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Abstract—The theory of games involving players who adap-
tively learn from their past experiences is not yet well un-
derstood. We analyze games in which players make on each
turn a probabilistic choice of actions determined by a kth-order
Markov process which signifies how they learn from their past
k actions for a fixed number k. As the number of states in such
Markov processes grows exponentially with k, the analysis of
games involving learners with long memories has been viewed
as computationally intractable. This study develops a technique
which enables feasible analysis of these long-memory Markov
process. We further show that, for two players involved in an
iterated prisoners’ dilemma, the probability of mutual defection
increases with the size of their memories. This result is consistent
with the classical prisoners’ dilemma with two rational players.

I. GAMES WITH ADAPTIVE LEARNERS

Conventional game theory treats each player as a rational
decision maker who is making decisions based on sufficient
information regarding the game being played. The dynamics in
such a game are generally characterized by its Nash equilibria
— states in which none of the agents may profit by changing
their actions [1].

Real social problems, however, are often vastly more
complex than such formulations [2], [3], [4], [5]. In reality,
each agent has limited computational resources and limited
information about the game it is playing. Under such con-
straints, learning – inductive inference of future behaviour from
a limited experience of past behaviour – plays a crucial role
in finding locally optimal actions. One key question regarding
games in which agents have limited information but employ
learning techniques regards their long-term equilibria [3].

A class of iterative games with reinforcement learning [6]
has been investigated in both theoretical [7], [8] and empirical
studies [2], [3], [4], [5]. In this class of games, the only
information available to each agent is a number of its own
actions and the rewards to these actions. The probabilities
for the players’ next actions are computed according to the
weighted averages of rewards for the possible actions.

As each player’s decision is probabilistic, a game of this
class in which players have access to their history going
back k turns can be formulated as a kth-order finite Markov
process. The equilibria of such a game are then characterized
by its stationary distributions. Althogh this formulation is
mathematically simple, not many past studies have taken this
approach to the analysis of iterative games with reinforcement
learning. The reason for this is that the number of states in

an iterated game between learners with k-step memory grows
exponentially with k. To the best of our knowledge, only few
special cases, such as those in which k = 1 [9] and some
specific games in which k is large [10], have been analyzed.

The present study shows a new technique which approx-
imately computes a marginal stationary distribution of a kth-
order Markov process. This technique is applied to an iterated
game of prisoners’ dilemma with learning players. Our analysis
demonstrates the utility of the proposed computational tech-
nique as a numerical tool for the analysis of dynamic games
with learners.

In Section II, we describe the iterated version of prisoners’
dilemma and reinforcement learning. In Section III, we intro-
duce a Markov process formalism for the iterated prisoners’
dilemma. In Section IV, we present the main result of the paper
about the marginal stationary distribution of an infinite order
Markov process. In Section V, we demonstrate an application
of the new computational technique for an iterated prisoners’
dilemma.

II. ITERATED PRISONERS’ DILEMMA

The prisoners’ dilemma is a classical game which has
long been used as a minimal model demonstrating difficulty
of mutual cooperation. In prisoners’ dilemma, each of two
players chooses an action from either Cooperation (C) or
Defection (D), and each player is given a certain payoff
depending on the actions of both players. Each player benefits
fairly when both choose Cooperation (CC). However, one
player can gain even more by choosing Defection on the
condition that the other chooses Cooperation. This incentivizes
Defection for both players, and the game results in mutual
Defection (DD) with individual payoffs lower than those in
the mutual Cooperation case. This is the only Nash equilibrium
in the prisoners’ dilemma. The “dilemma” is that two rational
players cannot escape from the mutual Defection with unhappy
payoffs although there is a more beneficial option in mutual
Cooperation.

The basic game has been extended to games with multiple
agents, iterated steps, stochastic strategies, situations affected
by noise, and certain topologies for agent interactions [11],
[12], [13]. In the iterative variant of models, each agent can
adaptively choose its action on the basis of a series of past
actions and payoffs. One of the simplest cases is completely
analyzed based on the finite Markov formalism [9], but more
general cases remain open for further research.
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In a recent study [14], we analyzed the iterated prisoners’
dilemma (IPD) with two probabilistic learners. This analysis
suggests that IPD with two learners can result in mutual
cooperation, but this is limited only to learners with short
memories due to the previously mentioned computational
difficulty involved in analyzing iterated games involving play-
ers with long memories. The present study develops a new
computational tool which extends this analysis to learners with
long memories.

A. IPD with reinforcement learners

We briefly outline the IPD with learners who learn using
reinforcement learning.

Definition 1 (Iterated prisoners’ dilemma). We label the
players 1 and 2, and we label the two moves available to
each player at each step as 0 (for Cooperation) and 1 (for
Defection). For each integer t and for each i = 1, 2, we denote
by xt,i the choice of action that player i made on turn t. Define
a function f : {0, 1}2 → {1, 2, 3, 4} by

f(a1, a2) := 2a1 + a2 + 1. (1)

The function f encodes each of the four possible outcomes
on a single turn of the game as the integers 1, 2, 3, and
4. We define Xt := f(xt,1, xt,2). We write Xt+k−1

t :=
(Xt, Xt+1, . . . , Xt+k−1) for a sequence of k states from the
step t.

We assume the existence of a payoff map r = (r1, r2) :
{1, 2, 3, 4} → R2 such that ri(Xt) is the payoff to the ith

agent resulting from the actions taken by both agents at turn
t. Note that, under our assumption, the payoff scheme remains
constant over time. We further assume that the payoffs are
symmetric so that, for any a, b ∈ {0, 1},

r1(f(a, b)) = r2(f(b, a)) =: Ra,b.

