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Abstract— The present study examined the neural correlate 
of subjective simultaneity by using whole-head magnetoen-
cephalography. Observers were asked to judge whether the 
visual and auditory stimuli occurred simultaneously. The 
auditory and visual stimuli were presented with temporal 
asynchrony. The subjective judgment of simultaneity for 90-
ms-asynchrony showed trial-by-trial variation, and we success-
fully classified subjective simultaneity using neuromagnetic 
signals. We submitted raw MEG signals, a wavelet transform, 
and nonlinear dynamics to a naive Bayes classifier. In the case 
of raw signals and nonlinear dynamics, the classifier trained 
with the VA (where the visual stimulus was given first) or AV 
(where the visual stimulus was given second) data could pre-
dict the subjective simultaneity of the other VA (or AV) data at 
a rate better than chance. The classification rate using nonlin-
ear dynamics was comparable to that using raw signals, de-
spite the fact that the dimension was considerably low (101 vs. 
88,000 dimensions). In the case of the wavelet transform, the 
classifier trained with the VA data was able to decode the AV 
data, and vice versa. These results suggest that (1) subjective 
simultaneity can be decoded using MEG signals, (2) low-
dimensional nonlinear dynamics may encode simultaneity 
specific to the order of the audiovisual inputs, (3) the time-
frequency characteristics of neural activity may predict sub-
jective simultaneity independently of the physical order of the 
audiovisual inputs, and (4) the neural activity (time-frequency 
characteristics) reflecting subjective simultaneity may share a 
common mechanism among different sensory modalities. 
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I. INTRODUCTION  

The temporal interval between two events is a key aspect 
of integrating multisensory inputs. A smaller interval leads 
to a feeling of subjective simultaneity. Several studies have 
found that neural activity is relevant to subjective time per-
ception [1] through the use of electroencephalograms (EEG) 
and magnetoencephalograms (MEG). Most of these studies 
examined neural correlation of biased simultaneity (or tem-
poral order) by presenting additional stimuli 

However, time perception in humans is inherently vari-
able; even if the temporal intervals of two events are kept 

constant, observers show trial-by-trial variation with regard 
to subjective simultaneity. In the present study, we exam-
ined the neural mechanisms underlying subjective simulta-
neity independent of stimulation by using a decoding ap-
proach [2]. If the classifier successfully predicts trial-by-
trial subjective simultaneity in cases where the stimuli are 
completely identical, this implies that subjective simultane-
ity is encoded in the neural activity, independent of the 
stimulus. 

Observers performed an audiovisual simultaneity judg-
ment task in an MEG scanner. We presented visual and 
auditory stimuli with small temporal asynchrony. We first 
tested whether the ERP in trials where the observers judged 
“simultaneous” and “non-simultaneous” would differ in 
peak amplitudes and latencies [3, 4]. Further, we performed 
a classification analysis using a wavelet transform and the 
nonlinear dynamics of neuromagnetic signals to examine 
whether subjective simultaneity can be decoded. 

II. METHODS 

Neuromagnetic responses were measured using a 160-
channel whole-scalp MEG system (Yokogawa PQ1160C) in 
a magnetically shielded room. The magnetic signals were 
low-pass filtered at 500 Hz, digitized at 1000 Hz, and stored 
for off-line analysis. Visual stimuli were presented on a 
screen in the MEG scanner using a high luminance LCD 
projector, and auditory stimuli were presented to the right 
ear using a magnetic-free earphone. The visual stimulus was 
a white square presented in the center of the screen for 50 
ms, and the auditory stimulus was a 50 ms beep sound. 

Nine observers performed an audiovisual simultaneity 
judgment task in the MEG scanner. In each trial, one visual 
stimulus and one auditory stimulus were presented in tem-
poral asynchrony. The asynchrony was randomly chosen 
from five stimulus onset asynchronies (SOA; 0, ±90, ±180 
ms). The observers were asked to report whether the audi-
tory and visual stimuli occurred simultaneously, by pressing 
the left or right button. The 0-ms- and ±180-ms SOAs were 
repeated 60 times and the ±90-ms-SOAs were repeated 120 
times.  
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III. RESULTS AND DISCUSSIONS 

A. Behavioral data 

Table 1 Percentages of “simultaneous” judgments for each SOA. 

