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Abstract

This paper introduces a new clustering technique, called dimensional clustering,
which clusters each data point by its latent pointwise dimension, which is a mea-
sure of the dimensionality of the data set local to that point. Pointwise dimension
is invariant under a broad class of transformations. As a result, dimensional clus-
tering can be usefully applied to a wide range of datasets. Concretely, we present
a statistical model which estimates the pointwise dimension of a dataset around
the points in that dataset using the distance of each point from its nth nearest
neighbor. We demonstrate the applicability of our technique to the analysis of
dynamical systems, images, and complex human movements.

1 Introduction

The general idea in statistical modeling is to:

1. Identify a spatial representation of your dataset which is suitable for analysis
2. Identify a class of probability distributions over your represenation space that could be

considered descriptive of the dataset
3. By some procedure of your choosing, estimate which probability distributions in the chosen

class are most likely to be the distribution from which the dataset was sampled

Domain knowledge has traditionally been very important in steps 1 and 2 above – the crucial choices
of the data representation and the family of admissible probability distributions. The human analyst
has had a central role in these decisions.

However, cutting edge machine learning models like the one employed by AlphaGoZero [11] at-
tempt to surpass the knowledge of human experts. In the case of AlphaGoZero, it has learned how
to play the game of Go without observing any games in which humans were involved. It only played
itself.

This study follows this vein of ideas. We develop a technique of statistical modeling, dimensional
clustering, which:

1. Has minimal dependence on the representation of the data or the family of descriptive
probability distributions.

2. Can be applied to a wide range of datasets.

Such a technique, by nature, must rely on as small a set of assumptions regarding the dataset as
possible. Our technique, dimensional clustering, makes only the following assumption of the dataset
that is the subject of its analysis:
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Assumption 1. The dataset consists of points in some metric space X that were sampled2 from
some Borel measure on X .

dimensional clustering is a clustering technique, and clusters points in the dataset by a local fractal
dimension, called pointwise dimension. Pointwise dimension is invariant under bi-Lipschitz trans-
formations between metric spaces and under topologically equivalent choices of metric on a given
space. This means, for example, that the pointwise dimension around a given point will be the same
as the pointwise dimensions around its images under continuous deformations of the dataset.

The following section describes more specifically how we estimate pointwise dimension, but it is
worth pointing out here that this property of pointwise dimension being invariant over all choices
of topologically equivalent metrics means that, unlike traditional clustering techniques like k-means
clustering, dimensional clustering depends very little on the metric one imposes on the dataset.

Pointwise dimension is not the only fractal dimension that can be used in data analysis. There
are other quantities, such as correlation dimension [5], which also reflect the dimensionality of the
dataset as a whole. However, none of them are as local as pointwise dimension, and are therefore
more suceptible inaccuracies due to noise in the dataset [8]. Because pointwise dimension is a local
property, it can be derived from local statistics of the dataset. The derivation we present here is
based on nearest neighbor distances.

Our paper is laid out as follows: In Section 2, we provide a brief overview of the theory behind
pointwise dimension and derive the statistical model for pointwise dimensions based on nearest
neighbor distances. In Section 3, we demonstrate how pointwise dimension is estimated over a
dataset sampled from the Cantor measure. In Section 4, we describe an algorithm implementing
dimensional clustering in some detail. The algorithm has virtually no paramaters that one has to
manually tune for each dataset. It automatically estimates the number of clusters that should be used
and the probability of assignment of each point in the dataset to each cluster. In Section 5, we apply
dimensional clustering to multuple datasets.

2 Pointwise dimension

Fractal dimensions, like the Hausdorff dimension [6], where conceived as invariants that one could
use to study sets, like the Cantor set, which did not yield to useful measure-theoretic descriptions.
We will use the Cantor set as an example illustrating the calculation of Hausdorff and pointwise
dimensions.

