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Abstract

The frame problem commonly appears in the
field of artificial intelligence and in related philo-
sophical literature. It pertains to the difficulty of
making meaningful inferences in dynamic con-
texts. We discuss the frame problem and its
manifestations in the practical design of artifi-
cial agents, and we set out some criteria against
which the effectiveness of such an agent may be
judged. Finally, we claim that technology cur-
rently exists in the form of a new clustering tech-
nique - dimensional clustering - which can en-
able an agent to satisfy these criteria. We justify
this claim with three case studies where we ap-
ply dimensional clustering to data sets of varied
nature.

Keywords: Frame problems, Dimensional clus-
tering, Artificial Intelligence

1 Frame problems

The frame problem expresses the difficulty in
deciding what counts as a meaningful basis for
inference in various contexts. Human cogni-
tive processes are regularly confronted by such
problems in everyday life, but seem to over-
come them with a reasonably high rate of suc-
cess. One such example is the way children
learn the meanings of words. Children typi-
cally start producing their first words before their
first birthdays, and typically learn over a hun-
dred words by their second birth-days. Chil-
dren as young as three years old are known to
show excellent inferences about the names of

names for deformable objects like jellies [3], and
have been shown [4; 5] to use combinations of
multiple features in generalizing names for com-
plex objects with many visible parts (like eyes
and legs). These findings reflect how children
naturally overcome the frame problem in world
learn-ing situations. Their favoured heuristic —
generalizing the scope of a name based on a
particular type of similarity — is generally rea-
sonable as far as the typical list of early learned
words by three years olds is concerned [6]. It
is likely, for example, that shape bias facilitates
children’s word learning [2]. Shape biasiiself
learned gradually, as younger children do not ex-
hibit the same tendency [3].

What we call a frame problem is a general-
ized version of the original frame problem dis-
cussed by McCarthy and Hayes [7] in the field
of artificial intelligence (Al) as a logical prob-
lem concerning concise axiomitizations of log-
ical rules determining environmental behaviour
in dynamic contexts. The frame problem was
reinterpreted along these lines as a broader philo
sophical problem by Dennett [8] and Fodor [9]
(See also [10]). Itis this general formulation that
we address in this paper — the problem of how
an agent may effectively determine the context
of its operation.

2 Abstraction vs. generality

In philosophical arguments, one major obsta-cle
to addressing the frame problem is the notion of
infinite regresswhich concerns the necessity of
working within a higher-level frame in order to

solid objects. These inferences can be described choose a frame for a given situation. Choosing

by the phenomenon aghape bias discovered

by cognitive developmentalists [1; 2] — when
confronted with a never-before-seen solid object,
three-year-olds associate it with the names of ob-
jects which they know about and which are sim-
ilar to it in shape. For other types of objects,
children generalize nhames based on other kinds
of similarities — they use colour to generalize

the higher-level frame itself, then, requires one to
work at an everigherlevel of abstraction, and
this nesting of frames can never end. Thus, by
the argument of infinite regress, it seems compu-
tationally intractable for one to choose an appro-
priate frame for a given problem or task.

The approach of the infinite regress argument,
which we call theabstractionistapproach, ig-
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nores a potential method for frame inference dren. Note that the abstractionist approach is
which we call thegeneralistapproach. The ab-  not truly feasible if one is interested in the prac-
stractionist approach focuses nesting frames in ticalities of word learning in children, for the
a hierarchical manner. In the ab-stractionist ap- theory-theory itself requires the specification of
proach, a frame at level 1 is specified by a cer- a theory-theory-theory, and so on. It is not at
tain frame at level 2, which is itself specified by all clear that one can develop a formalism within
some frame at level 3, and so on. In the general- which to describe the entirety of the theories re-
ist approach, one attempts to widen the scope of garding theories which are somewhere down the
applicability of their frames within a fixed level  line involved with word learning, including the
of ab-straction so that these frames are powerful formalism itself in which the theories were being
enough to solve of a majority of the problems described. Even supporters of the theory-theory
that one is likely to face. approach are being generalists, but are merely at-
Going back the example of how children tempting to generalize frames at a higher level
learn solid-object semantics, the abstractionist Of abstraction than proponents of the statistical
approach would be to state that children choose learning account of word learning.
their “shape” frame because of a higher-level . .
frame (such as their in& understanding of the The Generalist Approach in Al

