Semantic Packing As a Core Mechanism of
Category Coherence, Fast Mapping and Basic Level Categories

Shohei Hidaka (hidaka@cog.ist.i.kyoto-u.ac.jp)
Graduate School of Informatics, Kyoto University and JSPS Research Fellow;
Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan

Jun Saiki (saiki@cv.jinkan.kyoto-u.ac.jp)
Graduate School of Human and Environmental Studies, Kyoto University;
YoshidaNihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan

Linda B. Smith (smith4@indiana.edu)
Department of Psychological and Brain Sciences, Indiana University;
1101 East Tenth Street, Bloomington, IN 47405-7007, USA

Abstract

In the present study, category coherence, a question why
intuitive groupings for natural categories exist, is con-
sidered by applying a computational theory that models
discrimination and generalization. The computational
process is what we called “semantic packing”. In the
model, category learners’ two conflicting constraints on
discrimination and generalization are optimized simul-
taneously as if it packed knowledge into memory. The
model also revealed a computational structure of effi-
cient categories, called basic categories, by mathemati-
cal proof and exemplification of the relationship between
the past proposed theory and our theory. Furthermore,
the empirical evidence of the theory from human seman-
tic rating was shown and used for testing predictability
of novel natural categories. The results suggest that
semantic packing could reproduce the configuration of
natural categories from only their generalization with-
out any knowledge as fast mapping in which children can
generalize a novel instance without trial and error. In
summary, the semantic packing could be a core mecha-
nism of the three essential categorization processes, cat-
egory coherence, fast mapping, and basic level category.

Introduction

Why Does “Category Coherence” Emerge?

Murphy and Medin (1985) define “category coherence”
as the intuitive and useful groupings that characterize
natural categories, and claim that this coherence is one
of most important aspects of semantic cognition. For ex-
ample, color is more important for discrimination when
the item is a pea rather than when it is a ball. How do
we learn this? And how do we use the knowledge that we
have learned? How, when we see an object-a potential
pea or ball-do we know to attend to color or not?

This problem of feature selection has played a key role
in theoretical discussions of the mechanisms that under-
lie category learning. In past studies, some measures of
a learner’s category representation were proposed to ex-
plain the basic level category advantage. The basic cat-
egory is known as the most efficient level for various cog-
nitive processes, such as picture naming, category or fea-
ture listing, and speech frequency (Rosch, Mervis, Gray,
Johnson & Boyes-Braem, 1976). This concerns the rela-
tive frequency of features or categories, thus, these mea-
sures depend on what features or categories are selected
(Murphy and Lassaline, 1997). For these and other rea-
sons, Murphy and Medin (1985) claimed that categoriza-
tion based only similarity and correlations is not enough

to solve the coherence problem. Insead, they suggested
that categorization is based on folk theories and causal
induction, or what some call “theory theory”. However,
their major criticism of similarity-based accounts, circu-
larity, is also a problem for theory theories. To what
theory to apply to any thing — a theory about food and
the relevance of color or a theory about artifacts and the
nonerelevance of color — one has to already know what
kind of thing is at hand.

The Outline

The main goal of this study is to propose a computa-
tional theory that connects the emergence of category
coherence, basic level categories, and fast mapping (see
also the next paragraph). To this end, we propose two
metrics. The first is what we call smoothness. This con-
cerns the relationship between features and generaliza-
tion of categories found in developmental studies and is
a measure how cohesive categories are. Categorization
with the smooth feature space makes a novel instance
generalized precisely, which is considered as fast map-
ping. The second metric concerns discrimination, which
yields category coherence as the result. There is an es-
sential trade-off between generalization and discrimina-
tion. Both cannot be maximized simultaneously. The
joint optimization is obtained by what we call “semantic
packing”. This process is analogous to a task in which
various sized and shaped containers (categories) are effi-
ciently packed into a larger but finite container (memory
and the attentional and retrieval processes that apply to
memory). The packing process is related to processes
such as cue validity (Rosch et al. 1976) and category util-
ity (Corter & Gluck, 1992), which are measures for basic
level categories. We first present the theory metaphor-
ically and then the formal mathematical specification
later.

