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Abstract

Given a single instance of a novel category, two- and three-
year-old children systematically generalize its name to other
novel things based onappropriate feature dimensions. We
explain this in terms of a prediction of the probabilistic den-
sity (category likelihood) in feature space from a single novel
instance. In principle, observing more instances from a par-
ticular probabilistic density, one can estimate the probabilistic
density more accurately. In this sense, children’s success in
generalization from a single instance seems to go beyond the
theoretical limit. We provide a theoretical account for the phe-
nomenon. In our theory, these kind of kind specific generaliza-
tions, a fast mapping from a single instance to a whole category
is due to the structure of the system of learned categories and
a sort of optimization of the category organization.

Keywords: Fast mapping; Probability density estimation;
Smooth feature space

Different categories are structured in different ways. For
example, colors are relevant to categorizing foods but not to
categorizing trucks. Further, some categories are decidedly
incoherent and not formed by people. For example, people
do not form categories that include fish and elephants but
not lions (see also Murphy & Medin, 1985). A key ques-
tion for a theory of categories, then, is how different features
are selected for different kinds of categories, and how some
categories but not others are selected. An understanding of
very young children’s novel word generalizations may pro-
vide an answer. Two and 3-year-old children generalize novel
names for novel things in the “right” way given just a single
instance of the category: generalizing names for novel arti-
facts by shape, for novel animates by multiple features, and
for substances by material. This fast mapping of a name for a
single thing to a whole category surely facilitates early word
learning.

Kind specific generalizations

The phenomenon of interest derives from a widely used ex-
perimental task of novel noun generalization (NNG) (see
Carey & Bartlett, 1978). In these tasks, children are shown
a single novel thing and are then asked to generalize that
name to other things. One experimental variable in these
studies is the properties of the objects themselves, for exam-
ple, whether they have features typical of animates (e.g., eyes,
legs, hands), features typical of artifacts (e.g, solid with an-
gular parts, straight edges), or features typical of substances
(e.g., nonsolid, rounded, flat forms, with irregular shapes). In
general, a large literature indicates that when 2- and 3-year-
old children are given a novel never-seen-before thing, told its
name (“This is a dax”), and asked what other things have that

name, the children systematically extend the name to new in-
stances by different features for different kinds (Imai & Gen-
tner, 1997, etc.) Specifically, they extend the names for things
with features indicative of animates by multiple similarities,
for solid things with features typical of artifacts by shape,
and for nonsolid substances by material. For these different
kinds of things, young children have clearly solved the fea-
ture selection problem and seem to know that different kinds
of features matter for different kinds of things. They know
what kinds of categories need to be formed.

Category likelihood and feature selection

Children’s use of different features to form different kinds
of categories in these tasks appears to directly reflect the
category likelihoods of those features for known categories.
Samuelson and Smith (see also Colunga & Smith, 2005) ex-
amined the category structure of the first 312 nouns typi-
cally known by children learning English (and in other stud-
ies the first 300 nouns learned by children learning Japanese).
They measured category structure by asking adults to judge
the characteristic within-category similarities of typical in-
stances of individual noun categories on four dimensions,
shape, color, texture, and material. They found that individ-
ual artifact categories (e.g., chairs, forks, spoons, cups) were
judged to have instances that were highly similar in shape
but variable in other properties, that animal categories were
judged to have instances that were similar in all properties,
and that substance categories were judged to have instances
that were similar in material (and color). Thus, the impor-
tance of features to different kinds of categories for children
may reflect the expected distributions of those features for
nearby categories, a point we expand on below.

Distribution of category likelihoods

Several recent studies further indicate that children’s differ-
ent patterns of category generalization for different kinds of
features may be geometrically organized in some larger fea-
ture space (Imai & Gentner, 1997; Colunga & Smith, 2005).
For example, Colunga & Smith (2005) showed that chil-
dren’s generalizations of novel names by shape versus mate-
rial shifted gradually as the presented novel instances varied
incrementally from shapes typical of artifacts (complex, lots
of angles) to shapes typical of substances (simple rounded
shapes). Similarly, Colunga and Smith (under review, see
also Yoshida & Smith, 2003) showed that children’s general-
ization by shape versus material shifted gradually as (identi-
cally shaped) instances were incrementally varied from solid



(brick like), to perturbable (play dough like), to nonsolid (ap-
plesauce like).