physical laws that a solid object is subject t0) Most problems in the field of Artificial Intel-
which gives rational justification that shape is a ligence, particularly those considered in early
reliable basis for categorization. Such a theoret- gympolic Al studies consider solvers of prob-
ical account for word learning is called a theory- |ems in which a frame is already specified.
theory account in developmental studies (for ex- Frames are typically decided upon by a re-
ample, Rogers and McClelland [11]). searcher and are tailored to specific situations
In contrast, the generalist approach would be that they are interested in studying. Such stud-
to state that shape bias in children of a certain jes aim to establish a frame for a specific prob-
age is due to the empirical and statistical robust- |em, and demonstrate the type of machinery that
ness of shape similarity, which is gener-ally ap- can give reasonable solutions to it. An early and
plicable to learning the specific set of words most  very successful example of this approach is com-
likely to be encountered by children of that age puter chess. As the game framework can be writ-
[6; 2]. Specialists call this the statistical learning  ten rigorously in a symbolic system, and as the
account of word learning. Note that, in this sta- goal of each player is clearly defined and static,
tistical account, one needs only afirst- or second- a reasonable solution for the game of Chess can
level of frame, but the top level frame needs to essentially be found by searching over the com-
have a broad enough scope (the scope here be-binatorial space of series of moves, the “game

ing words that children are most likely to en-
counter by age 3, say). Moreover, by identify-
ing them as informative features of objects of
each category, a generalist description of word
learning through shape bias could, without any
increase in abstraction, extend to a description of
world learning through the colour and part simi-

tree”. With sufficient computational resources
and some improvements to this basic strategy,
computer chess programs have become stronger
even than the highest-level human players.
Agents like these, however, are not adaptive to
tasks which are even slightly different from the
ones they have been designed for. They are not

larities discussed in the previous section. An ab- robust against even slight perturbations in frame.
stractionist may rather have to start from scratch For example, the chess computer Deep Blue can-
and build independent theory-theories for both not be used as it is for Shogi (Japanese chess),
of these learning methods as well as a theory- which has similar rules to Western chess, which
theory-theory in order to connect the various has similar rules but requires a different set of

theory-theories.

In support of the generalist approach to word
learning, Smith and collegues [2; 12; 13; 14]
have claimed that a computational model with
a second-level system for inference can account
for novel word generalization behaviors in chil-

specialized techniques [15].Taking another dy-
namic and open example, hand-coded programs
designed to let a robot walk on smooth, flat sur-
face may fail if the robot tries to walk on an
unexpectedly rough surface (this is the case for
a static walking framework called “flat-footed
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waking”, but see Westervelt et al. [16] for a their linearity and sparseness. This scope is
modern, dynamical framework). This approach, probably not broad enough to allow the solution
where an agent is reliant on an external frame of many different types of problems. However,
specification, is quite limited when it comes to a frame selector with much broader scope would
solving real-world problems. It is generally in-  be extremely valuable when used in conjunction
feasible to exhaustively list the potential situa- with more specialized agents. This is the gener-
tions that the agent may face in the real world. alist’s holy grail in the field of Artificial Intelli-
Many modern machine learning studies aimto gence.

give systematic methods for selecting frames. In .
such studies, researchers prepare a collection of 4 Building a better frame selector

frames, each of which is represented as computa- The type of hierarchical approach to model se-
tional model. They then choose the bestmodel or |ection allows for a more flexible framework and
set of models by evaluating them against exper- expands the applicability of the statistical tech-
imental data. In the context of statistical model- niques to a wider range of problems. The key
ing, this kind of frame selection is calledodel issue in such hierarchical modeling is the formu-
selection It requires the formulation of the re-  |ation of one’s prior knowledge of specific prob-
searchers’ prior knowledge about the data and |ems — how should one select the frames that
problems, such as smoothness, sparseness, hi-the solver will choose from? This is essentially
erarchical relationships, dimensionality, and so the problem of identifying what count as features
on. Essentially, the researchers are specifying o objects in data.

