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Abstract

Given a single instance of a novel category, two- and three-
year-old children systematically generalize its name to other
novel things based oappropriate feature dimensions. We
explain this in terms of a prediction of the probabilistic den-
sity (category likelihood) in feature space from a single novel
instance. In principle, observing more instances from a par-
ticular probabilistic density, one can estimate the probabilistic

name, the children systematically extend the name to new in-
stances by different features for different kinds (Imai & Gen-
tner, 1997, etc.) Specifically, they extend the names for things
with features indicative of animates by multiple similarities,
for solid things with features typical of artifacts by shape,
and for nonsolid substances by material. For these different
kinds of things, young children have clearly solved the fea-

density more accurately. In this sense, children’s success in
generalization from a single instance seems to go beyond the
theoretical limit. We provide a theoretical account for the phe-
nomenon. In our theory, these kind of kind specific generaliza-
tions, a fast mapping from a single instance to a whole category
is due to the structure of the system of learned categories and
a sort of optimization of the category organization.
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ture selection problem and seem to know that different kinds
of features matter for different kinds of things. They know
what kinds of categories need to be formed.

Category likelihood and feature selection

Children’s use of different features to form different kinds
of categories in these tasks appears to directly reflect the
category likelihoods of those features for known categories.

Different categories are structured in different ways. ForSamuelson and Smith (see also Colunga & Smith, 2005) ex-
example, colors are relevant to categorizing foods but not temined the category structure of the first 312 nouns typi-
categorizing trucks. Further, some categories are decidedlgally known by children learning English (and in other stud-
incoherent and not formed by people. For example, peoplées the first 300 nouns learned by children learning Japanese).
do not form categories that include fish and elephants buthey measured category structure by asking adults to judge
not lions (see also Murphy & Medin, 1985). A key ques- the characteristic within-category similarities of typical in-
tion for a theory of categories, then, is how different featuresstances of individual noun categories on four dimensions,
are selected for different kinds of categories, and how somshape, color, texture, and material. They found that individ-
categories but not others are selected. An understanding ofl artifact categories (e.g., chairs, forks, spoons, cups) were
very young children’s novel word generalizations may pro-judged to have instances that were highly similar in shape
vide an answer. Two and 3-year-old children generalize novebut variable in other properties, that animal categories were
names for novel things in the “right” way given just a single judged to have instances that were similar in all properties,
instance of the category: generalizing names for novel artiand that substance categories were judged to have instances
facts by shape, for novel animates by multiple features, anthat were similar in material (and color). Thus, the impor-
for substances by material. This fast mapping of a name for tance of features to different kinds of categories for children
single thing to a whole category surely facilitates early wordmay reflect the expected distributions of those features for
learning. nearby categories, a point we expand on below.

Kind specific generalizations Distribution of category likelihoods

The phenomenon of interest derives from a widely used exSeveral recent studies further indicate that children’s differ-
perimental task of novel noun generalization (NNG) (seeent patterns of category generalization for different kinds of
Carey & Bartlett, 1978). In these tasks, children are showrfeatures may be geometrically organized in some larger fea-
a single novel thing and are then asked to generalize thatrre space (Imai & Gentner, 1997; Colunga & Smith, 2005).
name to other things. One experimental variable in thes&or example, Colunga & Smith (2005) showed that chil-
studies is the properties of the objects themselves, for exangren’s generalizations of novel names by shape versus mate-
ple, whether they have features typical of animates (e.g., eyesal shifted gradually as the presented novel instances varied
legs, hands), features typical of artifacts (e.g, solid with anincrementally from shapes typical of artifacts (complex, lots
gular parts, straight edges), or features typical of substanced angles) to shapes typical of substances (simple rounded
(e.g., nonsolid, rounded, flat forms, with irregular shapes). Irshapes). Similarly, Colunga and Smith (under review, see
general, a large literature indicates that when 2- and 3-yearlso Yoshida & Smith, 2003) showed that children’s general-
old children are given a novel never-seen-before thing, told itszation by shape versus material shifted gradually as (identi-
name (“This is a dax”), and asked what other things have thatally shaped) instances were incrementally varied from solid



(brick like), to perturbable (play dough like), to nonsolid (ap-
plesauce like).