We illustrate this idea in Figure 1 which represents cate-
gory generalization as a likelihood estimation problem in a
set of feature dimensions. Figure 1a shows a category like-
lihood (i.e., relative probability density of category member-
ship is shown on the z axis) and its contour plot projected in
a 2-dimensional feature space. Individual contours of cate-
gories are represented as ellipses in a 2-dimensional feature
space (Figure 1b). The contours of the category likelihoods–
that is the distribution of features across the two dimen-
sions of shape and texture/material–varies systematically as
a function of location in that space. This idealized repre-
sentation illustrates the structure that appears to characterize
the nouns that are learned early by young children and also
to characterize children’s generalizations of a newly learned
noun to new instances. That is, instances of categories with
highly constructed and angular shapes vary little in shape
but vary greatly in texture and material whereas categories
of animal-like shapes vary little in shape but are also con-
strained in their variation in texture/material. Finally, the un-
constructed simple shapes of substances are correlated with
category distributions of relatively variable shapes but limited
texture/materials.

The key insight is this: Similar categories, those categories
close in the feature space, have similar patterns of category
likelihoods for different features. Put another way, the cat-
egories in the same region of conceptual space have similar
shapes (their generalization patterns) and there is a gradient
of category shapes (category likelihoods) across the space as
a whole. We will call a space of categories with these proper-
tiessmooth: near (or categories with similar instances) have
similar generalization patterns and far (or categories with dis-
similar instances) have dissimilar generalization patterns.

Hidaka, Saiki and Smith (2006) analyzed the relation be-
tween the central tendencies and generalization patterns of
48 early-learned noun categories in a 16-dimensional fea-
ture space (See also the later simulation section). At issue
was whether near categories would have similar variance pat-
terns and far categories would have dissimilar ones. Thus,
smoothnesswas defined as a correlation between similarities
of paired categories in central tendencies and those in vari-
ance patterns. They found a positive correlation (R= 0.537,
Figure 2) which indicates a smooth space of categories.

Fast mapping with smoothcategories
Smoothness may not only be a descriptive property of early
learned categories but might also explain children’s kind-
specific generalizations from a single instance. Smooth cat-
egories provide an advantage because the category to be
learned is more predictable in a smooth space. To see the rela-
tionship between predictability and category organization, let
us assume that one knows some categories (shown as solid
ellipses in Figure 1b) and observes the first instance (a black
star) of a novel category (a broken ellipsis). In the case of
Figure 1b, the learner might easily predict the unknown gen-
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Figure 1: Schematic category organizations having the same
likelihoods contours: (a) likelihood pattern is represented as
ellipsis (b) ”smooth” and psychologically likely organization
and (c) randomly distributed organization.
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Figure 2: Scatter plot of distances in mean vectors and those
in covariance matrices of pairs of categories from adult judg-
ments.

eralization pattern shown by the broken ellipsis. Because
nearby categories have similar patterns of likelihoods, the
system (through the available space or competition among
categories) can predict the likelihood of the unknown cate-
gory, a likelihood that would also be similar to other known
and nearby categories in the feature space. If categories did
not have this property of smoothness, if they were distributed
like that in Figure 1c, where each category has a variance pat-
tern unrelated to those of nearby categories, the learner has no
basis on which to predict the generalization pattern. In sum,
the relationship between consistency in category distribution
and predictability implies that smooth categories may un-
derlie young children’s ability to generalize names for novel
things in the right way given just one instance.

Category packing

But why should categories be smooth? The consistency and
predictability of categories could derive from the dense inter-
action among adjacent categories. Starting with this idea, we



