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ABSTRACT

The number of unique words in children’s speech is one of most basic
statistics indicating their language development. We may, however, face
difficulties when trying to accurately evaluate the number of unique
words in a child’s growing corpus over time with a limited sample size.
This study proposes a novel technique to estimate the LATENT number
of words from a series of words uttered by children. This technique
utilizes statistical properties of the number of types as a function of the
number of sampled tokens. We tested the practical effectiveness of the
proposed method in the empirical data analysis of the cross-sectional
and longitudinal samples. The converging empirical evidence indicates
that the proposed estimator improves the accuracy of vocabulary size
estimation over a set of existing estimators. Utilizing this efficient
estimator, we propose a new sampling scheme for vocabulary assessment
that has lower cost and higher accuracy compared to existing methods.

INTRODUCTION

Vocabulary size is a basic indicator of children’s linguistic development. In
the first year of life, infants begin to comprehend and produce words.
Between ages 0;8 and 1,4, children’s receptive vocabularies nearly double
in size every two months (Dale & Fenson, 1996). From 1;0 to 2;0, their
expressive (productive) vocabularies follow a similar, although delayed,
path of overall growth. Between 1;6 months and 18;0, children/adolescents
have been estimated to acquire approximately ten new words per day, or
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one new word every 9o minutes that the child is awake (Bloom, 2000).
Vocabulary size is often used in developmental studies as a key referential
milestone to determine the developmental groups of the children in the
study. For example, the literature shows that vocabulary size is a more
powerful predictor of grammatical development than age or gender (Bates,
Dale, & Thal, 1995; Dale & Fenson, 1996; Fenson et al., 1994).

Thus, the methodology of evaluating vocabulary size has a long history
and a substantial accumulation of technical improvements. Here, we
mainly focus on the quantitative aspects of the two most widely used
sampling schemes: longitudinal observation and questionnaire-based
assessment. With both of these methods, there are necessary trade-offs
between data collection cost and accuracy of the vocabulary size
assessment. Although it is obvious that more data would provide better
estimates, keeping track of a child’s speech is generally costly, particularly
in terms of the time needed to collect and code transcripts (Tomasello &
Stahl, 2004). We will briefly review the historical experimental design of
vocabulary size assessments and discuss the unique and shared limitations
of these two key methods. Then, we will outline our proposed solution to
address some of these limitations.

BACKGROUND
Experimental design for vocabulary size assessment

One of the earliest methods described is natural observation, which gives a
detailed description of a child’s behavior in a natural environment.
Typically, trained assessors or caregivers, who are often scientists
themselves, record a child’s linguistic behavior at home or in another
familiar environment for the child (Brown, 1968, 1973; Darwin, 1877;
Dromi, 1987; Leopold, 1949; Tomasello, 1992; Weir, 1962). These studies
typically track one or a few children over a period of months or years. A
number of theoretical claims about language learning in a natural
environment have been made based on longitudinal observational studies.
For example, Tomasello (1992, 1995) proposed the ‘verb island’
hypothesis, which states that a child’s verb learning is not abstract from
the beginning, as predicted by, for example, Chomsky (1972), Pinker,
(1991, 1994), and Yang (2004), but is built up from item-based frames.
Tomasello based his hypothesis on a longitudinal observation of his young
daughter, who produced such item-specific structures.

More recently, advanced recording techniques have allowed for the
recording of finer-grained behavioral and linguistic patterns through
multisensory recording in the order of milliseconds (Roy, Frank, & Roy,
2009; Yu & Smith, 2012). These recordings support and extend the
classical natural observation methodology by relaxing the problem of
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subjectivity in relation to the typical observation method. Accurate and
large-scale recording of spoken words can enable a nearly perfect sampling
of not just speech, but also the context of word usage. This technique
could address the ambiguity of the intentions behind words, for example,
to distinguish whether a certain word is being used as a noun or
verb. Such discerning classification could inform the study of early
development. However, one shortcoming of this observation methodology
is that data collection is extremely costly, and thus the sampled subjects
need to be carefully selected (Braunwald & Brislin, 1979; Mervis, Mervis,
Johnson, & Bertrand, 1992; Salerni, Assanelli, D’Odorico, & Rossi, 2007;
Tomasello & Stahl, 2004). Therefore, generalizing the results to a wider
population proves problematic.

An alternative approach to vocabulary size assessment is the use of
caregivers’ reports based on a standardized questionnaire. In contrast to
the high accuracy and cost associated with observations, this method is
generally cheap and easy, and thus it is often used when large sample
cross-sectional developmental patterns are being investigated (Bates &
Carnevale, 1993). In a typical questionnaire method, caregivers are asked
to check whether their children have either comprehended or uttered each
word in a list of standard words usually known by a certain age range of
children. For instance, the MacArthur—Bates Communicative Development
Inventory(ies) (MCDI(s)) is one such standardized list, which includes
652 words that most children aged 2;6 know (Bates & Carnevale, 1993;
Fenson et al., 1993). Typically, it takes only minutes to check the listed
words, and thus it is a popular pre-procedure before the main
experimental procedure such as children’s inferences about new words (for
example, Samuelson & Smith, 1999; Yoshida & Smith, 2003).

When studying cross-sectional statistics, such as across-children individual
variances in vocabulary sizes, the questionnaire-based assessment often
correlates with the natural observation-based assessment (Bornstein &
Haynes, 1998; Camaioni, Castelli, Longobardi, & Volterra, 1991; Reznick &
Goldfield, 1994; Ring & Fenson, 2000; Robinson & Mervis, 1999).
However, a limitation of the questionnaire method is that it only accounts
for a standardized range of age and common words; the vocabulary
development of children who know more words than are listed or atypical
words may be underestimated (Law & Roy, 2008; Robinson & Mervis,
1999). This is one of the reasons why the natural observation method is not
completely replaceable by questionnaire-based vocabulary assessments.