We illustrate this idea in Figure 1 which represents cate- jetinood
gory generalization as a likelihood estimation problem in a
set of feature dimensions. Figure 1la shows a category like-
lihood (i.e., relative probability density of category member-
ship is shown on the z axis) and its contour plot projected in
a 2-dimensional feature space. Individual contours of cate-
gories are represented as ellipses in a 2-dimensional feature
space (Figure 1b). The contours of the category likelihoods—
that is the distribution of features across the two dimen-
sions of shape and texture/material—varies systematically as
a function of location in that space. This idealized repre-
sentation illustrates the structure that appears to characterimgure 1: Schematic category organizations having the same
the nouns that are learned early by young children and alsgkelihoods contours: (a) likelihood pattern is represented as

to characterize children’s generalizations of a newly learne@|jipsis (b) "smooth” and psychologically likely organization
noun to new instances. That is, instances of categories withnd (c) randomly distributed organization.

highly constructed and angular shapes vary little in shape
but vary greatly in texture and material whereas categories
of animal-like shapes vary little in shape but are also con-
strained in their variation in texture/material. Finally, the un-
constructed simple shapes of substances are correlated with
category distributions of relatively variable shapes but limited
texture/materials.

The key insight is this: Similar categories, those categories
close in the feature space, have similar patterns of category
likelihoods for different features. Put another way, the cat-
egories in the same region of conceptual space have similar
shapes (their generalization patterns) and there is a gradient
of category shapes (category likelihoods) across the space as
a whole. We will call a space of categories with these proper-
tiessmooth near (or categories with similar instances) have
similar generalization patterns and far (or categories with disFigure 2: Scatter plot of distances in mean vectors and those
similar instances) have dissimilar generalization patterns. in covariance matrices of pairs of categories from adult judg-

Hidaka, Saiki and Smith (2006) analyzed the relation bements.
tween the central tendencies and generalization patterns of
48 early-learned noun categories in a 16-dimensional fea-
ture space (See also the later simulation section). At issu@ralization pattern shown by the broken ellipsis. Because
was whether near categories would have similar variance pafearby categories have similar patterns of likelihoods, the
terns and far categories would have dissimilar ones. Thugystem (through the available space or competition among
smoothneswas defined as a correlation between similaritiescategories) can predict the likelihood of the unknown cate-
of paired categories in central tendencies and those in varBory, a likelihood that would also be similar to other known
ance patterns. They found a positive correlatiBr=0.537,  and nearby categories in the feature space. If categories did

Figure 2) which indicates a smooth space of categories. not have this property of smoothness, if they were distributed
like that in Figure 1c, where each category has a variance pat-

Fast mapping with smoothcategories tern unrelated to those of nearby categories, the learner has no
Smoothness may not only be a descriptive property of earlpasis on which to predict the generalization pattern. In sum,
learned categories but might also explain children’s kind-the relationship between consistency in category distribution
specific generalizations from a single instance. Smooth ca&and predictability implies that smooth categories may un-
egories provide an advantage because the category to lerlie young children’s ability to generalize names for novel
learned is more predictable in a smooth space. To see the relnings in the right way given just one instance.