propose a theoretical account, thepackingmodel, so-called
because the category configuration is formed by competition
among categories for feature space with the result being that
categories are organized in feature space like things are orga-
nized in a well-packed suitcase. The main ideas of the pack-
ing model are (1) probabilistic densities of categories should
not “overlap” and (2) there should be no “gaps” in the fea-
ture space in which no category is likely but in which some
uncategorized instances do occur. In this sense, Figure 1c,
which has many gaps (blanks among categories) and over-
laps (intersection among categories), is not well packed. On
the other hand, Figure 1b, which has fewer gaps and over-
laps, is well packed. More formally, (1) as joint probabili-
ties of paired categories indicate overlap probability, the total
sum over feature space of joint probabilities of all paired cat-
egories should be smaller , and (2) the probability distribution
of all categories should be well fitted to given instances’ prob-
ability distribution. We call computational condition (1) and
(2) discriminabilityandgeneralizabilityrespectively. In gen-
eral, discriminability and generalizability are in a trade-off re-
lationship: more discriminable categories tend to have more
gaps but less overlap, and more generalizable categories tend
to have more overlap but less gaps. The optimallypacked
category configuration would be the middle of these two ex-
tremes. Next we give a formal description of the packing
model and show that an optimal solution for the model has
smooth categories as a general trend.

Theoretical Formulation of Packing

We define discriminability as the probability of a discrimina-
tion error among categories and we define generalizability as
the likelihood of instances given categories. Next we define
thepacking costfunction as the sum of discriminability and
generalizability, and then derive the category distribution that
minimizes the packing cost function.

Consider first a simple case that includes only two cate-
gories A and B in one feature dimension (Figure 3). The
likelihood of Category A (B) has a single central tendency at
meanµA (µB) and varies with varianceσA (σB). An optimal
category discrimination is to judge an instance as the most
likely category. That is the probability of discrimination error
probability over feature space is the minimum probability in
Category A and B (i.e., colored area in Figure 3). That is for-
mally described asεAB =

R

Ω min{P(θ|A),P(θ|B)}dθ, where
minx,y is the minimum value inx and y, θ and Ω are re-
spectively a particular feature value and feature space. We
define discriminablity as the total error probability between
category A and B (the colored area in the figure) when cat-
egory discrimination is optimal. Because our goal is min-
imizing εAB, hereafter we use the upper boundFAB, where
exp(FAB) =

R

Ω{P(θ|A)P(θ|B)} 1
2 dθ ≥ εAB, instead of the er-

ror per se. In particular, whenP(θ|A) andP(θ|B) are nor-
mal distributions, the upper bound of error isFi j = −1

4(µi −
µj)t(σi +σ j)−1(µi −µj)− 1

2 log(1
2|σi +σ j |)+ 1

2 log(|σi ||σ j |),
which is called the Bhattarcheryya bound (Duda, Hart, and
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Figure 3: Category likelihoods of two categories

Stork, 2000). In the following derivations, we assume each
probabilistic density is a normal distribution, and utilize the
Bhattarcheryya bound as discriminability of categories. In
the more general case ofN categories inD dimensional space
Ω⊃ θ, we assume a likelihoodP(θ|ci) of categoryci with fea-
tureθ defined as a normal distribution having meanµi vector
and covariance matrixσi :

P(θ|ci) = ((2π)D|σi |)−
1
2 exp(−1

2
(θ−µi)tσ−1

i (θ−µi)) (1)

where superscriptt indicates transposition. In the case
of N categories, the discriminability is defined as the
sum of Bhattercherrya bound of all category pairs:F̄N =
log

[
∑i ∑ j exp(Fi j )

]
.

Next we define generalizability that is, the likelihood of
instances given a category. The logarithm of the likelihood
of categoryci (Equation 1) without constant terms can be
simply written asGi = log(σi)+ ∑Ki

k (xik −µi)tσ−1
i (xik −µi)

wherexik (k = 1,2, . . . ,Ki) are observed instances of novel
categoryci . The packing costLn consists of combination
among discriminabilityFn and fitting to given instancesGi .
This is mathematically formulated as the minimization of the
Lagrange equationLn with a constantλ as follows: LN =
4F̄N +∑i λ(Gi − log(C)), whereC is a constant.