Cost—accuracy trade-off

As discussed, these methods have trade-off relationships between cost and
accuracy, leading to most applications being either expensive and accurate
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or cheap and limited. The former result is good for longitudinal design,
while the latter is more suitable for cross-sectional studies. Thus, a
number of studies have discussed methodological improvements by
combining the two approaches. Tomasello and Stahl (2004) discussed the
quantitative aspect of the trade-off in relation to the vocabulary sampling
size required to sufficiently quantify children’s productive vocabulary.
This would also consider the duration of the experiment, how frequently
the behavior is likely to be observed, and how many children are involved
in the study. Their claim is natural: the necessary sample size depends on
the specific research question. If the study focuses on low-frequency
events, such as developmental change in grammatical errors (for example,
Rowland & Fletcher, 2006), it is likely to require dense and frequent
sampling across many children.

Vocabulary assessment of growing corpora

With sufficient resources, i.e., where cost is not an issue, is there a simple and
accurate measure of vocabulary size? We are pessimistic because, even if
perfect sampling is possible, our target corpus—the list of words that
children know —is always growing. Counting the vocabulary size of the
growing corpora gives rise to issues that do not appear with static corpora.
For example, we are often interested in period-by-period developmental
change (e.g., daily, weekly, monthly, or yearly) of such growing corpora.
However, the sampling rate (or utterance rate with perfect sampling) may
not catch up to the growing rate of potential vocabulary size. At age 1;6 or
older, a child’s vocabulary size grows by approximately ten words per day.
Will we be fortunate enough to observe these specific ten words every day?
In general, it is difficult to catch up with a rapidly growing corpus, even
with perfect sampling, at any resolution. With daily, weekly, monthly, or
yearly sampling, will our samples be fortunate enough to include the
desired degree of completeness of vocabulary size? The key problem is that
the degree of underestimation is unknown.

This ‘run-away’ effect, of the vocabulary size evaluation being unable to
catch up with the growing corpus, has two major causes. Obviously, one is
a rapid growth in the vocabulary size. The other is a slow rate in sampling
less-frequently uttered words, which is often due to a long-tailed
distribution of the word frequency. Essentially, there are many rarely
spoken words (i.e., those words at the tail-end of a word frequency
distribution) that tend to remain unobserved in a limited set of samples.
In theory, naive counting of observed types will always underestimate the
number of types actually existing in the corpus, which almost inevitably
include unobserved types. It is known that, in many cases, practical word
frequency distributions follow Zipf’s law (Baayen, 2oo1; Kornai, 2002;
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Zipf, 1949). This states that empirical word frequency distributions are often
determined by a power function of the rank of the word in terms of
frequency: p;xi”® (i=1, 2, ..., N) where p; is the probability of drawing
the 7-th most frequent word out of N unique words with the exponent
parameter a. According to Zipf’s law, for a word frequency with exponent
a=1, for example, the probability of sampling a word of the 1oooth
frequency rank is less than 2/10,000 (p~1:34 X 10 *), and we need to
sample more than 22,000 words, (1-(1-p)**°°°~0-95), in order to make
certain that this word is in our sample at a 95% confidence interval. A
realistic situation is even more difficult; we do not know how many unique
words potentially exist in a corpus and so we do not know when to stop
sampling.

Estimating the number of UNOBSERVED words

A crucial bottleneck relating to the limitations described above is that
estimation accuracy is limited by the sample size of the collected data. The
existing methods and potential run-away effects illustrated above are all
based on the use of a naive estimator as the vocabulary size: if N unique
words are identified in a child’s speech corpus with M word tokens, then
N is the estimated number of unique words the child knows. Obviously,
unless the sample size M is infinite, this naive count estimator almost
always underestimates the actual number of words children know. A
remedy for this is to increase M, which may be costly or even impossible
for a limited time interval for a growing corpus.

However, is it possible to go beyond the limitations of sample-size of the
vocabulary assessment? With a more sophisticated estimator, the cost—
accuracy trade-off and run-away effects of a growing corpus may be
relaxed. The core idea of this study relies on estimating the LATENT
NUMBER OF TYPES, or the true number of unique words if there was no
limit on the number of tokens. If this is possible to some extent with a
finite token size, we could accurately evaluate the vocabulary size. Before
detailing our theory, we will briefly review the previous literature on the
topic.

In the ecological and computational linguistics literature, the latent
number of species, classes, or words beyond a sample-size limitation has
been discussed in relation to quantifying ecological or lexical diversity
(Bunge & Fitzpatrick, 1993; Tweedie & Baayen, 1998), or vocabulary sizes
(Edwards & Collins, 2011, 2013; Meara & Alcoy, 2010; Thomson &
Thompson, 1915). There are two distinct approaches to this problem. One
is based on the FREQUENCY SPECTRUM (Chao & Shen, 2003; Good, 1953;
Horvitz & Thompson, 1952; Tuldava, 1996), which we will not discuss in
the main paper, but for which we have provided an extended analysis and
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discussion in ‘Appendix 2’. In ‘Appendix 2’, we further explain the
relationship between the two approaches and provide a simulation study
comparing their performances. The other approach is based on the TYPE—
TOKEN RATIO, which we will focus on here. It is one of the earliest and
most frequently used measures of lexical diversity with respect to
vocabulary size assessment. The type—token ratio is the ratio of the
number of types (referring to the number of unique word types) relative
to tokens (the number of sampled words). In Figure 1, each line shows an
average type—token curve, with the number of types as a non-decreasing
function of the number of tokens, when we randomly draw words whose
frequency follows a Zipf distribution, p,oi”? (=1, 2, ..., N). We use the
exponents a=1, 1-25, and 1-5, and the latent number of types N = 300,
500, and 8oo. These sets of parameters cover a range of parameters for
empirical data found in development studies (see also ‘Study 1’ for an
extension of the Zipf distribution).

