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Abstract

Past theoretical studies have proposed mechanistic ac-
counts for children’s word learning, and have claimed a
type of cross-situational learning is sufficiently efficient
to address children’s empirical learning even under the
high uncertainly in word-object mapping. These the-
oretical analyses are, however, quite limited, as they
heavily rely on the special assumption that the cor-
rect word is always spoken when the learner is exposed
to its referent. This study analyzed a more general
type of cross-situational learning on the basis of the
relative frequency of word-object pairs. Our analysis
shows the relative-frequency learning is generally slower
than the special learning analyzed in the past litera-
ture. Thus, our second analysis explores whether the
relative-frequency learning can be more efficient by in-
corporating the knowledge that the word-object map is
one-to-one, or the mutual exclusivity principle. With a
certain type of correlation in word-to-word relationship,
our analysis shows that the mutual exclusivity makes the
relative frequency learning be as efficient as one of the
most efficient types of learning, known as fast mapping.
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Introduction

To a new learner of a language with a completely un-
known word-referent mapping system, the real world
could be too complex to decode which word refers to
which referent, since a word could refer not only to an ob-
ject (e.g., ‘apple’), but to a class of objects (e.g., ‘fruit’),
a feature (‘red’), or even a particular configuration of
objects–an entire scene (Quine, 1960). In contrast to
this theoretical observation, children are thought of as
efficient learners, and in fact they do learn to understand
and use an impressive number of words within the first
years of life, achieving a vocabulary of roughly 60,000
thousands by 18 years of age (Bloom, 2000).

One remedy for the contradiction between the philo-
sophical account of word learning and the empirical ob-
servations is that the word learner reduces uncertainty in
the word-object1 map by statistical inference, based on
observing word-object pairs across multiple situations.
Cross-situational learning (Pinker, 1984; Siskind, 1996)
is a class of learning based on this idea, which has been

1Another assumption–used here as in past theoretical ac-
counts, and supported by empirical developmental data–is
that learners are biased to map words to entire objects.

analyzed both empirically and theoretically over decades
(Yu, 2008; Blythe, Smith, & Smith, 2010). Blythe et al.
(2010) formally quantified the effect of a type of cross-
situational learning in terms of the rate of vocabulary
growth. More recent studies (Blythe, Smith, & Smith,
2016; Vogt, 2012) further showed that this type of cross-
situational learning can be considerably slowed down for
certain types of word co-occurrence distributions, includ-
ing Zipfian distributions, which describe word frequency
distribution in natural languages.

These theoretical analyses are still quite limited in
their generality. The class of cross-situational learn-
ing analyzed in these past studies are called eliminative
learning. In this scheme, when a learner is exposed to
a set of referents, a correct word is spoken–never is a
word spoken when it’s intended referent is not present.
In this case, the learner can safely “eliminate” the possi-
bility of word A being associated to the object B, if he or
she experiences one episode that the word A is spoken
without the object B. As this special assumption does
not hold generally in real-world learning, the estimates
on the cross-situational learning in the past studies give
only an optimistic upper bound for its learning efficiency.

In this study, we consider a more general type of cross-
situational learning, called relative frequency learning,
of which eliminative learning is a special case. In the
relative frequency learning scheme, it is assumed that
a language system encodes the word-object pair with
frequency higher than the other candidate pairs as the
correct one, and the learner infers such relatively more
frequent word-object pair from the sample. Under this
assumption, the eliminative learning scheme is identified
with the special case of seeing the correct word-object
pair with probability 1. In general, however, the elimi-
native learning rule cannot apply (or mislead the learner
if it is forced to apply) in word learning of a relative-
frequency language system.

Therefore, relative frequency learning is generally
slower than the eliminative learning. Thus, the main
problem considered in this study is what factor can make
this type of learning more efficient – and can it be made
efficient enough to be a realistic account for children’s
word learning? Specifically, we investigate the effects of



a general principle of mutual exclusivity (ME), a word-
object regularity that no two objects are associated to
one word, and of a word-to-word statistical relation-
ship in which objects tend to co-occur with a word and
thus slow learning. Application of a ME principle has
long been theorized to be a constraint for speeding chil-
dren’s word learning (Markman & Wachtel, 1988), and
has found empirical support in both children (Halberda,
2003) and adults (Kachergis, Yu, & Shiffrin, 2012).