Working Definition: “Semantic
Smoothness” in Natural Categories

Many developmental studies using novel word general-
ization tasks have shown that children systematically
attend to different properties when generalizing differ-
ent types of entities, a process known as “fast map-
ping”. For example, children generalized solid artifacts
and non-solid substances based on the similarity of shape
and material, respectively (Soja, Carey & Spelke, 1991).
Therefore, children seem to solve the circularity problem,



knowing to attend to the right properties even though
they do not yet know the category. Importantly, neither
younger children nor late talkers show the same gener-
alization pattern (Jones, 2003). This finding suggests
that these differential weighting patterns are learned.
An adult rating study of the similarities that character-
ize the first 300 nouns learned by children showed that
their attentional biases in noun extension tasks reflected
the regularities in the corpus of early noun categories.
Specifically, there is a high correlation between category
generalization (i.e., shape- or material-based category or-
ganization) and property (i.e., solidity) (Samuelson &
Smith, 1999). In other words, these rating data indi-
cated that “property” (i.e. solid or non-solid) of natu-
ral categories predicted ”generalization” (i.e. property
weighting: shape- or material- based generalization),
and vice versa. The semantic space would be in our
terms “smooth” if the correlation between property and
generalization was universal in any semantic domain, as
robust as the correlation between solidity and shape-
based generalization in early acquired noun categories,
that is, the property difference between any two cate-
gories would be correlated to a difference in how those
categories are generalized (see also Equation 12 for the
mathematical definition). Furthermore, the smooth se-
mantic space would form clusters that have a correlated
property-generalization relationship. In other words, be-
cause of the property-generalization correlation, simi-
larly distributed categories would be grouped near each
other (i.e., domain specific property weighting: Figure
1 (b)) '. Thus “smoothness” of the semantic space
may be considered as a quantitative measure of cate-
gory coherence. Here, in an empirical study, we inves-
tigate the smoothness of the semantic space of early-
acquired nouns. The results indicate that natural cat-
egories have “smoothness”, that some categories (e.g.,
“cat” and “tiger”) share similar properties and general-
ization patterns, and that other categories (e.g., “cat”
and “chair”) share dissimilar ones. Before a more de-
tailed presentation of the theory, we consider how one
recent theory of category development has dealt with
this issue.

Efficiency in Semantic Cognition

Past proposed measures of the basic category advantage
concentrate on the discriminability of categories. More
specifically, cue and category validity are respectively
maximized in subordinate and superordinate categories
(Murphy & Lassaline, 1997). Furthermore one variety
of category utility is equivalent to mutual information
(i.e. degree of probabilistic independence) between cat-
egories and features (Gluck & Corter, 1985). This is
maximized with dependent categories and features (e.g.,
one-to-one mapping between features and categories: an
extreme case of subordinate categories). These measures
are (positively or negatively) discriminabilities of cate-

!Consistent with the mathematical term “smooth”,
“smoothness” here refers to the probabilistic degree of local
linearity of manifold (category-feature space) where general-
ization o; is curvature around pu; .
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Figure 1: 20 categories (ellipses represent contour of
probabilistic distributions) in property space. (a) Cat-
egory coding with exceptional feature: More property
space (dashed line) is needed for categorization. (b) Ef-
ficient category coding: Less property space and more
discriminability. Categories with similar generalization
are localized. (c) Category coding with overlapped fea-
ture: Feature is useless for categorization. (d) Category
packing is considered the balanced optimal state under
two constraints: memory parsimony and discriminability
of category.

gory. Importantly, the surface differences in these mea-
sures (Corter & Gluck, 1992) could just reflect the dif-
ferences in the selected set of categories and features
(Murphy & Lassaline, 1997).

We argue that learning efficiency under the trade off
between discrimination and generalization is the core
mechanism underlying category coherence. We define
“semantic memory” for the purposes of this paper as a
set of categories, which is formulated as a probabilistic
distribution in psychological feature space (Figure 1).
A reasonable question to ask is what features should
be represented for any category (e.g. A feature “with
four limbs” for both “dog” and “cat”). Categories in an
overlapping feature space need less memory. But over-
lapping features also mean less discriminability of the
categories (Figure 1 (c): FEj gets smaller, but G gets
bigger in Equation 7). One solution to this is to store
only exceptional features or conjunctive features such
that the conjunctions are unique for each category(e.g.,
“four-limbed, eyed, a pet, meat-eating, gather in crowds,
.7 as single feature only for “dog”). The categories in
this exceptional feature space must be sparse and will
therefore need more memory (i.e., larger dashed-line en-
closure). This is, by definition, all categories must be
defined by unique conjunctive feature sets. (Figure 1
(a): G gets smaller, but F; gets bigger in Equation 7).
However, this means that what one knows about one
category can not help in learning or making decisions