The type—token ratio generally depends on the number of tokens, as
indicated in Figure 1. The type—token ratio is not a reliable measure as is
because it is not directly comparable for two corpora with different
numbers of word tokens. In Figure 1, the slope of each curve at a higher
token size is less steep, indicating a lower type—token ratio. In general, this
shows the sample size effect — given a larger number of tokens, the number
of types tends to have a lower type—token ratio than those given by a
smaller number of tokens. Thus, many studies have proposed modified
measures to normalize the sample size effect so that the ratio can be used
as an indicator of lexical diversity. The earliest attempts involved a
sample-size correction approach using a functional transformation (Dugast,
1979; Guiraud, 1954; Herdan, 1960; see also the review by Tweedie &
Baayen, 1998). However, these measures are not invariant to the number
of tokens (Weitzman, 1971). A more recent proposed approach is a
curve-fitting method using the type—token ratio as a function of the sample
size (Edwards & Collins, 2013; Malvern & Richards, 2002, 2012;
McCarthy & Jarvis, 2007). Malvern and Richards (2002, 2012) proposed
using the slope parameter in the curve fitting of the type—token ratio as a
measure of lexical diversity. While curve fitting seems attractive because a
large sample size is not needed if the curve can be estimated with a small
number of samples, McCarthy and Jarvis (2007) showed that the
curve-fitting parameter is not invariant to different sample sizes.
McCarthy and Jarvis recently proposed a measure of textual lexical
diversity (MTLD), a variant of mean segmental type—token ratio with a
varying segment size, for evaluation of lexical diversity (McCarthy &
Jarvis, 2010). Although they claim this measure is invariant to different
sample sizes, there is currently no clear theoretical relationship to the
number of types.
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Fig. 1. The average number of types as a function of the number of sampled tokens from a
numerical simulation (dashed line for a =1, solid one for a =1-25, and dotted one for a =
1-5) and as predicted by the general type—token distribution theory described below (solid

lines). The colors indicate that words were drawn from corpora with the latent number of
types N = 300 (circles), N = 500 (triangles), or N = 8oo (dots).

General type—token distribution

Although, as discussed, there are few satisfying theoretical solutions for
estimating the latent number of types, our recent study offers an estimator
of the word frequency distribution based on a general theoretical
distribution of a type—token curve (Hidaka, 2014). The estimator is based
on the GENERAL TYPE—TOKEN DISTRIBUTION and will be described below.
Figure 1 shows the number of types computed based on a general type—
token distribution (solid lines) and that computed in Monte Carlo
simulations (marked points) with different latent numbers of types (N =
300, 500, and 8o00) and exponents for power distributions (a =1, 1-25, and
1-5). In each of the nine cases, the number of sampled types is smaller
than the corresponding latent number of types, and the number of
sampled types increases as a function of the number of tokens on average.
Most importantly, the theoretical values fit the numerical values almost
perfectly; the correlations between the theoretical and numerical numbers
of types show a nearly perfect fit (R >-97). The true word distribution—
the latent number of words and the exponent parameter of the power
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distribution in these cases— can reproduce a well-fitting curve with the
sampled number of types. In general, a corpus with a large number of
words yields a quicker rise in a type—token curve (compare curves of N =
8oo with those of N =300 in Figure 1), while a corpus with a skewed
distribution (with many rare words corresponding to a larger exponent in
a power distribution) yields a slower rise (compare curves of a =1-5 with
those of a=r10 in Figure 1). Therefore, by fitting the theoretical
distribution of the number of types, we can estimate the latent number of
types for a corpus with a finite token size.

Specifically, according to our recent study (Hidaka, 2o014), the
probabilistic distribution of the number of types K given the number of
tokens M with the underlying word frequency distribution of N words,

N
O={p,, pa, ..., Pn} (p;>o0 and ) p; = 1) is given as follows:
i=1
2N — K — R)!
(N —RI(N — K)!

M 1

K
P(K|M,©) =) (-D<*
k=1 {s:|s|=Fk}

where p, =) p;. In particular, the size of the set, N=|0| is the latent
i€s

number of types in the corpus. This probabilistic distribution, P(K|M,®),

is called the general type—token distribution (Hidaka, 2014). In this study,

we employed an extension of Zipf’s distribution, called the SECOND-ORDER

Zipf distribution,

pioc eXp(—Cll log(z) — a; lOg(i)z) 2

with the three parameters of the number of words N and the exponent a, and
a,, as a normative distribution of word frequency. This extended
distribution include the Zipf distribution p;xi” " as a special distribution.
The use of the extended distribution will be justified by analyzing the
empirical dataset in a later section and in ‘Appendix 3’. By maximizing
the likelihood for the theoretical type—token curve (Equation 1) to fit the
empirical curve, we can estimate the latent number of types, N=|®|. The
parameter estimation procedure is given in ‘Appendix 1’.

To test the soundness of the proposed method and its performance relative
to alternatives, we performed numerical experiments with datasets generated
by Monte Carlo simulations. The results clearly showed an advantage to
using the type—token estimator over the three alternatives, including the
Good-Turing (Good, 1953), modified Waring—Herdan (Tuldava, 1996),
and Horvitz—Thomson estimators (Horvitz & Thompson, 1952). See
‘Appendix 2’ for details of the numerical experiments.

In this study, we explore both longitudinal and cross-sectional datasets
using an estimation procedure based on the type—token estimator.
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Study 1: longitudinal datasets

In order to validate our proposed technique for vocabulary size assessment,
we analyzed corpora from a longitudinal study on conversations of
three child—caregiver pairs in free-play situations (Brown, 1973) as found
in the CHILDES database (MacWhinney & Snow, 1990). The corpora
include short conversations between child and caregiver (30 to 60 minutes)
sampled at monthly intervals from age 2;3 to 5;1. For each corpus, we
evaluated the latent number of types for each child and caregiver
separately. Since each transcript is only of a short session with a brief
conversation where the child is at a particular age, the estimated number
of words does not reflect the entire number of words the child knows, but
only those related to the particular context. Here, we define the cumulative
number of types across all of the transcripts until a particular age as an
indicator of the vocabulary growth for each child.