Optimally-packed categories are smooth Next we show
a structural property of optimally-packed categories by solv-
ing the differential of the packing cost with respective to
statistical parameters of categories. The differential ofF̄N

with respective to a parameterX is ∂F̄N
∂X = EF̄

[
∂Fi j
∂X

]
=

F̄−1
N

{
∑i, j Qi j

∂Fi j
∂X

}
where ĒF

[
∂Fi j
∂X

]
is the expectation for

Qi j = P(ci)P(c j)exp(Fi j ) (i, j = 1,2, . . . ,n) as a probabilis-
tic density. Since the differential ofLN with respect toσi

(i = 1,2, . . . ,n) is zero, we obtain the following equation:
∂LN

∂σ−1
i

= EF̄ [(µi − µ̄i j )(µi − µ̄i j )t + σ̄i j − σi ] + λ{Si −σi} = 0

where σ̄i j = 2σi(σi + σ j)−1σ j , µ̄i j = 1
2σ̄i j (σ−1

i µi + σ−1
j µj)

andSi = ∑Ki
k (xk−µi)(xk−µi)t is the scatter matrix. By solv-

ing the above equation (i = 1,2, . . . ,N), we obtain the follow-



ing relationship1.

σi =
∑ j Qi j

{
Ŝi j + σ̄−1

i j

}
+λSi

∑ j Qi j +λKi
(2)

whereŜi j = (µi − µ̄i j )(µi − µ̄i j )t . Equation (2) indicates co-
varianceσi consists of the weighted average of three com-
ponents (i.e.,Qi j andλ as its probabilistic density), the scat-
ter matrix of categorieŝSi j , the harmonic mean of covariance
matricesσ̄−1

i j and the scatter matrix of observed instancesSi .
Note thatQi j exponentially decays in proportion to the dis-
tance between categoryci and c j . Thus, the scatter matrix
of categorieŝSi j reflects the distribution of nearby categories
c j around categoryci . Conceptually, it means that nearby
categories constrain the “niche” in the feature space for cat-
egory ci to spread out (The broken ellipsis in Figure 1a or
b). The harmonic means of covariance matricesσ̄i j indicate
thatσi would be similar to those of other “closer” categories.
Therefore, Equation (2) implies that the general structure of
optimally-packed categories issmooth, i.e., closer categories
in feature space have similar covariance patterns.

Estimation of a novel category from the first instance
Here we derive the covariance estimation for “novel word
generalization” that one only knows the first instance. In
this case, we approximately obtainSi ≈ 0 by assuming the
first instance is close to the true mean (Ki=1 andxk = µi). In
addition, we can obtainλ by solving the constraint equation
∂LN
∂λ = Gi − log(C) = 0. Then the optimal covariance of the

novel category is given as follows.

σi = C

∣∣∣∣∣ N

∑
j

Qi j

{
Ŝi j + σ̄−1

i j

}∣∣∣∣∣
−1 N

∑
j

Qi j

{
Ŝi j + σ̄−1

i j

}
(3)

The EM algorithm (Dempster et al, 1977) is available for it-
erative minimizing the packing cost with Equation (2) or (3).

Simulation of novel word generalization
In this simulation, we demonstrate that the model can predict
the likelihoods (feature distribution patterns) of natural cat-
egories which were unknown to the model. This is similar
to the problem of how children can predict the right gener-
alization pattern from a single instance. We formulated fast
mapping in this sense as a prediction of an unknown prob-
abilistic density (category likelihood) in feature dimensions
from a single novel instance. Specifically, in this simulation,
the model “knows” 47 natural noun categories and observe
the first instance of the 48th novel category. Then the task
of the model is to predict the probabilistic density pattern of
this new category. The model’s prediction of the probabilistic
density was calculated by an optimal solution for the packing
cost with respect to the configuration of surrounding known
categories (See also the theoretical formulation). We used
48 natural categories sampled from the Mac Arthur-Bates

1The precise solution is given as a quadratic eigenvalue problem.

Communicative Development Inventory (MCDI; Fenson et
al., 1994), which is a vocabulary list of words normatively
known by 50% of 30-month-olds, and 16-dimensional fea-
tures provided by adults in a judgment task. The model’s pre-
diction of the probability density of novel categories is com-
pared to actual statistics of natural categories. Because the
structure ofknowncategories has been shown to play a major
role in children’s kind specific generalizations (e.g., Colunga
& Smith, 2005), we manipulate the number of samples from
each category the model knows, using norms of the acquisi-
tion age of the 48 nouns from 16 to 30-month-olds (from the
MCDI). The goodness of fast mapping is discussed in light of
this simulated word development.