about another. This is precisely where the developmen-
tal evidence is most compelling: The categories children
already know help them learn new similarly structured
categories. This insight indicates that discriminability
and generalization from knowledge about one category
to another trade off. An efficient semantic memory may
try to optimize both, and that may work at some mi-
dlevel between these two extremes (Figure 1 (b)).
What then would emerge in such a case? We describe
the optimal state as “category packing”, where the sys-
tem packs categories of a particular shape in feature
space close together, thus taking up less feature space
overall (Figure 1 (d): both G, E; and L get smaller
in Equation 7). Assume that one creates optimally or-
ganized categories by moving the prototypes or, alter-
natively, the distributions (i.e. g—fi =0 or g—i =0:
note that this is not “category learning”). This pro-
cess is analogous as packing things into smaller space
(categories or things avoid probabilistic or solid “colli-
sion”, respectively). The most efficient packing of differ-
ent sizes and shapes of things (or categories, we propose)
consists of packing similarly shaped things together (i.e.
emergence of semantic smoothness: Figure 1 (b) and
Equation 12). Next we briefly introduce the detailed
formulation of our theory in a simple case in which cat-
egories are defined by prototypical representations.

Theoretical Formulation of Packing

We prove the equivalence between semantic packing and
smoothness, under the simplification that each category
is represented by its prototype and generalization pat-
tern. Note that this simplification does not assume any
predefined specific “feature” or “category” in the pack-
ing process and also that the prototypical representa-
tion is not a necessary assumption but an application.
Instead of specifying categories and features, we investi-
gated what category organization emerges as the result
of the efficient categorization. Before this proof, we also
prove the approximate equivalence among our discrim-
inability measure, cue validity, and category utility.

Assume that there are n categories ¢y, co, ..., Ci, ..., Cp,
in feature space 6 C ). Assume the conditional proba-
bility of feature 6 given category ¢; as P(f|c;). F defined
as the equation below indicates measure of discriminabil-
ity among categories, which is upper bound of minimum
error ratio under optimal decision making.

F,,:/QE[P(mci)nda (1)

Let the joint probability of category c; in feature 6 be
P(c;,0). If one evaluated that it is category ¢; when
0 C Qi then the correct ratio is >, [, P(ci,0)do.
In particular n = 2, the minimum error ratio of
the optimal decision (i.e. Bayes decision) is € =
Jomin(P(cy,0), P(ca,0))df, because, to maximize the
correct ratio, one must choose the category with largest
probability given 6. To estimate analytically the exact
minimum or maximum distribution is difficult. Accord-
ingly we used instead the upper bound of the minimum,

called the “Bhattacheryya bound” (Duda, Hart & Stork,
2000). The inequality min(a,b) < a®b'~P is true when
a,b>0and 0 < 8 < 1. Therefore, Using Bayse’ theo-
rem P(c;,0) = P(0|c;)P(c;), where P(0|c;) is conditional
probability 0 given c;.

¢ < \/P(er)? Plen)t? / VPOlen)s POlea)t=0d0 (2)

The right side in this inequality is called the “Charnoff
bound”, the upper bound of the error. [ giving the
minimum a Charnoff bound is around 3 = 3, there-

fore, Chernoff bound with g = %, called Bhattach-

eryya bound 1, can be used as the second best bound.

Obviously, ¥ = /P(c1)P(c2)F;. When n > 2, for
short tailed probabilistic distribution such as normal
distribution, F' = krpF, = B can be approximated
with constant kg in the local of the particular near-
est pair of normal distributions. Therefore, suppose

i = V/P(ci)P(c;) [ P(8]c;)2 P(6]cy) = df.
Hp(ci)%Fn ~kp Y > B (3)

i g
The maximum correct ratio of cue validity (P(c;]0):

Rosch et al.,, 1976) model considering frequency
of feature P(G) (Reed, 1972) is defined as Q =
[ max; P(c;|0)P(0)do = fmaxZ P(0,c;)df. Therefore,

HP (c;)™

In other words, minimum F;, indicates the maximum
cue validity Q). The category utility of category ¢ is de-
fined as U(c;) = P(c;) [(P(0]¢;)? — P(0)?)df (Corter &
Gluck, 1992). Total category utility U = >, U(c;) is
a similar measure with F' as follows (i.e. the order is
O(U) = O(—F?)). Applying P(#) = >, P(6,¢;) and
ky = P(Ci)il —1.