In what follows, we first outline the theoretical frame-
work on which we provide a series of analyses of relative
frequency learning. Second, we evaluate the basic learn-
ing efficiency in this scheme. Then we extend this eval-
uation of learning efficiency to multiple scenarios with
different word-to-word statistical relationship.

Relative-frequency learning

Basic framework

In this study, we consider the word learning described
as follows. The learner is exposed to multiple words
and objects at each situation. In each situation, the
learner does not know which word refers to which object,
and the correct word-object mapping is supposed to be
inferred across observation of multiple situations. Let
W = {1, . . . , n} be a set of words and O = {1, . . . ,m} a
set of objects, which appear in these situations. In this
study, we consider the one-to-one word-object mapping,
in which n = m and the word i refers to object i. This is
a quite strong assumption, which may not be considered
realistic as it is. It offers, however, a first approximation
upon which we can extend the analysis based.

Here, we consider a particular word learning scheme,
called relative frequency learning, in which, for each ob-
ject, its correct word to be associated is spoken with the
frequency higher than the other words, and vice versa for
each word. This is a code in the sense of the information
theory – the signal, the correct word-object mapping, is
encoded in the statistical regularity in observation across
situations (channel), and the learner decodes (infers) the
correct word-object map using the underlying regularity,
the correct word-object pair is the most frequent among
the others.

There are theoretical analyses on a special case of this
relative frequency learning, in which the correct word
is spoken with probability 1 with the corresponding ob-
ject. In this special case, the learner can use not just the
knowledge the correct pair is more frequent, but also the
quite strong rule that any object which does not appear
with a word cannot be the correct referent of the word.
Thus, this learning scheme eliminating any word-object
pair with probability less than 1 is called eliminative
learning (Blythe et al., 2010). In this study, beyond
this special case, we analyze a more general case of the
language and learning coded on the basis of relative fre-
quency.

Formulation

Denote the frequency of object o given word w by f(o |
w). Then, suppose the learner (decoder) declares that
the object o ∈ O is the referent of the word w ∈ W by
the probability

P (o | w) =
ef(o|w)∑

o∈{O} e
f(o|w)

.

In this scheme, the error, wrong declaration of the
correct object, for word w with the number of ob-
served situations n is proportional to ε(n,w) :=∑

o 6=w e
f(o|w)−f(w|w). The sum of the errors for all words

ε(n,w) :=
∑

w∈W ε(n,w) is an exponential function of
the number of situations. Thus, let us write the rate of
the exponential function by R, and write ε(n) = e−Rn.
For a code with the rate R encoding less than eRn sig-
nals, limn

∑
w∈W P (o | w) = 1, and thus it is said to be

learnable (reachable in the information-theoretic term).
If the rate satisfies ε(n) = e−Rn < e−Cn for any code,
the constant C is said the capacity of this channel in
the information-theoretic term (Shannon, 1948). The
rate, or the exponent coefficient of the error function, is
a fundamental characteristics for the learning-language
system viewed as a signal transmitting process.

Efficiency

In the relative frequency learning scheme, the object o
with the second largest probability given the word w,
pw|w > po|w > po′|w for o′ 6= o, w, is a key parameter
giving the asymptotic time to learn the word w. With
objects with the largest and second largest probability,
the sample frequency can be written as follows. Write
p = 1 − p. Specifically, consider that the sample fre-
quency fnow = fn(o|w) follows the binomial distribution

P (fnow|n, pow) =

(
n

fnow

)
pfnow
ow p̄n−fnow

ow

with the probability pow.
With this, the error probability in learning is charac-

terized as follows. The probability for the word w to
be associated with the object o is proportional to efnow .
For a sufficiently large n, the difference between the two
random variables asymptotically approach to

lim
n→∞

efnow−fno′w

en∆o,o′|w
= C,

where ∆o,o′|w := pow−po′w
pow p̄ow+po′w p̄o′w

. If there are m ob-

jects with the second largest probability pow > q >
maxo′ 6=w, po′w for the word w, the error probability is

1− P (w|w)→ Cme
−n

pow−p
o′w

powp̄ow+p
o′wp̄

o′w . Thus, the rate of
the relative-frequency code is R = minw ∆w|w where

∆o|w :=
pow −maxo′ 6=o po′w

powpow + maxo′ 6=o po′wmaxo′ 6=o po′w
.