Although our target dataset for each month is relatively small, up to
an hour every month, we expect that it can be sufficient to evaluate
the RELATIVE change of the vocabulary size across time. With a reference
point, in which an absolute number of words is estimated reliably,
the relative changes may be sufficient to keep track of vocabulary
development. Thus, our goal here is not to evaluate the absolute number
of types, but to evaluate the estimated latent number of types in order to
keep track of relative vocabulary growth. If a measure of vocabulary size
captures the relative change of potentially growing corpora, it would be
expected to be linearly correlated with the cumulative number of types as
the simplest first-order approximation, indicating a more reliable
longitudinal measure of vocabulary growth than the naive counting of
words in each session. We suppose that a good relative measure of the
number of types gives a reliable linear correlation between the estimated
number of types at each month of age (small-window measurements) and
the cumulative number of types (largest-window measurements). To
investigate this, we analyzed them in empirical datasets and compared the
counted (naive estimator) and latent (proposed estimator) number of types.

METHOD
Data

The series of 30- or 6o-minute-long conversations in child—caregiver pairs
were analyzed. The three children in Brown’s transcripts were analyzed:
Adam (55 sessions from 27-1 to 60-4 months of age, 60 minutes long
each), Eve (20 sessions from 18 to 27 months of age, 60 minutes long
each), and Sarah (139 sessions from 272 to 61-2 months of age, 30
minutes long each).
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Estimation of the latent number of types

For each transcript, we used the CLAN program (MacWhinney & Snow,
1990) to extract tagged word stems that identify syntactical variations of
the same word. For example, the word stem ‘go’ identifies go, goes, and
went. For a transcript with # words, a series of the numbers of types and
tokens are inputted to the estimation procedure of the number of latent
types (see also ‘Appendix 1’ for this estimation procedure).

RESULTS AND DISCUSSION

In order to evaluate the goodness of the relative vocabulary size estimation at
each month of age, we compared the cumulative number of uttered types
each progressive month as a function of either the COUNTED number of
uttered types or the LATENT number of uttered types at each month. The
counted number of uttered types is simply the naive count of unique
words uttered by a child, while the latent number of types is an estimation
using the proposed inference procedure. If a measure of vocabulary size
captures the relative change of potentially growing corpora, it would be
linearly correlated to the cumulative number of types, indicating a more
reliable longitudinal measure of vocabulary growth.

The left-hand panels of Figure 2 (a—1), (a—2), and (a—3) display the
cumulative number of types as a function of the counted number of types
for each of the three children. As expected, the analysis on the counted
number of types (Figure 2 (a—1) and (a—3)) showed little correlation to the
cumulative number of types — the cumulative and each-month number of
types are not correlated significantly, with p =-27 and p =-06, except for
Eve (Figure 2 (a—2)) with p =-0o1 <-05. In contrast, the analysis on the
estimated latent number of words (Figure 2 (b-1), (b-2), and (b-3))
showed more reliable correlation to the cumulative number of types
(p <-oor for all three cases). The right-hand panels of Figure 2 (b-1),
(b—2), and (b—3) show the cumulative number of types as a function of the
latent number of words. As apparent from the figures, all three children
showed significant correlation between the cumulative and latent number
of types (R >-65 and p <-or1 for all three).

These results are striking; the estimated latent number of types accurately
tracks the relative vocabulary growth even with a small sample size (i.e., up
to an hour per month). The accuracy of the estimated latent number of
words for each child is significantly better than a naive counting of the
uttered types according to the statistical correlation test, which rejected
the null hypothesis of equivalence between the correlation coefhicients of
the latent and sampled number of types for all three cases (p <-or1). This
analysis clearly demonstrates that the estimated latent number of types
increases with the number of cumulative types. In other words, a child
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Fig. 2. The cumulative number of types as a function of the number of counted types in
each session (left column) and as a function of the latent number of types in each session
(right column), for the three children.

who knows many words tends to produce relatively more types of words in a
short conversation. The current estimation procedure captures this as the
latent number of words, and thus improves the accuracy of the assessment
despite the limitations in the sampling.

Post-hoc validation of the assumptions on the frequency distvibution

The current process assumes that the word frequency follows the Zipf
distribution in which the probability of sampling the i-th most frequent
word follows a power function of the rank order. This is often observed
and justified in empirical analyses of corpora with a large sample size
(Kornai, 2002; Zipf, 1949). However, our target dataset has a small
sample size and is from developmental situations, and some recent studies
have discussed the dissociation of word frequency in children’s speech
from Zipf distributions (Pine, Freudenthal, Krajewski, & Gobet, 2013).
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Thus, we empirically analyzed whether the current dataset satisfied the
assumptions that the empirical word frequency distributions follow the
Zipf distribution and its extension (equation (2)). Figure 3 shows the log
word frequency distribution as a function of log rank order of word
frequency for all the word tokens collected per child. If the word
frequency follows the Zipf distribution rigorously, it follows a straight line
on the log—log plot (lines in Figure 3). The empirical word frequencies
from the three children show an almost linear pattern; its tail (rarely
spoken words) follows the power function (on the line) except for the
hundred most frequent words generally being sampled less frequently than
the theoretical distribution. A similar mismatch between empirical and
Zipf distributions has also been found in Pine et al. (2013). With
consideration to the hundred most frequent words, the extended Zipf
distributions (gray curves) showed better fits for all three children.

Accordingly, we provide a further empirical test for the Zipf distribution
by comparing it with its extension in ‘Appendix 3’. This numerical study
demonstrated an advantage of the extended Zipf distribution over the Zipf
distribution. Therefore, in this paper, we chose the extended distribution
in order to approximate children’s word frequency.