SOA (ms) –180 –90 0 +90 +180 
% Simultaneous 26.9 58.8 85.6 65.6 26.5 

 
Table 1 shows the percentage of “simultaneous” respons-

es that were prompted for each SOA. The observers judged 
that most of the ±180-ms-SOA trials were “non-
simultaneous” and most of the 0-ms-SOA trials were “si-
multaneous.” The subjective simultaneity judgments for the 
±90-ms-SOA were highly variable. In the following MEG 
analyses, we used a –90-ms-SOA condition (i.e., the visual 
stimulus was presented 90 ms before the auditory stimu-
lus—a VA condition) and a +90-ms-SOA condition (i.e., 
the visual stimulus was presented 90 ms after the auditory 
stimulus—an AV condition).  

B. Event related potentials 

 

Fig. 1 The local field power of event related potentials. The red and blue 
lines indicate the ERP in “simultaneous” and “non-simultaneous” re-

sponses, respectively. The green lines indicate the onset and offset of the 
stimuli (a flash for the visual ERP and a sound for the auditory ERP). 

Subjective simultaneity may be determined by external 
noise (e.g., the fluctuation of light and sound stimulation) 
and/or internal noise (e.g., the fluctuation of neural trans-
mission). If this is the case, we should find difference in the 
latency or amplitude of event-related potentials (ERPs), 
depending on the subjective simultaneity judgment. To test 
the difference between ERPs, we picked six visual and six 
auditory channels that were strongly responsive to the stim-
uli. Figure 1 shows the ERPs at visual and auditory chan-
nels (the mean of the RMS of the six channels). Visual 
inspection showed that both visual and auditory ERPs ap-
peared approximately 90 ms after stimulus onset. In the 
quantitative comparison between the ERP in the trials of 
“simultaneous” responses and those of “non-simultaneous” 
responses, we did not find any significant difference in the 
latencies and amplitudes (Table 2, all ps > .10). Thus, the 

ERP did not represent subjective simultaneity in the present 
task. The peak amplitudes [3] and the latencies [4] of ERP 
are known to correlate with subjective temporal order of 
two events. The absence of neural correlation here may 
imply that the neural mechanisms underlying simultaneity 
and temporal order judgments are different. 

Table 2 Latencies and amplitudes of the peaks of ERP. The S and NS 
indicate “simultaneous” and “non-simultaneous” responses, respectively. 

Condition VA  AV 

Channel Visual Auditory Visual Auditory 

 S  120 100 112 101 Latency 
(ms) NS 112 101 104 99 

S 158.8 287.6 179.1 279.4 Amplitude 
(fT) NS 161.8 287.3 192.9 278.8 

C. Classification analyses 

Treating neuromagnetic responses as high-dimensional 
signals, we tried to “decode” subjective simultaneity. As 
part of the decoding approach [2], we trained a naive Bayes 
classifier [5] using the neuromagnetic signals from some of 
the trials (the training dataset), and performed a validation 
test using the other trials (the test dataset), to assess whether 
the classifier successfully discriminates between “simulta-
neous” and “non-simultaneous” classes. If the discrimina-
tion rate was above chance (0.5 in the case of two classes), 
this would imply that the classifier could “decode” subjec-
tive simultaneity from neuromagnetic signals. We per-
formed a separate classification analysis for each observer. 