tionship between predictability and category organization, let i

us assume that one knows some categories (shown as sofRt€90ry packing

ellipses in Figure 1b) and observes the first instance (a blacRut why should categories be smooth? The consistency and
star) of a novel category (a broken ellipsis). In the case opredictability of categories could derive from the dense inter-
Figure 1b, the learner might easily predict the unknown genaction among adjacent categories. Starting with this idea, we
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propose a theoretical account, thackingmodel, so-called
because the category configuration is formed by competition
among categories for feature space with the result being that
categories are organized in feature space like things are orga-
nized in a well-packed suitcase. The main ideas of the pack-
ing model are (1) probabilistic densities of categories should
not “overlap” and (2) there should be no “gaps” in the fea-
ture space in which no category is likely but in which some
uncategorized instances do occur. In this sense, Figure 1c,
which has many gaps (blanks among categories) and over-
laps (intersection among categories), is not well packed. On
the other hand, Figure 1b, which has fewer gaps and over-
laps, is well packed. More formally, (1) as joint probabili-
ties of paired categories indicate overlap probability, the total
sum over feature space of joint probabilities of all paired cat-
egories should be smaller, and (2) the probability distribution
of all categories should be well fitted to given instances’ prob-, . -
ability distribution. We call computational condition (1) and Stork, 2000). In the following derivations, we assume each

(2) discriminabilityandgeneralizabilityrespectively. In gen- probabilistic density is a normal distribution, and utilize the
o N . ' Bhattarcheryya bound as discriminability of categories. In
eral, discriminability and generalizability are in a trade-off re-

i . D . the more general case Nfcategories ib dimensional space
lationship: more discriminable categories tend to have mor

i . )0 6, we assume a likelihode(6|c;) of categoryc; with fea-
gaps but less overlap, and more generalizable categories tePureG defined as a normal distribution having megawector
to have more overlap but less gaps. The optimplgked . -

. . . and covariance matri;:
category configuration would be the middle of these two ex-
tremes. Next we give a formal description of the packing p
model and show that an optimal solution for the model has

smooth categories as a general trend.
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Figure 3: Category likelihoods of two categories

(6lc) = (2mP°loil) # exp(—5(8 —)'o *(O— W) (1)

where superscript indicates transposition. In the case
. . . of N categories, the discriminability is defined as the
Theoretical Formulation of Packing sum of Bhattercherrya bound of all category paifg =
We define discriminability as the probability of a discrimina- log [¥; ¥ j exp(R;j)].-
tion error among categories and we define generalizability as Next we define generalizability that is, the likelihood of
the likelihood of instances given categories. Next we defindnstances given a category. The logarithm of the likelihood
the packing cosfunction as the sum of discriminability and of categoryc; (Equation 1) without constant terms can be
generalizability, and then derive the category distribution thasimply written asG; = log(ai) + 31 (X — k)'o; (X — )
minimizes the packing cost function. wherexi (k=1,2,...,K;) are observed instances of novel
Consider first a simple case that includes only two catecategoryci. The packing cost, consists of combination
gories A and B in one feature dimension (Figure 3). Theamong discriminability=, and fitting to given instances;.
likelihood of Category A (B) has a single central tendency atT his is mathematically formulated as the minimization of the
meanpa (ug) and varies with variancea (og). An optimal ~ Lagrange equatiol, with a constani as follows: Ly =
category discrimination is to judge an instance as the mostin + ¥ A(Gi —log(C)), whereC is a constant.
likely c:?\t.egory. Thatis the propability ofd_iscriminationlgrrqr Optimally-packed categories are smooth Next we show
probability over fea.ture space is the minimum probab|!|ty N structural property of optimally-packed categories by solv-
Category A and B (i.e., colored area in Figure 3). That is for-ing the differential of the packing cost with respective to

mally described asag = Jo min{P(B|A), P(6]B)}dO, where  gqtigticq) parameters of categories. The differentiakf
minx,y is the minimum value irxk andy, 6 andQ are re- ith ive t of | R E-[Ri] _
spectively a particular feature value and feature space. waith respective to a parame IS 3x = EF {W] -

define discriminablity as the total error probability between|:_N*1{zi |Qi "a%} where E "%} is the expectation for