This analysis implies that the word-object pair with the
smallest margin to second largest probability decides the
learning rate in the relative frequency code.

Incorporating mutual exclusivity (ME)

In the previous analysis on the relative frequency code,
the knowledge of the one-to-one word-object mapping is
not incorporated with the learning. If the learner ex-
ploits the fact that no two objects are associated to the
same word, namely correct word-object pairs are mutu-
ally exclusive, the learning is expected to be more effi-
cient than the alternative without the knowledge. Let
us call this mutual exclusive learning. The difference
in the rate of learning assuming ME and relative fre-
quency would be the effect of introducing ME in cross-
situational learning.

With ME, the learner can exclude object o when learn-
ing word w, if the object o is likely to be associated
with some other word w′ 6= w. Thus, the learning or-
der of the words has considerable impact in learning un-
der ME. As the previous analysis shows that the sec-
ond most probable objects for word w is the key fac-
tor giving the learning rate, let us call them distractors
against the word w, and denote the set of distractors by
D(w) := {w′|maxo 6=w fo|w = fw′|w}.

Best and worst case scenarios

Here let us analyze ME learning under a simplification
that the learning time for the words with no distractor is
T0 and that for the words with one more distractors is T1.
The former case with no distractor is said fast mapping,
in which a particular word and object pair alone is pre-
sented in a situation, and the learner learns the pair the
most efficiently. The latter case is analyzed in the previ-
ous section in case of the relative frequency learning. In
this case, if all the distractors has been eliminated, by the
effect of ME, the corresponding object can be uniquely
identified, which is effectively the same as fast mapping.
Thus, the worst-case learning time approach that of rel-
ative frequency learning, and the best-case learning time
approach to that of fast mapping, as the number of words
is sufficiently large.

Randomly distributed distractors

Random learning order Consider the case that each
word is learned in a serial order and each has k distrac-
tors. Further more suppose that the learning order is
a random permutation, namely any order is uniformly
sampled. Figure 1 shows a schematic co-occurrence ma-
trix of the five such word-object pairs (filled markers)
with k = 2 randomly distributed distractors (open mark-
ers) for each pair. In this case, the one expects that one
word is likely to be learned after the k distractors by the
probability 1/(k+1). This is exactly true, if the number
of words n approaches to infinitely large. Therefore, the

sum of expected learning time for all the words is

T = n

(
k

k + 1
T1 +

1

k + 1
T0

)
. (1)

Thus, when the learning order is a random permuta-
tion, the expected learning time is only the factor of

1
k+1 shorter than the original time nT1 at shortest.

Word Objects #D
“Circle” ● △ ☆ 2
“Triangle” ▲ □ ◇ 2
“Square” ○ △ ■ 2
“Star” ○ ★ ◇ 2
“Diamond” △ □ ◆ 2

Figure 1: A schematic word-object co-occurrence matrix
in the case with random learning order and randomly
distributed distractors.

Shared distractors

Best and worst learning order Let us consider the
best and worst case by manipulating which words the
k distractors are associated. In one of the best cases,
every word shares the same set D of k distractors. Fig-
ure 2 shows a schematic co-occurrence matrix of the five
such word-object pairs (filled markers), and each pair
has k = 2 distractors (open markers) and most of words
share the same two distractors. In this case, the short-
est learning time is obtained by a sequence of learned
words in which the k words with the k distractors as
their correct objects first (required about T1 time each)
and the others later (required T0 time each). In the ex-
ample (Figure 2), one of the best order is to learn the
word “Circle” and “Triangle” at the first two rows in the
matrix, and then learn the other words. In this case, the
total learning time is

T = kT1 + (n− k)T0.

As the number of words n gets larger with a constant k,
the learning time approaches to that of the fast mapping
(T0 per word), which is the lower bound of learning time.

In one of the worst cases, on the other hand, the
longest learning time is obtained by the reversed se-
quence, in which the words with the k distractors as
their correct objects are learned at last. In total, the
longest learning time is

T = nT1.

As the number of words n gets larger with a constant
k, learning time approaches that of relative frequency
learning, which is the upper bound of learning time.