U= Zk/ (0, c:) d@ﬂ/ZZ dB” (5)

i jFi

"(1-Q) (4)

Next, we prove the equivalence between semantic
packing and smoothness when the probability of feature
6 given ith category P(f|c;) is defined as, a prototypi-
cal representation, a d-dimensional normal distribution.
Then P(8lc;) = ((27)%o3l)~* exp(— (0 — po)'o (6 —
i), where a mean vector (i.e., prototype) and covari-
ance matrix (i.e., generalization or feature weighting) are
w; and ;. The superscript ¢ refers to transposition. The
discriminability measure (Equation 1) can be rewritten
as follows. Assume that A =Y "o, ", B =Y "0o; '1;,0
C =" plo;  p;, and G = log(F)

1, -
G:%(BA B—C—n10g|A|—ZIOg|Uz‘|) (6)

Optimization for only the constramt == or gf (i.e., dis-

criminability in Figure 1) gives (u;— y]) (p —[t;) — o0 Or



|o;] — 0, indicating an immense amount of feature space
or an instance as a category (i.e., no generalization),
respectively. Therefore, constraints to normal distribu-
tions By = Y7 ||| = D7 phpi and By = log |[A™!] are
necessary. For the cognitive process, the constraints F;
and FEs refer to maintenance of constant memory space
(i.e. parsimony in Figure 1) and generalization ranges,
respectively. The Lagrange multiplier method is used
for optimization of the constraints. The Lagrange equa-
tion with multiplier A is L = G + A\ E; + Ay E5, which
indicates semantic packing (L) optimizes both discrim-
inability (G) and generalization (E; and Es).

oL 9 B i
o 8M(G+>\1E1) = =0 (i = ) + Mg =0 (7)
where o= A™'B = (7 07 )7 3o o7

pi=—o; =17 'a (8)

where I is the identity matrix. Therefore the relationship
between a pair of categories when L is optimized as a
function of p is

Auij = )\1()\10'7; - I)_IAO'Z'j()\lo'j — I)_lﬂ (9)

where Ap;; = p; — py; and Aoy; = o3 — 0. Next, in
addition to p;, L is optimized as a function of ;. As

% = %(2%G+)\2E2) , thus applying aggic =o; Y-
—1

wi)(p — pi)io;t +no AT — o)

oL _ _ -
Oim0i = (i i) (i = ) + (n+ A2) A7 — 0y (10)

oL .. _ 9L _ _
ASU”)TI.UZ Ujagjoj—o

Aoy = ST (=D (=) (i — )t (11)

k=i,j

where §;; = 1 when i = j, otherwise d;; = 0. Notice
that o; is constant in Equation 9, and Equation 11 is
Aci; = O(Apj). Consequently, the approximate mono-
tonic relationship between Ap;; and Ac;; with a given

constant a (i.e. “smoothness”) emerges, when 2L = (

opi
OL _ . .
or 5+ =0 (i.e. “packing”).

i = il = alloi — o] (12)

In other words, semantic smoothness, which is the cor-
relation between feature and generalization (Equation
12), is approximately equivalent to semantic packing. A
learning system with smooth categories that optimize
the packing principle, and vice versa.

An analytic solution to g—; = 0 is demonstrated as

follows. Assume that E] = 12:? viv; where v; = p; —
A7!'B to be the constraint instead of E;, and note that
the replacement does not lose generalitg. Solving the
Lagrange equation L = %—i—%E{, we get a—lfi = —O'i_ll/i-‘r
)\2?(51_],70;11471)%_ where §;; =1 when i = j, or §;; =

0. Let v = (vy,10,...,u,)" be the d-by-n-dimensional
vector having v; as its ith elements. In addition, let ¥ be
the super matrix having o; as its ith diagonal elements,
and A~! be a super matrix having n? A~! as its all
elements. Then,

v-AEZ-AHr=0 (13)

Thus, Equation (7) (¢ = 1,...,n) can be solved by v as
an eigenvector of (¥ — A~!) in Equation (13).