Study 2: cross-situational datasets

The previous section described some advantages of estimating the latent
number of types in the three longitudinal datasets. Although each of these
datasets gives a reliable longitudinal developmental pattern for each child,
these findings may not generalize well due to individual variance. A
question then remains regarding whether a similar analysis of the latent
number of types is beneficial for a wider range of developmental datasets.
Therefore, in this study, we analyzed each conversation between child and
caregiver in a cross-sectional manner by extracting all datasets with a
sufficient number of samples up to age 4;2 in the CHILDES datasets. We
treated each of the datasets as an independent sample, and estimated the
latent number of types. The estimated latent number of type was then
compared with the normative data of vocabulary growth. As a normative
measure of vocabulary growth, the English MCDI was used (Fenson
et al., 1993). The MCDI contains the vocabulary growth for 652 words,
each of which is defined by the proportion of children who are reported
by their caregiver to have uttered it from age 0;8 to 2;6, combining the
norm ‘Words and Gestures’ for infants aged 0;8 to 1;4 and ‘Words and
Sentences’ for those aged 1;4 to 2;6. This normative month-by-month
number of words was compared with the latent numbers of words
estimated for each sample transcript identified in the CHILDES datasets.
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Fig. 3. The word frequency distribution for each child. In each panel, the line shows the
best-fitting Zipf distribution, and the curve shows the best-fitting second-order Zipf
distribution.

Since the parent-reported vocabulary size in the MCDI may be an
underestimate (Houston-Price, Mather, & Sakkalou, 2007), we also
considered another dataset for the number of words. Specifically, we
employed a large dataset of ratings on age of acquisition (AoA ratings) as
reported by Kuperman, Stadthagen-Gonzalez, and Brysbaert (2012). This
dataset consists of 30,000 English words, each being rated based on the
average and standard deviation of age of acquisition. Using this large AoA
norm, we counted the number of words which has a rating on age of
acquisitions below a given age, and this number of words as a function of
age was compared with the estimated number of words. A total of 402 out
of the 30,000 words are rated as acquired on average by age 4;2. Since
the AoA ratings have a certain degree of variability, we also considered the
one-standard-deviation interval at average AoA ratings. Considering the
lower bound of AoA ratings, 3,140 words out of 30,000 are rated acquired
by age 4;2.

We performed a statistical test on correlation between the normative
vocabulary growth in the MCDI, the number of words estimated based on
the AoA ratings, and the number of words estimated from transcripts in
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CHILDES. Since CHILDES is a collection of many different published
studies on language development that were each designed to address
specific, separate goals with different experimental situations, there are no
straightforward ways to compare or normalize these transcripts. That is,
they differ in many factors, including situation, duration of session,
experimental tasks, and so on. However, we expect that the overall average
pattern as a collection of many experiments reflects the general trend of
children’s vocabulary development, and that this is comparable with the
MCDI and the AoA ratings.

METHOD

We extracted 916 transcripts with the conditions that at least 1,500 word
tokens were spoken by a targeted child who is aged 4;2 or younger. These
were identified across multiple corpora collected in the CHILDES datasets
(retrieved in October 2009). For each extracted transcript, we performed
the same estimation procedure to approximate the latent number of types
as discussed above.

RESULTS AND DISCUSSION

Figure 4 shows the latent (black dots) and original (gray dots) numbers of
types as a function of the age of the child. In this figure, the numbers of
words calculated from the MCDI ‘Words and Sentences’ are overlaid from
ages 1;4 to 2;6, which is the standardized range for productive words in
the MCDI. The s5oth-percentile line of the MCDI curve (red line; the
colored one is available online) shows the number of words out of the 652
words listed in the MCDI that are acquired by more than 50% of children
at each month of age. Likewise, the 1oth- to goth-percentile lines of the
number of words are calculated (solid and dotted black lines, respectively).
The numbers of words calculated from the average AoA ratings and the
6oth-percentile confidence intervals (the mean AoA fone standard
deviation) are shown in a blue solid line and blue broken lines,
respectively. Most of the numbers of words in CHILDES fall in the
interval of the numbers of words estimated from the lower confidence
interval (average subtracted by one standard deviation) to those estimated
from the average AoA ratings.

First, we analyzed the correlation between the estimated latent number of
words and the AoA ratings. For each month of age in 191 CHILDES
transcripts, we calculated the number of words estimated from AoA
ratings. Then we performed a multiple regression analysis by treating the
raw numbers of words in CHILDES and the estimated latent number of
words as independent variables, and the number of words by the AoA
ratings as a dependent variable. The analysis on the average AoA ratings
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Fig. 4. (Colour online) The latent (black dots) and counted (gray dots) number of types as
a function of the age of children. The normative numbers of words calculated based on the
MCDI (1oth, 20th, ..., goth percentiles of acquisition rate) are overlaid for the age range
from 16 (1;4) to 30 (2;6) months and o to 652 words (red line, black solid lines, and black
broken lines). The number of words calculated based on the average AoA ratings (blue
line) and upper and lower bound of AoA ratings (blue broken lines) are also shown.

showed that neither CHILDES nor estimated latent numbers of words have
significant predictive power for the number of words calculated by the
average AoA ratings (CHILDES: #(188)=-0-330, p =-74; the estimated
latent number of words: #(188) = 1-211, p =-22). However, another analysis
on the lower bound of AoA ratings revealed that the estimated latent
words alone have significant predictive power for the number of words
calculated by the lower bound of AoA ratings (CHILDES: #(188)=-
1779, p =-08; the estimated latent number of words: #(188)=3-109, p
=-.002). As the number of words calculated by the average AoA ratings
clearly underestimates the number of words (Figure 4), here we view the
analysis on the lower bound of AoA ratings to be more reliable. Thus, the
result of the multiple regression suggests that the number of words
estimated by the proposed method gains significant additional predictive
power compared to the number of words calculated by the AoA ratings.
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In the CHILDES datasets, forty-nine transcripts were from children aged
2;6 or younger. For most of these forty-nine datasets, both the counted and
latent number of words were in the range of the 1oth- to 8oth-percentiles.
We then performed statistical tests regarding the null hypothesis that the
number of words in the CHILDES datasets is not correlated to the
number of words in the soth-percentile MCDI curve. The correlation of
the latent number of types as estimated for each dataset to the
soth-percentile was 0-459 (p <-o1). Meanwhile, the correlation relating to
the counted number of types estimated for each dataset was o-275
(p =-06). This suggests that the predicted latent number of types was a
better predictor of the normative number of words.