category A and B (the colored area in the figure) when cat; o o

e org d)i/scriminaticfn is optimal. Because O?JI’ Z)al is min- Qi = P(C)P(c))exp(Fy) (i, = 1,2,...,n) as a probabilis-
egory h ft P .h b 9 h tic density. Since the differential dfy with respect too;
|m|pz(|:g )SAB’I ?;e(a:)rP\(NGTBl;??;ee uppe.r fuTaifvtvh ere (i=1,2,...,n) is zero, we obtain the following equation:
exp(Fas) = [o 2d9 > eap, Instead of the er-  on. _ E iy — i) (W — i)t + G — 0] £ A S — 0} =0
ror per se. In particular, wheR(8|A) and P(6|B) are nor- 00" I = ) (k= ) +_” 19 {18‘ '}1
mal distributions, the upper bound of errorfig = —1(w —  whereai; = 20i(0; + 0j) *oj, Hj = 30i(0; "W + 0} 1)
W)'(0i +07) L (1 — ) — Slog(%|oi +0j]) + Llog(lail|oj]),  andS = T (% — W) (% — )" is the scatter matrix. By solv-
which is called the Bhattarcheryya bound (Duda, Hart, andng the above equation£ 1,2,...,N), we obtain the follow-



ing relationshipt. Communicative Development Inventory (MCDI; Fenson et
al., 1994), which is a vocabulary list of words normatively
¥ Qij {éj +6i*jl} +AS known by 50% of 30-month-olds, and 16-dimensional fea-
o = NOTEBY'? (2)  tures provided by adults in a judgment task. The model’s pre-
2 Qi ! diction of the probability density of novel categories is com-
pared to actual statistics of natural categories. Because the

where§; = (1 — [ ) (4 — |;)t. Equation (2) indicates co- . .
variance{oi c(onsisté)(of the i/\)/eighted average of three Com_structure oknowncategories has been shown to play a major

ponents (i.e.Q;j andA as its probabilistic density), the scat- ;?Er;?tﬁhg%rgg Svt??nsaaeizclljfllgtgiﬂgrr?ﬂﬁggrnsf(:é% cl:e?;l:‘pfra
ter matrix of categorie§j, the harmonic mean of covariance ’ ) P . P -

- : . each category the model knows, using norms of the acquisi-
matriceso;; and the scatter matrix of observed instanges

Note thatO:: exponentially decavs in pronortion to the dis- tion age of the 48 nouns from 16 to 30-month-olds (from the
Qij exp 'afly ys In proporti ! MCDI). The goodness of fast mapping is discussed in light of
tance between categoty andc;j. Thus, the scatter matrix

of categorieéj reflects the distribution of nearby categoriesthIS simulated word development.

cj around category;. Conceptually, it means that nearby

categories constrain the “niche” in the feature space for catrocedure

egoryc; to spread out (The broken ellipsis in Figure 1a or

b). The harmonic means of covariance matriogsindicate  In each trial of the simulation, one category is assigned as un-
thato; would be similar to those of other “closer” categories. known, and the other 47 categories are known. Each category
Therefore, Equation (2) implies that the general structure ofs assumed as a normal distribution, and the model predicts
optimally-packed categories $snoothi.e., closer categories the unknown covariance matrix based on the given means
in feature space have similar covariance patterns. and covariances of known categories. This process is simu-
lated for each noun category as unknown and for each acqui-
sition rate of nouns corresponding from hypothetical sixteen
to thirty month of age. In sum, novel word generalization was
simulated 50 times for 15 ages by 48 categories.

Prediction We used Equation (3) to calculate a covariance

matrix of a novel categorg; from an instance sampled from

the category|f = xi1) and other known categorieg;(and

0j, j #1i). The calculateds; minimizes the packing cost in

terms of adjacent other categories. The coeffickeint each

-1y simulation is calculated by assuming the scaling constant as
z Qij {gj + c—;rjl} (3)  the determinant of the covariance matrix of the unknown cat-
] egory C=[(N-1)"'§)).