The derivation of the Hausdorff dimension of the Cantor set goes as follows. The Cantor set (which
will be described with more precision later) is too “sparse” to consider a 1-dimensional object.
However, it is also too “dense” (in the sense that it consists of uncountably many points) to count it as
a 0-dimensional object. Informally speaking, that means the Cantor set is an object of dimensionality
higher than zero and lower than one. Hausdorff’s idea was to evaluate such sets using the continuous
family of measures which interpolate between these concepts of 0-dimensional size (cardinality)
and 1-dimensional size (length). These measures, called Hausdorff measures [6] Hα, are defined as
follows:

Let U ⊆ RK , and let ϵ > 0. An ϵ-covering of U is a countable collection {Uk}k of sets that
U ⊆ ∪kUk and

∑
k diam(Uk) ≤ ϵ, where diam(U) = supx,y∈U ∥x − y∥ with some metric ∥ ◦ ∥.

For ϵ > 0, put

Hα(U) := lim
ϵ→0

inf
{Uk}

{∑
k

diam(Uk)
α | {Uk}k

}
One finds the Hausdorff measure Hα(U) of any set U is a non-negative, monotone decreasing
function of α. Crucially, Hα can be finite positive with at most one α ∈ [0,∞). This critical
value α̂ = sup{α : Hα = 0} is called Hausdorff dimension, which gives a natural extension of
“dimension” notion K of RK . For the Cantor set U , we have finite positive measure H(U)α̂ with
α̂ = log(2)/ log(3).

The limit over coverings of U in the definition of Hausdorff measures makes Hausdorff dimension
very difficult to calculate directly or numerically. To mitigate this difficulty, several substitutes

2 This also includes points in an orbit of an ergodic dynamical system on X .
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for Hausdorff dimension have been introduced, especially in the literature surrounding non-linear
dynamical systems. Premier amongst these is correlation dimension, introduced by Grassberger and
Procaccia [5]. In this study, we consider a different quantity, pointwise dimension, defined as follows
[3, 13].

Let µ be a Borel probability measure on RK . For x ∈ RK , let B(x, ϵ) denote the ϵ-ball around x.
The pointwise dimension of µ at x is defined, if it exists, as the limit

dµ(x) := lim
ϵ→0

logµ (B(x, ϵ))

log ϵ
. (1)

Pointwise dimension dµ(x) is a local quantity which describes the scaling behaviour of the measure
µ at a point x. The pointwise dimension at any point x in the Cantor set is log(2)/ log(3), which
agrees with its Hausdorff dimension.

This description, by itself, does not solve the problem of having to resolve a limit at infinitesimal
scale – such limits are unavoidable when defining any fractal dimension. Dealing with such limits
is particularly difficult when working with real-world datasets as even small amounts of noise can
result in gross misestimations of the limiting behaviour. However, pointwise dimension can be used
to overcome the difficulty of numerical calculation of fractal dimension by means of the statistical
estimator devised in Hidaka and Kashyap [7]. In that work, the measure µ is assumed to be a convex
combination of locally uniform measures, which have constant pointwise dimension over their sup-
ports. For each of these locally uniform components, the limiting problem is solved by estimating
the pointwise dimension from the nearest neighbor distance statistics of the dataset instead of an
extrapolation of its infinitesimal limiting behaviour.

Given a locally uniform measure of pointwise dimension d over its support, a point x in its support
then there exists ρ > 0 such that, for sufficiently small r > 0, p(r) := ρrd is a sufficiently good
estimate for the measure of the r-ball around x. For a sufficiently large number k of samples within a
small distance ϵ of x, the cumulative distribution function for the distance of the nth nearest neighbor
in the sample to x is approximately

Fn(r) =

k∑
m=n

(
k

m

)
(1− p(r))

k−m
p(r)m. (2)

Fixing λ := (k − n)ρ and taking the number of samples k to be increasingly large, the derivative of
the limit of Fn(r) with respect to r give the probability density function

P (r | n, d, λ) := ∂

∂r
lim
k→∞

Fn(r) =
dλnϵnd−1

(n− 1)!
e−λϵd . (3)

Given a dataset r1, . . . , rk of the nth nearest neighbor distances for a set of points, this gives us a
statistical model that we can use to estimate d and λ. For the special case n = 1 (the first nearest
neighbor distance), which we use for the data analyses in the following sections, this probability
distribution (3) is reduced to a Weibull distribution.