We also performed a more direct statistical test on whether the latent
number of types fit with the normative number of words better than the
counted number of types. Specifically, for each month-by-month age bin,
we assumed that the number of types X followed the binomial
distribution P(X | N, p) with N =652 and p equal to the soth-percentile
number of words divided by 652 words. With the null hypothesis, the
log-likelihood of the latent number of types was —73,340-2, while that of
the counted number of types was —174,975-1. The test on the likelihood
ratio revealed a significantly better fit in relation to the latent number of
types (x*(1) =101,634:8, p<-oor1), further supporting the improved
predictive power of using the theorized latent number of types. These
analyses suggest the generality and robustness of the proposed method,
such that the latent number of words gives a better indicator of the
number of words in the cross-sectional samples collected in various
experimental settings.

Finally, we support these findings by eliminating a possible technicality.
That is, the latent number of types is, by definition, equal to or larger
than the original number of types. Since a one-session transcript almost
always underestimates the number of words in each child, any random
overestimation is not only a better estimator of the latent number of types,
but may also improve the accuracy of estimating the number of types on
average. If this is true, the estimated latent number of types may have
merely overestimated the number of words to some extent, regardless of
the stage of development.

In order to eliminate this random-overestimation possibility, we further
analyzed the difference between the latent and counted numbers of words
as a function of children’s ages (Figure 5). In general, the number of
known types increases as function of age, while the number of samples in
the data collection was generally constant regardless of the age.
Additionally, in theory, the number of counted types calculated from a
relatively small number of tokens of data underestimates the true number
of types. Therefore, we expected that the number of learned words will

122



ESTIMATING LATENT TYPES IN GROWING CORPORA

1000 . ; ; . . . : . . .
900+ 1
800+ : |
700¢ : . 1
600
500
400
300

200

The latent number of types minus the sampled number of types

100

Fig. 5. The difference between the latent and counted numbers of types as a function of
age.

have a greater underestimation for older children, as older children tend to
know a larger number of types. As expected, for all the transcripts on
children aged 4;2 or younger (N = 135), the correlation between the age of
children and the margin from the counted to the latent number of words
was significantly positive (R=-521, p<-oor). This result provided
supporting evidence for the validity of using the estimated latent number
of types with respect to evaluating a child’s development. Thus, we reject
the possibility that our proposal is a random overestimation.

GENERAL DISCUSSION

This study discussed the reliable assessment of the vocabulary size of a
corpus that itself potentially grows over time. A crucial issue in the
analysis of such a corpus is that a limited number of samples, which may
be costly to collect, may only be available for a certain period of time,
while the corpus keeps growing with new and rarely spoken words. We
proposed using the latent number of types as a new measure for the
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assessment of the size of a developing vocabulary from a small sample size.
The latent number of types is a theoretical maximum number of types
based on the result of if we were able to experimentally infinitely increase
the number of sampled tokens. This measure is statistically inferred from
the type—token curve. In empirical data analyses we showed that this
measure was a better predictor for the cumulative number of types than
the counted number of types in both cross-sectional and longitudinal
datasets. These results suggested that estimating the latent number of
types robustly enhances the accuracy of an assessment of vocabulary
development.

A new combined sampling scheme for vocabulary assessment

With an accurate estimator of the number of types, we have a cheap yet
reliable strategy for the assessment of children’s vocabulary growth.
Current experimental designs for vocabulary size assessment involve
accurate but costly natural observations or limited use but cost-efficient
questionnaires, and both have a trade-off between cost and accuracy.
Therefore, a possible third option, based on the reliable estimator of the
latent number of types, was explored to address their issue and improve
the statistical power of a limited sample size. This allowed for sparse and
cheap data collection that does not require daily or hourly sampling like
the observation method, enhanced with a method for inferring a more
accurate estimate of the number of words.

If we can accurately evaluate the relative vocabulary growth with a series of
datasets that each have a small sample size, a single initial and accurate
vocabulary assessment followed by a series of sparse and cheap data
collection methods would be sufficient to keep track of the vocabulary
development of a child. Specifically, we would need one or a few
referential points, such as a relatively large samples (for instance, days of
transcripts) in every year with relatively high cost, and subsequently these
referential points could be interpolated with more frequent, but less costly
data collection, such as an hour-long transcript every month.

Since the proposed estimation procedure can infer relative change over
time with a small window of data collection, we can determine children’s
vocabulary growth with few reference points. This new sampling method
minimizes the cost of data collection while maintaining a high accuracy of
vocabulary assessment. With this proposed sampling scheme, both
longitudinal experimental and cross-sectional designs can be enhanced.

Technical merits and future work
One technical advantage of the proposed method is that it requires no more
than the original data, that is, recordings of the conversations between

124



ESTIMATING LATENT TYPES IN GROWING CORPORA

children and caregivers. Thus, there is no additional cost or design required
for data collection, and it can be used not only on a newly collected dataset,
but also when re-evaluating existing datasets, as in this study. In the present
study, we re-evaluated the existing datasets and estimate the latent number of
types. In general, there is no risk in using the proposed estimator unless the
assumed class of the word frequency distribution is clearly wrong.
Throughout this study, we assumed that the word frequency distribution
in child speech follows a class of Zipf distribution, and we showed that the
empirical word distribution (particularly its tail) follows a class of Zipf
distribution.