With regard to the pairs of training and test datasets, we 
conducted four types of cross-validation test: first, where 
both training and test datasets were a VA condition 
(VAVA); second, where both datasets were an AV condi-
tion (AVAV); third, where the training dataset was a VA 
condition and the test dataset was an AV condition 
(VAAV); and fourth, where the training dataset was an 
AV condition and the test dataset was a VA condition 
(AVVA). Note that VAVA and AVAV were within-
condition validation, and VAAV and AVVA were 
between-condition validation. We randomly chose the train-
ing and test trials without overlap, and the numbers of “si-
multaneous” and “non-simultaneous” trials were made 
equal in order to avoid the bias caused by the different prior 
probabilities. 

We tested three different types of the feature-dimensions 
that were submitted to the classifier: the raw neuromagnetic 
signals of all channels, the time-frequency characteristics of 
visual and auditory channels, and the non-linear dynamics 
of all channels. 
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a) Decoding using raw neuromagnetic signals 

Table 3 Percentages of correct classification of subjective simultaneity. 
* significantly (p < 0.05) higher than chance (0.5) in the validation test. 

 VAVA AVAV VAAV AVVA 

Raw signal 

Training  89.1 92.4 88.7 92.1 

Test 54.6 * 58.0 * 51.2 49.4 

Wavelet transform 

Training  80.2 87.1 79.1 86.3 

Test 50.9 52.8 55.1 * 53.1 * 

Nonlinear dynamics 

Training  85.9 90.0 86.0 90.0 

Test 53.3 * 56.1 * 51.2 51.2 
 
We submitted the raw neuromagnetic signals of all chan-

nels and samples (ranging from –50 to 499 ms after the 
onset of the stimulus at 1 ms intervals) to the classifier (i.e., 
160 channels × 550 samples = 88,000 dimensions). Table 3 
shows the correct classification rates. The classifier worked 
well for the training dataset; the correct rates were signifi-
cantly high but not perfect, indicating that over-fitting did 
not take place. For the test dataset of within-condition vali-
dation (VAVA, AVAV), the classifier was able to 
predict subjective simultaneity at a rate better than chance. 
In contrast, the same classifier failed to predict subjective 
simultaneity in between-condition validation; that is, the 
classifier that was trained with the VA data could not de-
code subjective simultaneity of the AV data, and vice versa. 

b) Decoding using time-frequency characteristics 

 

Fig. 2 Representative scalograms of the wavelet transform. The horizontal 
axis indicates the time from the onset of the stimulus. The green lines 

indicate the onset and offset of the stimulus (a flash for the VA and a sound 
for the AV condition). 

Neural oscillations are known to be relevant to a wide 
range of cognitive functions [6], including time perception 
(e.g., gamma-band oscillation [1]). Therefore, we tried to 
decode subjective simultaneity using the time-frequency 
characteristics of neuromagnetic signals. We performed the 
Morlet wavelet transform on the raw neuromagnetic signals. 

We chose a different set of six channels for the VA and AV 
conditions, on the basis of the strength of the ERP. The 
sampled time range was –50-149 ms with a 1 ms interval, 
after the onset of the stimulus. The range of frequency was 
24 bins of 8-64 Hz. Figure 2 shows the representative sca-
logram of the wavelet transform. We then submitted the 
power of time-frequency (the modulus of the wavelet trans-
form) to the classifier (6 channels × 200 samples × 24 fre-
quencies = 28,800 dimensions). The classifier also worked 
well for the training dataset, without over-fitting (Table 3). 
In the cross-validation test, in contrast to the raw neuro-
magnetic signals, the classifier could predict subjective 
simultaneity in between-condition validation but not in 
within-condition validation. 

The fact that the classifier worked better in between-
condition validation was surprising, since the order of visual 
and auditory stimuli was reversed between conditions and 
we picked a different set of channels for the VA and AV 
conditions. Although the reason why the classifier failed to 
pass the within-condition validation is unclear, these results 
still imply that subjective simultaneity can be decoded, 
independent of the stimulus condition. The classifier could 
predict subjective simultaneity using the signals of sensory-
specific channels and only the early response (<150 ms) to 
the first stimulus. Hence, the time-frequency characteristics 
of the sensory area related to the first stimulus, independent 
of the sensory modality, may influence the stochastic proc-
ess that determines subjective simultaneity. 

c) Decoding using nonlinear dynamics 

 

Fig. 3 Representative symbol sequence estimated based on the nonlinear 
dynamics of neuromagnetic signals. The vertical axis indicates the time 

from the onset of the stimulus. Each column shows a symbol sequence for 
each trial. Each color indicates the estimated symbol. The trials of “non-
simultaneity” response are shown on the left panel and those of “simulta-

neous” response are on the right panel. 