a hyper-model There is one level of abstrac- As discussed in Section 1, we can take one
tion between their models and their data, and one of two approaches, abstractionist and generalist,
more level of abstraction between their hyper- for this identification problem. The abstraction-
model and their model. There are two distinct st approach adds a level of abstraction which
components of such methods: the data-to-model provides rules about what to count as features
component, and the model-to-hyper-model com-  ang objects. The generalist approach is to con-
ponent. We call an agent which implements stryct as general as possible a frame at the top

model selection in this mannefftame selectar level of abstraction in the given hierarchy.
A simple example of a fram_e selection_ tech- Regardless of approach, one needs to iden-
nique is that ofsparse modellind17], which tify the salient objects and features in a given

selects sparse regression models. The data-to- environment and model each object or feature
model component in sparse modelling describes at a level of detail appropriate to it. More de-
how data is generated by a linear combination of tailed modeling of objects and features forces
some given variables, and is a standard method more complex inferences regarding salience to
of data analysis. In the model-to-hyper-model a given context. This makes the frame prob-
component, a prior distribution imposes a pref- lem more serious. More coarse-grained, and thus
erence that the data-to-model component use a general, modeling allows for simpler inferences
small number of parameters. The decision to use and therefore relaxes the frame problem. How-
sparse modelling to analyze a data set signifies, ever, the more general a model, the more it lacks
firstly, the analyst’s belief that the data could be in predictive power.
modelled well as a linear transformation of some Going back to our example of world learning,
subset of its parameters. Secondly, it suggests it seems that children practically solve this prob-
that the analyst believes that one could achieve lem regarding level of detail using similarities.
an acceptable level of accuracy using véew At this level of generality, they can avoid serious
such parameters. This is abstractframe prob-  frame problems while retaining predictability in
lem, which is solved by the analyst. However, generalizing to novel words. If children used
sparse modelling algorithms solve the further more than one feature to determine similarity, for
frame problem of exactlyhichsparse listof pa-  example both shape and colour, it would increase
rameters the data can be modelled by. not only their inferential load but also their odds
The scope of the sparse modelling extends to of under-generalizing their known vocabulary.
the analysis of all data sets which fall in line with  Colour, for example, is frequently extraneous to
the sparse modelling analyst’s beliefs regarding the names of solid objects and is therefore indi-
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cated using adjectives. On the other hand, if chil-
dren did not distinguish finely between shapes,
they might make errors of over-generalization.
For example, taking “roundness” as an atomic
feature, they would neglect to distinguish be-
tween balls and wheels. Finding a level of gen-
erality which allows modeling of a wide range
of tasks is crucial to generalist approaches to the
frame problem.

The problem of identifying the salient objects
and features in an agent’s environment is much
more difficult to address than that of determining
the levels of detail at which each of these objects
should be modelled. While children are certainly
able to identify distinct objects in their environ-
ments, there is currently no definitive account of
howthey do so. This is an even more fundamen-
tal problem in the design of autonomous agents
than the problem of levels of detail, although the
two can certainly be considered as being related.

The goal of the generalist is not to build a per-
fect and rational solver of the frame problem but
to formulate a practical criterion by which an
agent may determine the level of detail at which
to model various objects. Currently, most frame
selectors rely on human knowledge, input, and
reinforcement. The real objective in Al, how-
ever, is to build effective frame selectors which
are alscautonomousSuch frame selectors must
come equipped with a method of solving the fea-
ture identification and detail problems indepen-
dent of human involvement.

In summary, areffectiveframe selector must
be:

1. Autonomous.

2. Able to identify the distinct features and ob-
jects in its environment.

3. Able to select models for each object and
feature which are appropriate in complexity
to their relevance towards the agent’s task.

5 Practical Feature Detection

The biggest obstacle to building an effective
frame selector according to the criteria of the
previous section is the matter of autonomy, and
one of the primary reasons that this is such an
obstacle is that it is difficult for an agent to au-
tonomously identify the individual objects in and
features of its environment. In this section, we
discuss a technique which makes a significant

step towards solving this problem of feature de-
tection. The technique in question is thatdpf
mensional clusterinffl8].