Random learning order Thus, this analysis with the
best and worst case scenario suggests that the learning
order of words has a quite bit of effect on learning time.
However, the expected learning time with the shared dis-
tractors is, again, the exactly 1/(k+ 1), which is no bet-
ter than the learning time of the case with the random
k distractors (Equation (1)):

T = n

(
k

k + 1
T1 +

1

k + 1
T0

)
.

This analysis suggests that even systematically shared
distractors cannot improve the learning time on average,
if the learning order is uniformly at random.

Word Objects #D
“Circle” ● △ □ 2
“Triangle” ○ ▲ □ 2
“Square” ○ △ ■ 2
“Star” ○ △ ★ 2
“Diamond” ○ △ ◆ 2

Figure 2: A schematic word-object co-occurrence ma-
trix in the case with random learning order and k = 2
distractors shared by all the words systematically.

Correlation in word-to-word relationship

Mixture of two groups of words

As the previous analysis suggests that the relative fre-
quency learning of a one-to-one word-object map in the
cross-situational setting is as slow as independent learn-
ing even by incorporating ME. This result is largely due
to the statistical structure of the word-word relationship
– in the previous analysis, each word has k other ran-
dom words as distractors. In this section, we consider a
specific class of statistical regularity in the word-word re-
lationship. Specifically, suppose there are two groups of
words: in the one group of words, each word has no dis-
tractor, and in the other group of words, each word has
k distractors, whose referring words have no distractor
(Figure 3). Thus, the learner is exposed to a mixture of
two groups of words with and without distractors. Fig-
ure 3 shows a schematic co-occurrence matrix of such
five word-object pairs, in which each of the first group of
words (“Circle” and “Star”) has no distractors, and each
of the other group of words has two distractors whose re-
ferring words are the members of the first group.

Although this statistical regularity in word-to-word
relationship look similar overall with the previous case
(compare Figure 2 and 3), this new case is substan-
tially different from the previous cases. The key observa-
tion here is that any distractive words has no distractor
against itself. Thus, the first group of words (potential

distractors to the other group of words) would be learned
via fast mapping, and the other group would be learned
also via fast mapping after their distractors are learned
before their learning. The learning timing of these two
groups are probabilistic, but the first group of words are
expected to be learned earlier on average than the other
group.

Word Objects #D
“Circle” ● 0
“Triangle” ○ ▲ ☆ 2
“Square” ○ ■ ☆ 2
“Star” ★ 0
“Diamond” ○ ☆ ◆ 2

Figure 3: A schematic word-object co-occurrence matrix
in the case with the two groups of words. Each of the
first group of words (“Circle” and “Star”) has no distrac-
tors, and each of the second group of words (“Triangle”,
“Square” and “Diamond”) has k = 2 distractors, whose
referring words (“Circle” and “Star”) has no distractors.

Efficiency analysis

Specifically, suppose that each word in the group with
distractors is learned at the time step t by the probability

pt = (qt + qtp)pt−1,

where p is the probability to learn this word with dis-
tractors at each step, and qt is the probability to learn
it without distractor at step t, or is said the probability
for the learning at step t to be fast mapping. By set-
ting

∑∞
t=1(1 − p)pt−1t = T1 and qt = 0 for any t, this

learning time with k > 0 distractors is identified with
the previous analysis.

Suppose that there are n0 words without distractors,
and t0 < t samples out of the all t−1 samples are drawn
from this group of words by the equal chance. Then,
according to Hidaka (2014), as n0 →∞, the probability
to learn the m words of this group with the t0 samples
asymptotically approaches to the binomial distribution

n0∑
m=0

(
n0

m

)
rmt rt

n0−m

where rt := 1 − (1 − 1/n0)t0 . If each word in the with-
distractor group is associated to k distractive words at
uniformly random, the fast-mapping probability is

qt =

n0∑
m=0

(
n0

m

)
rmt rt

n0−m
(
m

k

)
/

(
n0

k

)
.

As the hypergeometric distribution approaches to the



binomial distribution as n0 →∞, we obtain∥∥∥∥∥
(
m

k

)
/

(
n0

k

)
−
(
m

k

)(
k

n0

)k (
1− k

n0

)m−k
∥∥∥∥∥→ 0.

Using these asymptotic distributions for n0 → ∞, we
obtain the binomial distribution

qt →
n0!

k!(n0 − k)!

(
rt
k

n0

)k (
1− rt

k

n0

)n0−k

.