Procedure

In each trial of the simulation, one category is assigned as un-
known, and the other 47 categories are known. Each category
is assumed as a normal distribution, and the model predicts
the unknown covariance matrix based on the given means
and covariances of known categories. This process is simu-
lated for each noun category as unknown and for each acqui-
sition rate of nouns corresponding from hypothetical sixteen
to thirty month of age. In sum, novel word generalization was
simulated 50 times for 15 ages by 48 categories.

Prediction We used Equation (3) to calculate a covariance
matrix of a novel categoryσi from an instance sampled from
the category (µi = xi1) and other known categories (µj and
σ j , j ̸= i). The calculatedσi minimizes the packing cost in
terms of adjacent other categories. The coefficientλ in each
simulation is calculated by assuming the scaling constant as
the determinant of the covariance matrix of the unknown cat-
egory (C = |(N−1)−1Si |).
Word development To mimic the likely growth in knowl-
edge about known categories over 16 to 30 month old, we
assumed that the number of instances observed by the model
increases in proportion to these acquisition rates. The logic
behind this manupulation is this: Statistical properties in the
adult judgments on feature of categories are products of de-
velopment, and that children learn a subset of instances adults
know. Specifically, we generated 2000 random instances for
each category which has the same mean and covariance ma-
trix as that of adult judgments of these categories on the 16
dimensions (i.e., adults’ knowledge as a parent population).
Then we assumed 50 out of 2000 instances were “known”
(samples) at the age the norms indicated the word was in
100% of the children’s productive vocabulary. In this learning
scheme, the accuracy of estimation of statistics for hypothet-
ical known categories increases in proportion to the acquisi-
tion rates in the MCDI list. Figure 4 shows the mean acqui-
sition rates in the MCDI (solid line) and smoothness index
(broken line) over 48 nouns. The smoothness index in the hy-
pothetical known categories gradually increases from 0.1 to
0.4 along increment of known instances (from approximately
10 to 45 instances per category).
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Figure 4: Average word acquisition rates and the smoothness
index of 48 categories

Categories and features
We used adult judgment data on early acquired noun cat-
egories using adjectives as feature dimensions (Hidaka &
Saiki, 2004). The survey includes 48 nouns selected ran-
domly from 312 nouns in the MCDI. They also span a variety
of kinds including food, animals, vehicles, tools, furniture,
and so forth. In the survey, 104 Japanese undergraduates rated
noun’s typical features using sixteen five-point-scale pairs of
adjectives. For example, subjects rated the noun category
”cat” as either ”very large”, ”large”, ”neither”, ”small”, and
”very small”. The sixteen adjective pairs having larger vari-
ance across noun categories were selected out of the initial 41
pairs, thus these adjectives would characterize the current set
of noun categories (see Hidaka & Saiki, 2004 for the detail).

• Adjective pairs (feature dimensions)
dynamic-static, wet-dry, light-heavy, large-small, complex-
simple, slow-quick, quiet-noisy, stable-unstable, cool-warm,
natural-artificial, round-square, weak-strong, rough hewn-finely
crafted, straight-curved, smooth-bumpy, hard-soft.

• Noun categories
butterfly, cat, fish, frog, horse, monkey, tiger, arm, eye, hand, knee,
tongue, boots, gloves, jeans, shirt, banana, egg, ice cream, milk,
pizza, salt, toast, bed, chair, door, refrigerator, table, rain, snow,
stone, tree, water, camera, cup, key, money, paper, scissors, plant,
balloon, book, doll, glue, airplane, train, car, bicycle

Results
The logic of our analysis of the simulations is this: We gave
the model 47 of the 48 categories (whose generalization gra-
dients were generated by adult judgments) and then asked,
given the packing cost, if it could generate from a single
instance the generalization of the gradient of the 48th cate-
gory, thus a simulation of fast mapping. To assess how well
the model generated the generalization pattern of the miss-
ing category, we examined the correlations, category by cate-
gory, between the predicted variances, covariances, and joint
variance/covariance of the predicted category with its actual