Word development To mimic the likely growth in knowl-

edge about known categories over 16 to 30 month old, we

assumed that the number of instances observed by the model

Simulation of novel word generalization increases in proportion to these acquisition rates. The logic

behind this manupulation is this: Statistical properties in the

In this simulation, we demonstrate that the model can predicf ; .. judgments on feature of categories are products of de-

the I!ke“hO(.)dS (feature distribution patterns) of natural Cat'velopment, and that children learn a subset of instances adults
egories which were unknown to the model.

o th bl fh hild dict thTh'.S 'hsts'm'larknow. Specifically, we generated 2000 random instances for
0 the probiém of how chiidrén can predict the right gener-g, ., category which has the same mean and covariance ma-

alizatipn patte_rn from a single ingta_nce. We formulated fas{rix as that of adult judgments of these categories on the 16
mapping in this sense as a prediction of an unknown prOb('jimensions (i.e., adults’ knowledge as a parent population).

abilistic density (category likelihood) in feature dimensions-l-hen we assumed 50 out of 2000 instances were “known”

I[lom a Zmlg‘!i nove“I T;tan::e. lSpeC|f|caItIy, n .th's sw(;lulgtmn, samples) at the age the norms indicated the word was in
€ model ‘knows hatural noun categories and ODSeVg 4, ot the children’s productive vocabulary. In this learning

the first nstance of thg 48th novel category. 'I_'hen the taSI§cheme, the accuracy of estimation of statistics for hypothet-
of the model is to predict the probabilistic density pattern Ofical known categories increases in proportion to the acquisi-

this new category. The model's p_rediction Qf the prObab"i‘c’_ﬁCtion rates in the MCDI list. Figure 4 shows the mean acqui-
densﬂy was calculated by an_optlm_al solution fortr_le paCkIngsition rates in the MCDI (solid line) and smoothness index
cost with respect to the configuration of surrounding knowngjroken line) over 48 nouns. The smoothness index in the hy-

Estimation of a novel category from the first instance
Here we derive the covariance estimation for “novel word
generalization” that one only knows the first instance. In
this case, we approximately obta$h~ 0 by assuming the
first instance is close to the true me&{«1 andxx = ). In
addition, we can obtaii by solving the constraint equation
oln _

= Gj —log(C) = 0. Then the optimal covariance of the

novel category is given as follows.

g =C

%Qii {é,— +5fjl}

The EM algorithm (Dempster et al, 1977) is available for it-
erative minimizing the packing cost with Equation (2) or (3).

theg(inesl (Sfe a'?'o the th?o(;ercal ftohr mlli/llatlo'r&).thWeButse othetical known categories gradually increases from 0.1 to
hatural categories sampied from the Mac Arthur-bates) 4 along increment of known instances (from approximately
1The precise solution is given as a quadratic eigenvalue problerrilO to 45 instances per category).



o generalization pattern from the adult judgments. Consider-
ol | e et ] ing all the categories (and thus a hypothetical 30-month-old),
the correlations were 0.58, 0.56 and 0.88 respectively. To as-
sess whether knowing the whole organization of categories
enabled better category learning than merely learning single
categories independently of the structure of the whole, we
also compared the three measures of generalization for cate-
gories defined by 3 randomly selected instances with the mea-
sures from the adult judgments. These correlations are low:
that for variances, covariances, and joint variance/covariance
P are 0.23, 0.23 and 0.45 respectively. Moreover, for a series of
o o vocabularies (at monthly intervals from 16 to 30 months by
the MCDI), the covariance matrices predicted with an only in-
Figure 4: Average word acquisition rates and the smoothnes¥ance by the packing optimization have significantly higher
index of 48 categories correlation than those estimated from three instances. These
finding illustrate the main idea of the packing account: the
location of a to-be-formed category in a geometry of cate-
Categories and features gories —because of the local interactions of nearby categories—