The two decoding methods above used only the linear 
characteristics of neuromagnetic signals. However, the 
nonlinear dynamics of neuromagnetic signals may include 
crucial information that can be used to discriminate observ-
ers’ subjective state [7]. To test this possibility, we estimat-
ed a generating partition on neuromagnetic signals, wherein 
the continuous time series was discretized into a given 
number of symbols. We sampled 101 points (ranging from 0 
to 500 ms after the stimulus onset at 5 ms intervals) from 
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the raw signals of 160 channels. The 160 dimensions of the 
channels were reduced to 70-90 dimensions (different for 
each observer) using a principal component analysis (PCA). 
We then estimated the generating partition (10 symbols or 
less) on the reduced matrix (101 × 70-90 dimensions) using 
the Symbol False Nearest Neighbor (SFNN) method [8, 9]. 
Thus, we obtained the estimated symbol sequence of 101 
dimensions for each trial (Figure 3) Finally, we submitted 
the symbol sequence (101 dimensions) to the classifier. The 
results showed that the classification rates were comparable 
to those using the raw signals (Table 3): in within-condition 
test, the classifier could predict subjective simultaneity at a 
rate better than chance. Note that the dimensions of data 
submitted to the classifier were 88,000 in the raw signal and 
only 101 in the nonlinear dynamics. Thus, we successfully 
extracted the nonlinear neural dynamics correlated with 
subjective simultaneity as the discrete symbol sequence. 

d) Comparison among decoding methods 

 

Fig. 4 Within-subject correlation among the three types of decoding meth-
ods. Each point represents the individuals’ data. Red and blue symbols 

indicate that the training dataset were VA and AV conditions, respectively. 
Open circles and filled squares indicate within-condition and between-

condition classification, respectively. 

As we submitted different features to the classifier, we 
analyzed within-subject correlation among three decoding 
methods (Figure 4). We found significant positive correla-
tion in the classification rate between the raw signals and 
the nonlinear decoding (Figure 4, middle panel). Together 
with the comparable classification rate and the failure of 
between-condition validation, these two methods focus on 
the similar features of neuromagnetic signals. The subjec-
tive simultaneity may be encoded as low-dimensional non-
linear dynamics in a form that is sensitive to the order of 
visual and auditory stimulus. 

 On the other hand, the classification rate in the wavelet 
transform correlated to neither the raw signals nor the non-
linear decoding. In addition, the classifier with the wavelet 
transform passed the between-condition validation, i.e., it 
was insensitive to the order of the visual and auditory stim-
uli. Therefore, it seems clear that the wavelet method em-
phasizes different features from the other methods. 
Although the sample included only a small number of chan-
nels showing ERP, and also small time range (<150 ms) in 

comparison with the other two methods, we suggest that 
extracting time-frequency characteristics (e.g., gamma-band 
oscillation [1, 6]) enables to pass the between-condition 
validation. Further research that applies the wavelet trans-
form to all channels and that uses a long time range will 
clarify those features that are crucial for decoding subjective 
simultaneity insensitive to the stimulus order. 

IV.  CONCLUSION 

The naive Bayes classifier successfully decoded subjec-
tive simultaneity independent of the stimulus condition, 
using high-dimensional neuromagnetic signals. The disso-
ciation of the results of decoding using nonlinear dynamics 
and time-frequency characteristics may imply that different 
types of neural dynamics are relevant to subjective simulta-
neity. This study will provide a useful foundation for further 
research aimed at revealing the underling neural mecha-
nisms of subjective time perception. 
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