In the absence of semantics-imposing rules, an
agent can only be aware of its environment in
terms of data. Dimensional clustering is a tech-
nique which operates on numerical data, i.e. data
consisting of vectors in some Euclidean space.
The objective of dimensional clustering is to de-
compose thgenerating processf such a dataset
into its primitive components.

Our current algorithms for dimensional clus-
tering involve the estimation of a fractal dimen-
sion known aspointwise dimensiorat various
points in a data set. The algorithms separate the
data points into clusters based on their similar-
ities and differences in terms of their pointwise
dimensions as well as a measure of the density
of the data set around each point.

Dimensional clustering itself allows an agent
to detect features in its environment, but the ad-
ditional dimension and density information also
allow the agent to model these features more ef-
fectively. This is because pointwise dimension is
invariant under a large class of very natural trans-
formations and so the similarities between points
of similar pointwise dimension tend not to be
mere byproducts of data representation. Rather,
such similarities indicate similarities in the fun-
damental procedure by which both data points
were generated.

We demonstrate our technique with three case
studies.  Although these case studies differ
greatly from one another, they should not be
considered independently. Taken together, these
three diverse applications demonstrate the great
flexibility of dimensional clustering. This is
exactly the kind of flexibility that an effective
frame selector must exhibit.

5.1 Case Study 1: A Random Walk

In the first case study, we examine a data set gen-
erated by two distinct sub-processes. One is a
random walk along a line, and the other is a ran-
dom walk in a plane. The data set is generated
by running these processes alternatingly, twice
each, and such that the two 1-dimensional phases
operate in orthogonal directions. As these pro-
cesses differ in dimension, our algorithm is ex-
pected to detect that the data points from the 1-
dimensional process were generated differently
than those from the 2-dimensional process.
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Explicitly, the dataset in Figure 1 was gener-
ated by a random walk in the plane subject to the
following rules:

1. The random walk begins at the origin
and they-coordinate remains fixed for the
first 2,500 steps. The changes in the
coordinates at each of these steps are inde-
pendent and identically distributed to a nor-
mal random variableX with mean 0 and
standard deviatiof.05.

. For the second 2,500 steps, bathandy-
coordinates are allowed to vary, with the
changes in each coordinate at each step be-
ing independent and identically distributed
to X.

. For the third 2,500 steps, thecoordinate
remains fixed and the changes in the
coordinates are independent and identically
distributed toX .

. For the fourth 2,500 steps, the walk pro-
ceeds as it did in the second 2,500 steps,
with no restrictions in either direction.

Figure 1. The points within the red rectangle
make this data set particularly difficult to clus-
ter.

The data set consists of the points in the plane
that are visited on this random walk, stripped of
all time information.

One could reasonably consider this generat-
ing process as being comprised of either two
or three components according to whether the
two 1-dimensional components are identified in

terms of their dynamics or not. Regardless of
the point of view one adopts, there is certainly
no considerably spatial separation between the
components of this process. The data generated
by the 2-dimensional phases of the random walk
show considerable overlap with those generated
by the 1-dimensional phases. This is especially
true of the data points within the region inside
the red rectangle in Figure 1.

Without a description of the generating pro-
cess, it would be very difficult even for a hu-
man being to make out that there is a line of 1-
dimensional data cutting through the cloud of 2-
dimensional data rather than two small lines of
1-dimensional data jutting out of a cloud of 2-
dimensional data. To justify such a claim, one
might have to resort to probabilistic reasoning
— assuming that the generating process is suffi-
ciently random, it is much more likely that there
is a line cutting through the cloud than two lines
jutting out of it. As difficult as this is for hu-
mans, certainly no conventional clustering algo-
rithm is capable of differentiating between the
two (or three) components of the generating pro-
cess without an added temporal dimension to the
data.

Figure 2 shows the dimensional clustering of
this random walk data. The dimensional cluster-
ing algorithm detected two clusters in the data,
and each point was assigned to the cluster to
which it belonged with maximal probability. The
blue cluster corresponds to the 1-dimensional
component of the random walk, and the red
cluster corresponds to the 2-dimensional com-
ponent. Figure 3 shows the datath the cor-
responding time information and with the data
points coloured according to the results of the
clustering. This figure shows that the dimen-
sional clustering algorithm was able to discern
3-dimensional information from the original 2-
dimensional data set.

