Telephone Laboratories, Mur-
ray Hill, NJ, 1961.

[15] J. Xiang, K. Futatsugi, and Y. He. Fault tree analysis ofsoft-
ware reliability allocation. InProc. of The 7th World Multi-
conference on Systemics, Cybernetics and Informatics, vol-
ume Volume II - Computer Science and Engineering, pages
460–465, Orlando, USA, Jul 2003.

[16] J. Xiang, K. Futatsugi, and Y. He. Fault tree and formal meth-
ods in system safety analysis. InProc. of The 4th Interna-
tional Conference on Computer and Information Technology,
pages 1108–1115, Wuhan, China, Sep 2004. IEEE.