Method

Survey Procedure

The first step in the simulation study was to collect data
on the similarities of 48 nouns that are among the ear-
liest learned by children (Fenson et al, 1993). To de-
termine the relevant similarities across a broad range
of properties, 104 Japanese undergraduates rated each
noun category using 16 pairs of adjectives (Hidaka &
Saiki, 2004). The goal here is to place the categories in
a relatively (16 dimensions) large feature space. These
adjective pairs are the potential features. Subjects used
a b-point scale to indicate how well the pair of adjectives
described the items in the category (e.g., large = 5, small
= 1). The 16 pairs of adjectives were selected by a pilot
survey using 41 pairs collected from prior studies. We
created questionnaires of 5 different orderings to cancel
out the order effect. Participants completed the survey
in about an hour.

Stimuli

e Adjective pairs (linguistic scales)
dynamic-static, wet-dry, light-heavy, large-small, complez-
simple, slow-quick, quiet-noisy, stable-unstable, cool-warm,
natural-artificial, round-square, weak-strong, rough hewn-
finely crafted, straight-curved, smooth-bumpy, hard-soft.

e Noun categories
butterfly, cat, fish, frog, horse, monkey, tiger, arm, eye,
hand, knee, tongue, boots, gloves, jeans, shirt, banana, egg,
ice cream, milk, pizza, salt, toast, bed, chair, door, refrig-
erator, table, rain, snow, stone, tree, water, camera, cup,
key, money, paper, scissors, plant, balloon, book, doll, glue,
airplane, train, car, bicycle

Analysis and Simulation

Correction of survey data The rating value was
corrected by a logistic function to make the correlation
between mean and variance zero. The original rating
showed a small positive correlation between the devia-
tion from the median and the variance, because an ex-
treme rating (i.e., a rating near one or five) has a smaller
variance than a rating near the median. More specif-
ically, the parameters of the logistic function f(z) =
(1+exp((z—b)c™t))~! are estimated to have zero corre-
lation between |z — b| and a standard deviation of rating
x, and estimated parameters are b = 3 and ¢ = 1.2. The
corrected mean and variance is used for analysis and
simulation.



Index of semantic smoothness Semantic smooth-
ness, as predicted by Equation 12, was specifically calcu-
lated by norms of the mean vector and covariance matrix
in the model. The mean vector and covariance (or corre-
lation) matrix represent the mean and covariance across
the 16-adjective ratings for all subjects. The correlation
and contribution of the norms of the mean vector and
the covariance were used as an index of smoothness. The
contribution of the major axis is calculated by the prin-
cipal component analysis, because the norms of both the
mean and the covariance have variances. In other words,
the coefficient of determination in the regression analy-
sis underestimates this contribution because it supposes
that only the dependent variable has error.

Simulation of packing category Three simulations
were run. The first simulation involved the semantic
packing of randomly generated categories with the goal
of visualizing coherent categories. The second simulation
attempted to reproduce category organizations based on
the adjective ratings for the corpus of early learned nouns
and in doing so demonstrates how packing might explain
fast mapping. The third simulation involved a Monte
Carlo simulation investigating the relationship among
measures of discrimination.

In the semantic packing simulation, we optimized the
mean and covariance of several categories with randomly
generated initial means and covariances (i.e. the gradi-
ent method: updating the parameters based on Equation
13 and 10) . The smoothness index was measured after
updating was performed 100 times. The updated final
state refers to optimization in terms of balanced con-
straints.In the simulation of the adjective rating data
for early-learned nouns, the means of categories were
reproduced by a solution of Equation 13 for a given co-
variance matrix of survey data. This simulation investi-
gates the predictability of a prototype configuration in
real data based on the generalization pattern. The re-
sults were evaluated based on the correlation between
the distances between all pairs of categories in the re-
produced and original prototype configuration. The de-
grees of freedom of the configuration to be estimated is
752 (the number of categories without pivot of rotation
by property dimension (48 — 1) x 16). In the Monte
Carlo simulation, 20 one-dimensional normal distribu-
tions with uniform-random means (-3 to 3) and variances
(0.2 to 2) were generated 500 times. The maximum (@),
paired minimum (3, ;. min(P(0]c;), P(0|c;))), overlap
(F), category utility (U), paired Bhattacheryya bound
(34 j2i Bij) of the generated distributions were calcu-
lated theoretically (F, U, and B) or numerically (max
and min: integral range from -10 to 10 and sample res-
olution 0.01), and the correlation was analyzed.