A potential area for future research is an adaptive optimization of the class
of word frequency distribution. In this study, we assumed a class of Zipf
distribution for the word frequency distribution and the assumption was
tested empirically. Ideally, it would be preferable to adaptively select an
appropriate word frequency distribution out of a collection of multiple
classes of distributions for each dataset. With this additional word
frequency optimization process, the estimation accuracy could be further
improved. This may be technically possible by reformulating the
procedure as a hierarchical model in which the word frequency
distribution is estimated over the distribution of the latent number of types.
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Appendix 1: Estimation of the latent number of types through general type—
token distribution

In this Appendix, we describe the estimation procedure for the number of
latent types. Further technical details are given by Hidaka (2014). The
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probabilistic distribution of the number of types K given a number of tokens
M with the underlying word frequency distribution of N words @={p,, p.,
N
. PN} (p;> o0 and Y p; = 1) is given as follows:
=1

K
., QN —-K —k)! ;
P(K|M, ©) = —1)fk M 1
(K|M, ©) ;<> N_R K P ey
= {s:ls|=k}
where p, =) p;. Since the probabilistic distribution P(K|M, ©) is

iEs
computationally costly for large M, we used an approximated form:

OKIM, ©)= > [lam [] (1—am) )
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where the Q(K|M,0) is the Poisson binomial distribution with parameter
qL-MZI—(I—p,»)M. Hidaka (2014) has proved its asymptotic behavior:
O(K|M, ©)->P(K|M, ®) as M—co.

We employ the approximation Q(K|M, ©®) and assume a frequency of N
words that follows Zipf’s distribution with exponent a, such that p;xi “ (i =
1, 2, ..., N). Given n pairs of the number of tokens and types {m;, n;} (1 =1,
2, ..., n), the likelihood function of the parameter a>o and |®|>o

is defined as L(a,|@|) =[] O(nilm;,®,a) by the Poisson binomial
=1

approximation (Equation 2). We obtain the estimators of the exponent a
and the number of types |®| by maximizing the logarithm of
the likelihood, log L(a,|®]), as a function of the parameters {a, |®|}. The
maximization process is computed by the ‘fminsearch’ function for the
parameter a in the MATLAB system (MathWorks) with a discrete grid
search over |®|=1, 2, ..., 3000 in which the maximum bound 3000 was
set greater than the range of the number of words for the targeted age
range used in this study.

Appendix 2: Numerical validation of the estimator based on general
type—token distribution

Here, we demonstrate the proposed estimator with simulated datasets in
which the latent number of types is known. In this simulation, we
assumed that each word is sampled from a Zipf distribution with exponent
parameter a>o and number of types N >o. The probability of the i-th
most frequent type is p,ex ¢ (1=1, 2, ..., N). Manipulating the exponent
a and number of tokens N, we performed a sensitivity analysis regarding
small amounts of drawn tokens on the maximum likelihood estimator of
the number of types based on the Poisson binomial approximation. The

128



ESTIMATING LATENT TYPES IN GROWING CORPORA

maximum likelihood estimator {a, |®]|} for each dataset is obtained as
described in ‘Appendix 1’.

We performed two simulations in which we estimated the latent number of
types from each dataset sampled from a Zipf distribution. In the first
simulation, we independently drew 1,000, 1,500, and 2,000 tokens of
words from a corpus of N =r1,000 types following the true Zipf
distribution with exponent a = 1. In the second simulation, we drew 2,000
tokens of words from a corpus of N =1,000 types following a Zipf
distribution with the exponents a =o, o-5, and 1. Clearly, by definition,
the true number of types for each dataset was N = 1,000, and this was the
variable being estimated. For each combination of parameters, we
generated 100 datasets randomly and estimated the number of types.

The type—token estimates of these simulations are shown with (red) circles
in Figures A1(a) and Ai1(b), respectively. Given the number of sampled
types, the maximum likelihood inference gave estimators close to the true
number of types, that is, N =1000. Thus, these simulations validate the
use of the maximized likelihood estimator based on the general type—token
distribution.

In order to evaluate its performance relative to other existing methods, we
also applied three existing estimators to our datasets. The first estimator we
employed is the Good-Turing estimator (Good, 1953; Sampson & Gale,
1995) of the number of types. The Good—Turing estimator is often used
to smooth the sample frequency. This estimator considers the ‘frequency
of frequency’ or frequency spectrum f: the number of types that appear
exactly & times in a corpus. For example, f; is the number of types that
appear only once in a given corpus. With this notation, K = Y 5 _, fx is the
number of sampled types and M = Y, kf; is the number of sampled
tokens. The basic concept of the Good—Turing estimator is as follows: we
wish to know the number of unseen types f,. Intuitively, when we sample
a word from the pool of sampled words, the probability of sampling a
type that appears once is f;,/M. This is the case when one of the types
appearing once becomes one of the types appearing twice as a result of
sampling these types by the sample estimate of probability f,/M. Applying
the same inference on the case where one of the types appearing zero times
becomes one of the types appearing once, the probability f,/M can be an
empirical estimate of the probability for the unseen types. This inference
is indeed true under a certain condition (see Good, 1953, for details).
Therefore, with the number of types f, appearing exactly & times in the
corpus, the Good—Turing estimator is defined as NGT = fi + K. This
estimator incorporates the sample frequency of each type into the inference
of the latent number of types. It is easy to see that this estimator
converges to the true number of types, when it samples infinitely many
tokens from a corpus with a finite number of types: with infinite tokens,

129



SHOHEI HIDAKA

fi =o and K is the true number of types. However, the question is whether
this estimator is still reasonable for a relatively small dataset.

The second method to estimate the number of unseen types based on a
similar idea as above is the Waring—Herdan’s estimator (Tuldava, 1996),
which also incorporates the frequency. It is defined by:

Nwg=fo+K

fo = fi

D

This estimator is expected to work for corpora of a relatively large size up
to M = 200, ooo. However, for the small sample size considered in this paper,
M < 2, ooo, the estimated frequency of unseen types f, is often negative, and
this estimator does not make sense. Thus, instead of the original estimator,
we used a modified estimator:

< fi

Nyg=K+ ,
(r+2)(1-%)
M K

which always takes a positive value. Both the original and modified
estimators converge to the true finite number of types as M— .,

The third alternative model we employed was the Horvitz—Thomson
estimator (Horvitz & Thompson, 1952), which is often used in statistical
studies of ecosystems (Chao & Shen, 2003). The Horvitz—Thomson
estimator can be used more generally than merely estimating the number
of types. Here, we applied it to the indicator of each type (o or 1) by
assuming a sampling without replacement. Specifically, the Horvitz—
Thomson estimator of the latent number of types is defined

(o]
o & . . . .
as:Npyr = Z%, where A, = 1—(1—k/M)™ is the estimate of inclusion
h=1/k

probability of the types that appear exactly k& times.