3 Demonstration: Cantor measure

In this section, we derive an estimate for the pointwise dimension of the Cantor middle-thirds set
around each of its points. We do so using the nearest neighbor distance (3) with n = 1.

First, we recall the construction of the Cantor set. The Cantor middle third set is a set of all the real
numbers in the interval [0, 1], which have ternary representations in which none of the digits are 1.
The Cantor set can be constructed iteratively as follows:

Put I(0)1 := [0, 1]. Define M0([a, b]) := [1/3a + 2/3b, b] and M1([a, b]) := [a, 2/3a + 1/3b].
Repeatedly take I

(i+1)
2j−1 = M0(I

(i)
j ) and I

(i+1)
2j = M1(I

(i)
j ) for every 1 ≤ j ≤ 2i. The Cantor set is

then given by the intersection ∩∞
i=0 ∪1≤j≤2i I

(i)
j .

The sums of lengths the intervals I(i)j at the ith step of this construction is (2/3)i, which approaches
0 as i → ∞, proving that the Cantor set has Lebesgue measure 0.
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The number of points in the Cantor set corresponds to the number of choices of each of the infinitely
many ternary digits that a number in the unit interval can have and, even up to the countable number
of reductions involving infinite tails of 2’s, this is in bijection with the unit interval. The Cantor set
is therefore uncountable.

This is the sense in which the Cantor set is too “sparse” to be considered 1-dimensional, and too
“dense” to be considered 0-dimensional.

Suppose that we sample N points from the Cantor set. Using the iterative construction of the Cantor
set, we see that the probability that at least one of the points in the sample lies in the same interval
I
(i)
j as any given point x is

Pr(r ≤ 3−i) = 1− (1− 2−i)N .

Thus, the probability mass of the nearest neighbor distance r is

Pr(3−i−1 < r ≤ 3−i) = (1− 2−i−1)N − (1− 2−i)N . (4)

Figure 1 shows this theoretical probability distribution (4) for a sample of N = 50, 000 points ran-
domly drawn from the Cantor measure (black circles) and the histogram constructed by an equivalent
Monte Carlo simulation. For the sample generated by the Monte Carlo simulation, we computed the
nearest neighbor distance ri (n = 1) for each point. We used these distances to estimate d and λ by
maximizing the log-likelihood function

∑50,000
i=1 logP (ri|n, d, λ) using the approximation (3). This

produced the estimates d̂ = 0.62422 and λ̂ = 2.5567 × 10−7 for the dimension and scale respec-
tively. Note that the estimated dimension d = 0.62422 is close to the true value log(2)

log(3) ≈ 0.6309 for
the pointwise dimension of the Cantor set.

We used the estimates d̂ and λ̂ in (3) to compute an approximation to the probability mass function
of the nearest neighbor distance r. This approximation is denoted by the red circles in Figure 1.
Note that this estimated probability mass function closely fits with the theoretical one underlying
the sample (Eq (4)).

In order to apply this idea to a more general class of datasets, we must extend the model to capture
multiple distinct locally uniform measures. This motivates the development of the mixture model
introduced in the next section.
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Figure 1: The probability distribution of the nearest neighbor distance of the Cantor set.