Results

Figure 2 shows the relationship between the mean norms
and the correlation norm for the adjective-rating The
correlation and contribution are .466 and .733, respec-
tively. The correlation and contribution of the smooth-
ness index using covariance, rather than correlation, are
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Figure 2: Scatter plot of mean vector norm (x axis:
prototype dissimilarity) and correlation matrix norm (y
axis: generalization dissimilarity) in survey data
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Figure 3: Scatter plot of mean vector norm and correla-
tion matrix norm in simulation

.357 and .688, respectively. These results suggest that
the investigated category set has smoothness. The mean
norm and covariance norm of paired categories (each
category paired with every other category) are shown
(Figure 3). The average and standard deviation of the
smoothness index for 100 simulations were .490 and .181,
respectively. The correlation and contribution between
the reproduced mean matrix in the simulation and the
mean of survey data were .430 and .715, respectively.
These results suggest that semantic packing could re-
produce half of the categories from only their general-
1zation without any knowledge of the category configura-
tion. This is the kind of result needed to explain feature
selection and fast-mapping in children.

The results of Monte Carlo simulation are shown in
Table 1. Most of the absolute correlations |R| were
greater than .8, which indicated that the five measures
were approximately equivalent as proven.

Discussion

The results of Monte Carlo simulation exploring some
discriminability measures empirically support the the-



T\R | max F U B min

max 1 -.867 .855 -877 -.863
F ] -.681 1 -791 938  .806
U 659  -.601 1 -.903 -.949
B |-68 .785 -.740 1 .938

min | -.658 .620 -.814 .796 1

Table 1: Peason correlation coefficient R (upper triangle)
and Kendall rank correlation 7 (lower triangle) among
measures

oretical relationship, which is the approximate equiva-
lence among F', cue validity and category. In the pack-
ing theory, generalization is not just negative discrim-
inability but a limitation on category representation re-
sulting from the whole memory capacity and a lower
bound on generalization. With the two conflicting con-
straints, the computational model predicts that smooth
category organization emerges. Consistent with this pre-
diction, the smoothness index of the adjective-rating
data for early learned nouns suggests that property-
generalization clusters were formed in not only specific
domains (e.g. solidity-shape in the survey of Samuelson
& Smith, 1999) but also more generally. Indeed from
these data, one can predict regions of “fast mapping” in-
volving property-category organization correlations that
are unknown to and unexplored by researchers in early
category development. The success in a quantification
of category coherence using smoothness index provides
empirical evidence of the role of semantic packing in hu-
man natural categories. Granted the results could be due
to the specific properties and noun categories selected.
However, the adjectives were selected by their discrim-
inability (i.e. variance of the adjectives) to the category
set (Hidaka & Saiki, 2004), and smoothness can be ob-
served in feature space with discriminability. Therefore,
the adjective-rating results may be taken as making pre-
dictions about the feature space as it relates to early
acquired noun categories (i.e. basic categories).

The success in reproducing the organization of early
learned nouns suggests that a category system con-
strained by semantic packing principle could generalize a
category to new instances without trial and error. This
implies that the system would “know” the generalization
pattern of a novel thing in a certain region of feature
space. Young children show precisely this kind of knowl-
edge in generalizing names for novel categories. This is
typically referred to in the developmental literature as
“fast mapping.” Notice that the system has no meta-
knowledge , as theory-theory claims, about specific do-
mains, but smoothness, a property of the whole system
in which categories are learned and represented, does the
work of such meta-knowledge.

In summary, the proposed theory suggests that cate-
gory packing process, balanced discriminability and gen-
eralization (i.e. basic categories), leads smooth category-
feature organization (i.e. category coherence) consistent
to human natural categories, and the smoothness help
learners’ generalization to novel categories (i.e. fast map-

ping).
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