Note that the algorithm was able to separate
the points within the red rectangle of Figure 1
which belonged to the 1-dimensional component
from those which belonged to the 2-dimensional
component.

5.2 Case Study 2: Balance Data

In the second case study, we analyzed time series
of human movements. Specifically, we obtained
high resolution time series of the center of pres-
sure (COP) collected from subjects standing on a
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Figure 2. Dimensional clustering sharply distin-
guishes between the 1- and 2-dimensional com-
ponents of the random walk.
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Figure 3. Dimensional clustering recovered tem-
poral information about the random walk data
which had been projected away.

pressure plate. The experiment had four healthy
subjects with one session per subject. Each ses-
sion consisted of three phases —

1. Phase 1: The subject was instructed to stand
still for 30 seconds.

. Phase 2: The subject was pushed sporadi-
cally by the experimenters over a period of
60 seconds. The times at which each sub-
ject was pushed were determined randomly,
but were uniform over the subjects.

. Phase 3: The subject was instructed once
again to stand still for 30 seconds.

The goal of this experiment was to produce
a data set with at least two different modes of
posture control — maintaining posture without
any external force, and a quick posture control
required by non-autonomous perturbation.

Explicitly, the datasets consisted of the lo-
cation of the COP of each subject presented
as X(lateral)-Y(anterior-posterior) coordinates.
These coordinates were sampled one hundred
times per second. However, the time informa-
tion was not used in the dimensional clustering
analysis.

Figure 4 shows a representative analysis. We
found typically four or five clusters in each data
set, but two clusters seem consistently correlated
to (1) maintaining mode without perturbation
(red points in Figure 4) and (2) short moments
right after external perturbation (green points in
Figure 4). The underlying mechanism of posture
control is unknown at the moment. This analysis
demonstrates that dimensional clustering is ca-
pable of providing useful information about data
even in the complete absence of a model for its
generating process.

5.3 Case Study 3: Image Data

For the final application of dimensional cluster-
ing we present in this paper, we analyzed a few
standard test images in the field of image pro-
cessing. These testimages are presented as (a-1)
to (a-4) in Figure 5. We obtained “Lena” and
“Wet paint” from Mike Wakin's website [19],
and “Airplane” and “Fishing boat” from the USC
SIPI Database [20]

For each test image in Figure 5, dimensional
clustering was applied to a 3-dimensional data
set of vectors listing the:-coordinate,y- coor-
dinate, and grayscale value of each pixel in the
image. Our algorithm discovered three or four
clusters in each data set. Among these, there was
always a “feature” cluster which discerned sharp
changes in hue. Images (b-1) to (b-4) of Figure
5 show the pixels in each image belonging to the
corresponding feature clusters. Images (c-1) to
(c-4) of Figure 5 show the results of running the
Canny edge detection algorithm [21] on the same
test images, and are provided for comparison.

Figure 5(b-3) highlights the region in the fea-
ture cluster detected in Figure 5(a-3) which con-
tains the sign. This shows that the dimensional
clustering algorithm very clearly extracts its pri-
mary lettering.
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Figure 4. A typical COP time series with the spatial coordinates projected to the Anterior-Posterior axis.
The four detected clusters are indicated by the four colours above.

Figure 5 demonstrates that dimensional clus- entific Research B No. 23300099, and Grant-in-
tering is at least capable of detecting the loca- Aid for Exploratory Research No. 25560297.

tions of feature pixels in the images. It is even
able to detect the faint thumb print at the top of
Figure 5(a-2)! However, the feature pixels only
formed one cluster in the analysis of each data
set. The remaining clusters detected in the image
data sets seem to contain information pertaining
to hue and depth. A detailed discussion of the
information in these clusters would distract from
the point we seek to make here regarding the
scope of dimensional clustering. We therefore
postpone a complete analysis of the image data
sets to a future paper.

6 Conclusion

The discussion of the previous section, espe-
cially the case studies, shows that using dimen-
sional clustering technigues along with the as-
sociated dimensional data can allow a frame se-
lector to satisfy all three criteria for effective-
ness stated in the previous section. We hope that
this stimulates further investigation into our pro-
posed generalist approach towards frame prob-
lems.
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