4 Maximum likelihood estimator of pointwise dimension

4.1 Statistical model

A single dataset may consist of data generated by multiple locally uniform components, each with
distinct parameters d and λ. Note that there is a natural hierarchy in in these distinctions, in the sense
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that the scale parameters λ are only comparable across locally uniform measures which have the
same pointwise dimension. Our model is designed to capture this hierarchical relationship between d
and λ. The model consists of M probability distributions, each having a probability density function
of the form (3). For each component, we index the scale parameters as λl for 1 ≤ l ≤ M . However,
the dimension parameters are indexed as dc, where h is a surjective map l ∈ {1, . . . ,M} 7→ c ∈
{1, . . . ,Md}, Md ≤ M is the number of different dimensional parameters which appear amongst
the components, and c = h(l).

We decompose the probability density function for the nth nearest neighbor with respect to a large
sample from the generating measure as

P (ri | n, (λl), (dh(l)), (θl)) =

M∑
l=1

θlP (ri | n, dh(l), λl), (5)

where the θl are non-negative weight parameters with
∑

l θl = 1.

Using (5), the log-likelihood function of the the parameters for a list of the k n-th nearest neighbor
distances r1, . . . , rk is

L((dh(l)), (λl), (θl)) =
k∑

i=1

logP (ri | n, (dh(l)), (λl), (θl)). (6)

4.2 Parameter search

In this study, we maximize this likelihood function by the Expectation-Maximization (EM) algo-
rithm [4]. Introducing the non-negative conditional weights Qli (

∑
l Qli = 1), apply the Jensen’s

inequality and have the lower bound L̂((λl), (dc), (θl), (Qli)) for the log-likelihood function

L((dh(l)), (λl), (θl)) ≥
k∑

i=1

M∑
l=1

{
Qli log θlP (ri | n, λl, dh(l))−Qli logQli

}
=: L̂.

In the Maximization (M) step, we maximize L̂ with respect to (dh(l)), (λl), (θl) given (Qli). In the
Expectation (E) step, we maximize it with respect to (λl), (dc) given the others.

At the initial step, let (Qli) be randomly generated values. Then, given (Qli) in the M step, update
the parameters by

θ̂l =

∑k
i=1 Qli∑M

l=1

∑k
i=1 Qli

, λ̂l =
n
∑k

i=1 Qli∑k
i=1 Qlir

dh(l)

i

.

For the dimension parameter dh(l), there is no closed form for the maximizer unlike θ̂l and λ̂l.

Thus we compute the maximizer by applying Newton’s method to ∂L̂((dc),(λ̂l),(θ̂l))
∂ log dc

= 0 for each c.

Specifically, let d(0)c be some positive constant, and the maximum likelihood estimator d̂c = d
(∞)
c is

given by the series t = 0, 1, . . .

log d(t+1)
c = log d(t)c +

∑k
i=1

∑
l∈{l|h(l)=c} Qli

(
dc log ri − dcE[log x] + n−1

)∑k
i=1

∑
l∈{l|h(l)=c} Qli (d2cE[(log x)2]− dcE[log x]2 + n−1)

,

where E[f(x)] =
∑k

i=1 Qlir
dc
i f(ri)∑k

i=1 Qlir
dc
i

with an arbitrary function f(x).

In the E step, given d̂h(l), λ̂l, θ̂l, update Qli for each i = 1, . . . , k and for each l = 1, . . . ,M by

Q̂li ∝ θ̂lP (ri | n, λ̂l, d̂h(l)).

Repeat the M step and E step above until the difference in the log-likelihood L̂(t)− L̂(t− 1) of step
t and t− 1 is sufficiently small. In this study, the iteration is stopped if L̂(t)− L̂(t− 1) ≤ 10−5 or
t ≥ 5000.

For a given pair of numbers of clusters (Md,M), the maximal log-likelihood is given by
L((d̂h(l)), (λ̂l), (θ̂l)) (6). The dataset is decomposed into Md dimensional clusters with the cth
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dimensional cluster (1 ≤ c ≤ Md) being defined by the components in (5). For the cth dimensional
cluster, the dimension is dc, rates are λl, and weights are θl, for all 1 ≤ l ≤ M such that h(l) = c.
The probability of the ith point belonging to the cth dimensional cluster is given by

∑
l∈{l|h(l)=c} Q̂li.