generalization pattern from the adult judgments. Consider-
ing all the categories (and thus a hypothetical 30-month-old),
the correlations were 0.58, 0.56 and 0.88 respectively. To as-
sess whether knowing the whole organization of categories
enabled better category learning than merely learning single
categories independently of the structure of the whole, we
also compared the three measures of generalization for cate-
gories defined by 3 randomly selected instances with the mea-
sures from the adult judgments. These correlations are low:
that for variances, covariances, and joint variance/covariance
are 0.23, 0.23 and 0.45 respectively. Moreover, for a series of
vocabularies (at monthly intervals from 16 to 30 months by
the MCDI), the covariance matrices predicted with an only in-
stance by the packing optimization have significantly higher
correlation than those estimated from three instances. These
finding illustrate the main idea of the packing account: the
location of a to-be-formed category in a geometry of cate-
gories –because of the local interactions of nearby categories–
constrains the possible shape of the category in the feature
space. The packing model, however, depends on these be-
ing a densly packed set of known categories. Figure 5 shows
the correlation changing over the hypothetical development
trajectory. Each point and bar shows mean and standard de-
viation of 50 simulations with different random values. Since
the increase in the accuracy of known category estimations is
due to increase in the number of known instances along with
the hypothetical age (Figure 4), we analyzed the correlation
among these variables. The accuracy in prediction of novel
categories (for covariance matrices) increases in proportion
to the number of instances (correlation to acquisition rate is
0.911,p < 0.01) and smoothness (0.816,p < 0.01) of known
categories. It suggests that novel word prediction gets more
accurate along with the growth of known categories. One
reason of this increment may be due to the smoothness of
known categories, because smoother categories would have
more predictability. In sum, the prediction by packing op-
timization succeeded in a novel word generalization as ac-
curate as known categories. The accuracy in prediction of
novel words increases as accuracy in estimation of known
categories increases. These results suggest that the packing
optimization is powerful enough for earlier word learning.

Discussion

These results show how children’s solution to the feature se-
lection problem –to selecting the right features for a given
but as yet unknown category– may be a geometrical property
of thesystemof known categories in feature space. For this
to work, however, two computational conditions seem nec-
essary. First, the feature space itself must be organized in a
predictable way. There are hints -though more is needed -
that this is so (Hidaka et al., 2006; Colunga & Smith, 2005).
If natural categories comprise a smooth space –for whatever
reason– it means that a learner of a new category can pre-
dict the likelihood pattern of a novel category. This can
be done because of a correlation between similarity of cat-
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Figure 5: Correlation of the predicted variance patterns to the
real data and that of estimation by samples

egories and similarity of category likelihoods. This idea is
supported by the simulation results that show a relation be-
tween the accuracy of known categories and generalization
of a novel category. The second computational requirement
is that the learning system needs to utilize not only the ob-
served instances of any given category, but also the consis-
tency of the distribution of those instances in the whole con-
figuration of categories. The core mechanism of the packing
model is an optimization of category configuration in terms
of discriminability and generalizability. The simulation sug-
gests that the prediction based on this structural consistency
was enough powerful. Meanwhile, fast mapping based on the
category packing would not work very well when a learner
has only a small number of inaccurately estimated categories.
These two points raise a number of testable questions about
children’s novel noun generalizations. We know these be-
come more systematic with the number of known nouns. But
the present results suggest that it is not just number of known
nouns but how representative the known instances of those
nouns are with respect to that kind of category. This in turn
suggests that one might be able to speed up noun learning
by presenting very young children -not just with many cate-
gories in a region of feature space -but with afewwell packed
instances of those categories, a result that has been empiri-
cally demonstrated in the case of artifacts (Smith et al, 2002),
within a region of a feature space in the earliest developmen-
tal stage.

The explanation offered here is consistent with several
other approaches to this phenomenon (Kemp et al., 2006;
Colunga & Smith, 2005) which also suggest that these kind
specific generalizations are based on higher order correlations
among feature dimensions. Colunga & Smith (2005) showed
that a connectionist model, fed the feature regularities char-
acteristic of early learned nouns, could generalize names for
things with different features by different properties. There
are a number of similarities and differences across the mod-
els that merit investigation. This analysis however, points to
new aspects of the system of knowledge that may underlie

children’s smart feature selection and point in new directions
for research - how dense known categories are in a given area
of feature space and how well the known instances of those
categories portray the generalization pattern for that category.
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