We used adult judgment data on early acquired noun Catgonstrams the possible shape of the category in the feature

: . A ; ; . grace. The packing model, however, depends on these be-
egories using adjectives as feature dimensions (Hidaka . .
Ing a densly packed set of known categories. Figure 5 shows

Saiki, 2004). The survey includes 48 nouns selected ran; i . )
. . the correlation changing over the hypothetical development
domly from 312 nouns in the MCDI. They also span a variety_ . .
. : . . : . trajectory. Each point and bar shows mean and standard de-
of kinds including food, animals, vehicles, tools, furniture, vigtion of 50 simulations with different random values. Since
and so forth. Inthe survey, 104 Japanese undergraduates ral g . S .
: . ! : i ; . € increase in the accuracy of known category estimations is
noun’s typical features using sixteen five-point-scale pairs o . . . .
Co : due to increase in the number of known instances along with
adjectives. For example, subjects rated the noun categor . . .
W o w ow e hypothetical age (Figure 4), we analyzed the correlation
among these variables. The accuracy in prediction of novel

"cat” as either "very large”, "large”, "neither”, "small”, and

"very small”. The sixteen adjective pairs having larger vari- . ; : ; : .
tegories (for covariance matrices) increases in proportion

the number of instances (correlation to acquisition rate is

ance across noun categories were selected out of the initial Afg
pairs, thus these adjectives would characterize the current 88.911,p < 0.01) and smoothness (0.81x 0.01) of known
categories. It suggests that novel word prediction gets more

of noun categories (see Hidaka & Saiki, 2004 for the detail).

o Adjective pairs (feature dimensions) accurate along with the growth of known categories. One
dynamic-static, wet-dry, light-heavy, large-small, complex-reason of this .increment may be due to the §m00thness of
simple, slow-quick, quiet-noisy, stable-unstable, cool-warmKnown categories, because Smoother_ categories W(_)U|d have
natural-artificial, round-square, weak-strong, rough hewn-finely more predictability. In sum, the prediction by packing op-

Smoothness and mean cquisition rates
o
~

crafted, straight-curved, smooth-bumpy, hard-soft. timization succeeded in a novel word generalization as ac-
) curate as known categories. The accuracy in prediction of
* Noun categories novel words increases as accuracy in estimation of known

butterfly, cat, fish, frog, horse, monkey, tiger, arm, eye, hand, knegategories increases. These results suggest that the packing

tongue, boots, gloves, jeans, shirt, banana, egg, ice cream, milkyptimization is powerful enough for earlier word learning.
pizza, salt, toast, bed, chair, door, refrigerator, table, rain, snow,

stone, tree, water, camera, cup, key, money, paper, scissors, plant, Discussion
balloon, book, doll, glue, airplane, train, car, bicycle
These results show how children’s solution to the feature se-
Results lection problem —to selecting the right features for a given
The logic of our analysis of the simulations is this: We gavebut as yet unknown category— may be a geometrical property
the model 47 of the 48 categories (whose generalization grasf the systenof known categories in feature space. For this
dients were generated by adult judgments) and then asketh work, however, two computational conditions seem nec-
given the packing cost, if it could generate from a singleessary. First, the feature space itself must be organized in a
instance the generalization of the gradient of the 48th catepredictable way. There are hints -though more is needed -
gory, thus a simulation of fast mapping. To assess how welthat this is so (Hidaka et al., 2006; Colunga & Smith, 2005).
the model generated the generalization pattern of the missf natural categories comprise a smooth space —for whatever
ing category, we examined the correlations, category by cateeason— it means that a learner of a new category can pre-
gory, between the predicted variances, covariances, and joidict the likelihood pattern of a novel category. This can
variance/covariance of the predicted category with its actuabe done because of a correlation between similarity of cat-



children’s smart feature selection and point in new directions

for research - how dense known categories are in a given area
of feature space and how well the known instances of those
categories portray the generalization pattern for that category.
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