The average pointwise dimension over the entire dataset is defined by
∑k

i=1

∑M
l=1 Qildh(l).

4.3 Model search

Using the maximal log-likelihoods (6), we can also search the space of possible model structures
given by the pairs (Md,M). We do this by searching for the optimal Md-tuple (m1,m2, . . . ,mMd

)

where m1 ≥ m2 ≥ . . . ≥ mMd
and

∑Md

i=1 mi = M . These integers mi represent the numer of
scale components in each dimensional cluster.

We perform our search by minimizing the AIC [1] given by

AIC(m1,m2, . . . ,mMd
) = −2L((d̂h(l)), (λ̂l), (θ̂l)) + 2(Md + 2M − 1).

Specifically, we initialize our search with a model having the structure Md = 1 and (m1) = (1).
Assuming a model structure of (m1,m2, . . . ,mMd

) at step t of the model search, we evaluate the
AICs of all possible models with structure (n1, n2, . . . , nMd+1) subject to the constraints n1 ≥
n2 ≥ . . . ≥ nMd+1, ni ≥ mi for 1 ≤ i ≤ Md, and

∑Md+1
i=1 ni = M + 1. If none of these model

structures yields a model with lower AIC than the minimal AIC model at the current step t, we stop
the model search and choose the current model as the best one. Otherwise, we let the model structure
chosen at step t + 1 of the model search be the minimal AIC model over the new structures. This
effects a breadth-first search over the implicit graph of model structures with edges defined by the
constraints on the tuple (n1, n2, . . . , nMd+1). It terminates at a structure with locally minimal AIC.

5 Application

In this section, we demonstrate the application of dimensional clustering to various datasets.

5.1 Random walk

The first example is a dimension-changing random walk. The data set is generated by two distinct,
alternating sub-processes. One is a random walk along a line, and the other is a random walk on
a plane. Each sub-process is run twice, and the two 1-dimensional phases operate in orthogonal
directions. As these processes differ in dimension, our algorithm is expected to detect that the data
points from the 1-dimensional process were generated differently than those from the 2-dimensional
process. The data analyzed is a series of X-Y coordinates without time. Figure 2(a) shows the
dimensional clustering analysis for this data set (two estimated clusters are in different colors).
Figure 2 (b) shows the temporal structure underlying the random walk data set. Except for a small
number of errors, the algorithm correctly detect two distinct clusters and assigns most of the data
points to the correct clusters. This simple case confirms that dimensional clustering correctly detects
distinct dimensional components in a data set. Note that some data points generated by the one-
dimensional walk overlap with those of the two-dimensional one (the broken box in Figure 2). It
would be difficult to discriminate them using conventional clustering with this spatial overlap.

5.2 Image Data

For the second application of dimensional clustering, we analyzed a several standard test images
in the field of image processing. These test images are presented as (a-1) to (a-4) in Figure 3. We
obtained “Lena” and “Wet paint” from Mike Wakin’s website [12], and “Airplane” and “Fishing
boat” from the USC SIPI Database [10].

In such analyses, the first substantial problem one must consider is that of preparing the data for
analysis. For each test image in Figure 3, the second dimensional clustering algorithm was applied
to a 3-dimensional or 5-dimensional data set of vectors listing the x-coordinate, y- coordinate, and
grayscale value or RGB values of each pixel in the images. The algorithm discovered three or
four clusters in each data set. Among these, there was always a “feature” cluster which discerned
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Figure 2: Dimension-switching random walk

sharp changes in hue. Images (b-1) to (b-4) of Figure 3 show the pixels in each image belonging
to the corresponding feature clusters. Images (c-1) to (c-4) of Figure 3 show the results of running
the Canny edge detection algorithm [2] on the same test images, and are provided for comparison.
Figure 3(b-3) highlights the region in the feature cluster detected in Figure 3(a-3) which contains the
sign. This shows that the dimensional clustering algorithm very clearly extracts its primary lettering.