The average numbers of types estimated by NGT, NWH, and NHT are
shown as (blue) triangles, (green) squares, and (purple) downward
triangles, respectively, in Figures A1(a) and (b). For most of the current
datasets, these three estimators were biased toward either smaller or larger
numbers of types. In particular, these estimators severely underestimated
in the case where the exponent a of the Zipf distribution was as large as 1
(Figure A1(a)). As shown in Figure 3, the empirical datasets of child
speech commonly showed a > 1. Since samples from a Zipf distribution
with a larger exponent a have more unseen types in general, the three
alternative estimators will be of little practical use. The modified Waring—
Herdan and Horvitz—Thomson estimators were biased less severely only in
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Fig. Ar. (Colour online) The estimated number of types for data drawn from the Zipf
distribution (a) as a function of the number of tokens (M = 1,000, 1,500, 2,000) and (b) as a
function of the exponent (a=o, o5, 1). The averages and standard deviations of the
estimators for the hundred randomly generated datasets are shown.

the special case of M = 2000 and a = 0.5. However, these estimators were not
consistent across different datasets; they over- or underestimated the number
of types in the case of M = 2000 and a = o or a = 1, respectively. These results
suggest that the alternative estimators are biased and unreliable in many
cases when the probability of sampling types follows the Zipf distribution.

Given the accuracy of the generalized type—token estimator, these results
show the advantages of the general type—token estimator over the Good—
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Turing, modified Waring—Herdan, and Horvitz—Thomson estimators in the
majority of datasets considered. More importantly, there appears to be no
simple and systematic way to correct these alternative estimators because
they can be biased toward both larger and smaller numbers of types
depending on unknown parameters of the frequency distribution, such as
the exponent a and the number of sampled tokens.

Appendix 3 Are children’s word distributions non-Zipfian distvibutions?

In the post-hoc validation of Study 1 (Figure 3), we found the empirical
word frequency in children’s corpora may not rigorously follow and show
some mismatch from Zipf’s law. Here, we formally evaluate whether they
follows a Zipf distribution or not. Although there are possibly many
alternatives, here we choose a simple extension of Zipf distribution. As
Zipf distributions are often stated also as ‘power laws’ in which log of
frequency is a linear function of log(rank order of words), we consider the
second-order polynomial extension of this. Namely our alternative is
the SECOND-ORDER Zipf distribution with two parameters a,, a, in which the
probability of the i-th most frequent type is p, x exp(—a,log(i)—a,log(7)?)
(t=1, 2, ..., N). Note that we consider a family of extension, n-th order
Zipf distribution, p; xexp(—a,log(i)—a,log(i)*---—a,log(i)”), and we can
approximate ANY distributions with arbitrarily large n. Thus, this extended
family of Zipf distribution has children’s empirical distributions as its
instances. The question we answer here is which order of Zipf distribution
fit children’s word distribution the best.

Here we simply obtains the maximum likelihood estimator (MLE) of the
first- and second-order Zipf distribution, and test which class of
distributions explains children’s empirical word distribution better. As the
first- and second-order Zipf distributions have different number of
parameters, we evaluated their AIC (Akaike Information Criterion;
Akaike, 1974), which adjusts likelihood by the degree of freedom of the
models. If the first-order Zipf distributions are favored over the
second-order ones in this test, it supports the use of Zipf distributions
assumed in this study.

For each of the three children, Adam, Eve, and Sarah, Brown’s corpus
used in Study 1 of this paper contains 55, 20, and 139 transcripts. For
each and all child utterances in the Brown corpus, we obtained AIC of the
first- and second-order Zipf distribution. Out of the 214 individual
datasets, we found 198 datasets that show the advantage of the
second-order Zipf distributions over the first-order ones. The result
suggests an additional advantage of employing the second-order Zipf
distribution over the first-order Zipf distribution, concerning children’s
word distribution.
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Fig. A2. (Colour online) The average estimated number of types for the first- and
second-order Zipf distributions.

Accordingly, we further tested the significance of the second-order Zipf
distribution in estimation of the latent number of types. Following the
same procedure as presented in ‘Appendix 2’, we analyze the effects of
different word distributions. Here we employed two distributions: the
first-order Zipf distribution with the average parameters estimated from
the word frequency of the three children in the Brown corpus (a =0-924),
and the second-order Zipf distribution with the average parameters for the
average parameters (a, = 0:345, a, = 0-066). By assuming the true number
of types N = 1,000, we sample 1,000, 1,500, 2,000, and 3,000 tokens from
each of these distributions. For each of the four different numbers of
tokens, we generated 100 datasets by Monte Carlo simulation. For each
dataset, we estimated the latent number of types by the Good—Turing,
modified Waring—Herdan, and Horvitz—Thomson estimators, and general
type—token estimator with the first- and second-order Zipf distribution.
Figure A2 shows the estimated number of types for the first- and
second-order Zipf distributions, averaged across four datasets with
different number of tokens. The error bars show the standard errors.
These results show that the class of word frequency distributions has an
impact on the general type—token estimator using the first-order Zipf
distribution, but little effect on the estimator using the second-order
Zipf distribution. It suggests that the estimator assuming the first-order
Zipf distribution may underestimate the latent number of types, if the
underlying word distribution is the second-order Zipf distribution. In

133



SHOHEI HIDAKA

contrast, the second-order estimator is more robust—it can accurately
estimate the latent number of types, even if the underlying word
distribution is the first-order Zipf distribution. The other alternatives,
Good-Turing, modified Waring—Herdan, and Horvitz—Thomson
estimators, tend to underestimate the latent number of types regardless of
the class of word frequency distributions. Therefore, we decided to use the
general type—token estimator with the second-order Zipf distribution in
this paper.
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