With further transform for a sufficiently large n0, we
obtain the fast-mapping probability to be

qt ≈
(
t0
n0

)k

.

This expression thus implies that the probability qt of
learning via fast mapping with k distractors approaches
1, if the sample of the words without distractors t0 is
comparable to the number of such words n0.

Implication

Suppose the number of words without distractors is n0 =
γn with a certain constant 0 < γ < 1, and the number of
samples t0 = γt. In this case, as t0/n0 = t/n, after the
point when the number of samples is comparable with
the number of words, this learning is sufficiently treated
as the fast mapping. Thus, the learning time of a word
with k distractors asymptotically approaches to the fast
mapping after some constant number of samples for each
word. In the other words, in a long run, any words would
be considered learned in the fast mapping manner, if any
distractive word has no distractors against itself.

This analytic implication is striking that the cross-
situational learning on the basis of relative frequency,
which itself is as slow as independent learning with a ran-
dom word-word relationship, can become as efficient as
fast map up to a constant time per word. At very least,
this analysis implies that the word-word relationship is
a critical factor deciding the efficiency of the relative-
frequency based cross-situational learning.

Discussion

In this paper, we theoretically studied cross-situational
word learning of a form of one-to-one word-object map.
In our formulation, cross-situational learning is defined
as learning on the basis of the relative frequency of ob-
jects for each word, which is a more realistic alternative
learning model than eliminative learning, a model ana-
lyzed in past studies (Blythe et al., 2010, 2016) that is
anyhow a special case of relative frequency learning. Our
analysis shows that it is quite slow and its total learn-
ing time depends on the minimal difference between the
most and second-most frequent objects among all the
words.

Given that relative frequency learning alone is ineffi-
cient, we next analyzed the case when the learner can
make use of the knowledge that no two objects are as-
sociated to a word. This principle of mutual exclusivity
(ME) has been hypothesized to be an important means
of reducing ambiguity for children learning language
(Markman & Wachtel, 1988; Markman, 1990, 1992), and
empirical work has found that both children (Golinkoff,
Hirsh-Pasek, Bailey, & Wegner, 1992; Halberda, 2003;
Markman, Wasow, & Hansen, 2003) and adults in cross-
situational word learning experiments (Yurovsky & Yu,
2008; Kachergis et al., 2012) show a preference for learn-
ing mappings consistent with ME. Using ME, a word can
be learned via fast mapping (learned on its first sam-
ple), if all the distracting words appearing with it are al-
ready learned. However, the effect of ME on the average
learning time is quite limited – the same (up to a con-
stant multiplier) as the independent relative frequency
learning, if the distractors for each word are distributed
uniformly. This analysis, in summary, suggests that the
learning order of words should be correlated to the statis-
tical nature of the word-to-word relationship (distractor
structure).

Therefore, we finally analyzed the case in which a set
of words is composed of two word groups: in one group,
any word has no distractor, and in the other group any
word has k distractors, which are the words without any
distractor. Here, it is not just a mixture of two types of
words, but the distractive words have no distractor to
themselves, and thus they are likely to be learned ear-
lier than the other group. Thus, in this schematic word
structure, the expected learning order is correlated to
the number of distractors for the group of words. We
hypothesize that, with this statistical regularity, rela-
tive frequency learning can be as efficient as learning via
fast-mapping. Our analysis suggests that this hypothe-
sis is supported: the learning time is comparable with
that of fast mapping learning up to a constant num-
ber of samples per word, when a certain ratio of words
has no distractors. We expect that this analytic result
can be extended to a more general case, such that there
are multiple groups with different number of distractors
up to k and a group of words with k distractors has
no distractors which have k or more distractors against
themselves.

In summary, we have analyzed a more general and
more realistic class of word learning models, relative fre-
quency learning. Although we showed that learning in
this more general framework can be quite slow, we then
examined learning under assumptions of mutual exclu-
sivity and word-to-word correlations that might more
closely approximate learning situations in the natural
language environment. By modifying situations to in-
clude realistic variants of these two factors, we showed
that learning a full vocabulary could be accomplished



on a realistic timescale. Although this work is pre-
liminary, the analytical techniques employed here can
be applied to other, yet more realistic cross-situational
learning schemes, incorporating better approximations
of the language environment, of the problem faced by
the learner, and of the biases employed by the learner.
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