As far as we know, many edge detection methods and other types of filters are readily applicable
only to grey scale image (or single-valued other feature). If one wishes to apply the Canny edge
detector to a colored image, one would typically need to pick either a basic color (e.g. RGB) or
another channel (e.g. hue, satulation, lightness, and value) to which to apply the filter. Figure 3
(b-5) shows that dimensional clustering captures the edge-like patterns of a rather complex mixture
of color texture. The fact that dimensional clustering is readily applicable to both grey scale and
color images without any substantial preprocesses may inspire new techniques in the field of image
processing.

Figure 3: (a) Test images, (b) Feature clusters detected by dimensional clustering, and (c) Results of
Canny edge detection on the test images.

5.3 Action segmentation

The third case study is action segmentation. The human body consists of hundreds of joints and mus-
cles controlled by some complex mechanism. Any motion generated by such a system is supposed
to reflect the states of one or more dynamical systems.

Here we apply dimensional clustering to human bodily movements, coded as multi-dimensional
time series, and try to find some underlying units of actions. Although it is difficult to identify
which body parts and which kind of movements may be involved with a particular kind of action,
any well-performed action is supposed to form a smooth trajectory in the multi-dimensional state
space in which we represent the positions of different body parts over time. As already seen in
the random walk case study, dimensional clustering can detect such latent switch in the generating

7



Figure 4: Action segmentation task: (a)Positions of 15 bodily markers, (b) the three-dimensional
principal component analysis of a knocking trajectory, and (c) time series of a knocking.

system without specifically identifying which direction or dimension it is. Thus, we expect that
an “action” or a “switch from one action to another” would be automatically detected as distinct
dimensional clusters.

Specifically, we employ the action dataset collected by Ma et al. [9], which includes three right-
hand action types (knock, throw, and lift) performed by 30 actors. In this database, each movement is
recorded for approximately one minute at 20Hz by 15 bodily markers (each is in (X,Y,Z) coordinate,
45 dimension in total) (Figure 4(a)), and one of three types of hand actions was performed repeatedly
5 times in each trial. Figure 4 (b) shows the visualization of the first three principal components of
the 45 dimensional time series of a knocking trial, and Figure 4 (c) shows the 45 time series of the
same knocking data as a function of frames.

By applying dimensional clustering to this 45 dimensional time series of knocking, we found the
two distinct dimensional clusters (d = 1.39, 2.48) shown in red and green points in these figures.
This motion database includes human-coded action intervals, which are shown by the 5 black ar-
rows in Figure 4 (c). On the time series plot, the dimensional cluster with higher dimension (green)
corresponds with the beginning and end of knocking actions. This cluster of points in the three-
dimensional PCA plot (Figure 4 (b)) captures the non-smooth change (singular) of high-dimensional
trajectories. For the other two action types (throw and lift) and different actors, we typically ob-
served similar results that one of estimated dimensional clusters captures the begining and end of
the actions.

This confirms that dimensional clustering successfully detect the change across actions, from stand-
ing to knocking (throwing, lifting) or the other way around. No particular preprocessing was applied
to the data. The entire time series of all markers was submitted to dimensional clustering. Dimen-
sional clustering seems to have captured abstract action semantics invariant across trials, actors, and
action types.

6 Concluding remarks

The three applications that we presented here show that dimensional clustering is capable of captur-
ing semantically relevant information in its clusters with no expert supervision and no preprocessing.
Note that the semantics that can be captured by dimensional clustering are limited to those that can
be captured purely through dimensional characteristics. For example, dimensional clustering pro-
vides no way of telling apart the two linear phases in the random walk example – even though they
operated in different directions.

Still, the technique has great potential. We are planning to open it up to the community and are in
the process of releasing as open source an implementation of the algorithm presented in this paper.
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