An iterated prisoners’ dilemma is a game which satisfies
these assumptions as well as the inequalities

R01 < R11 < R00 < R10, and

R01 +R10 < 2R00.

Definition 2 (IPD with reinforcement learners). In the rein-
forcement learning model, we begin with an IPD as defined
above. However, each agent chooses an action based on a
function of the rewards it received for its past k actions, with
k specified at the outset. Specifically, for agent i, this function
is

ϕαi
i,x

(
Xt−1

t−k

)
=

k∑
s=1

αs
i δx,xt−s,iri(Xt−s),

where αi ∈ [0, 1] is a memory-retention parameter, and δx,y
is the Kronecker delta, which takes the value 1 when x and y
agree and is 0 otherwise.

Using this weighted rewards function along with a sensitiv-
ity parameter βi ≥ 0, the probability that the ith agent chooses
action x at step t is

P
(
x | Xt−1

t−k

)
=

exp
(
βiϕ

αi
i,x

(
Xt−1

t−k

))∑1
x=0 exp

(
βiϕ

αi
i,x

(
Xt−1

t−k

)) (2)

We assume that the agents choose their actions indepen-
dently at each turn so that, for any (a1, a2) ∈ {0, 1}2,

P
(
Xt = f(a1, a2) | Xt−1

t−k

)
=

2∏
i=1

P
(
ai | Xt−1

t−k

)
. (3)

III. MARKOV PROCESS FORMULATION

Equation (3) allows us to calculate the conditional prob-
abilities P (Xt

t−k+1 | X
t−1
t−k). In this manner, we construct a

Markov chain with states consisting of all possible length k
move sequences of the players in an IPD with reinforcement
learning. This is the kth-order Markov process corresponding
to the variables Xt. We encode the states in this kth-order
Markov process with the integers 1, 2, . . . , 4k and describe its
transition matrix with respect to this encoding as follows:

Definition 3 (Transition matrix). For any integer t, the index-
ing map

hk

(
Xt

t−k+1

)
:= 1 +

k−1∑
j=0

(Xt−k+1+j − 1)4j . (4)

assigns a unique integer 1 ≤ i ≤ 4k to each of the states
Xt

t−k+1.

For 1 ≤ j ≤ 4k, the set

Hj :=
{
hk(X

k
1 ) : j = hk

(
Xk−1

0

)}
.

consists of the indices of those states in the kth-order Markov
process which can be reached from the state indexed by j.
Denote by Mn(R) the set of n× n matrices with real entries.
The transition matrix Q ∈ M4k(R) for the kth-order Markov
process is defined by

Qi,j := P
(
h−1
k (i) | h−1

k (j)
)
. (5)

Observe that, unless i ∈ Hj , Qi,j = 0.

For t ∈ Z, write

pt =
(
P (hk(X

t+k−1
t ) = 1), . . . , P (hk(X

t+k−1
t ) = Nk)

)T
,

and suppose we start with some initial probability vector p0.
Then, pt is obtained by pt = Qpt−1 for t > 0. Applying
this infinitely many steps, we obtain the stationary probability
distribution

p∞ = lim
t→∞

Qtp0, (6)

if the limit exists. The Perron-Frobenius theorem [15] concerns
the existence of this limit (6). In this study, unless otherwise
specified, we simply assume the existence of a stationary
distribution.

A. The exchangable case (αi = 1)

In general, the computation of the stationary vector for
Q ∈M4k(R) has complexity O(4k+1) [10]. If αi = 1 for each
i = 1, 2, however, we can compute a stationary distribution
more efficiently. Exploiting the exchangability of the actions
in a state sequence Xt+k−1

t , the size of the state space of this
special case is reduced to (k + 1)k(k − 1), which is much
smaller than the size of the original state space, 4k. In [10],
we showed that a stationary vector for this special case could
be computed efficiently for even relatively large values of k.
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B. Block-diagonalization of transition matrix

For further extension, we present a mathematical property
of the kth-order transition matrix Q defined in (5). The fol-
lowing theorem [10] shows that a kth order transition matrix
can be rewritten as a product of a permutation matrix and
block-diagonal matrix. We set our notation before stating the
theorem.

Let us write the number of states N . We have N = 4 in
he IPD introduced in the previous section. Let us denote the
identity matrix by EN ∈ RN×N and the unit vector by

eN,i := (0, . . . , 0,

i
∨
1, 0, . . . , 0)T ∈ RN ,

zero vector by 0 = (0, 0, . . . , 0)T , and

EN,i := (0, . . . ,0,

i
∨

eN,i,0, . . . ,0) ∈ RN×N .

We define a special permutation matrix called commutation
matrix by [16]:

CM,N :=
N∑
i=1

EM ⊗ EN,i (7)

where ⊗ denotes Kronecker product. For an M × N matrix
X , we write

vec (X) := (X1,1, . . . , XM,1, . . . , X1,N , . . . , XM,N )
T
,

and we call vec (X) the vectorization of X . The commutation
matrix satisfies

vec (X) = CM,Nvec
(
XT
)
.

Theorem 1. Let λ ∈ R and θ ∈ RNk

be the eigenvalue and
its corresponding eigenvector of the kth-order transition matrix
Q with states N defined in (5). Then, it has the following
decomposition:

Q = CN,Nk−1

Nk−1∑
i=1

ENk−1,i ⊗Qi

where the block diagonal matrix Qm ∈ MN (R) has its (i, j)
element

{Qm}i,j = Qa,b

where

a = fk(i,N(m− 1) + j), b = N(m− 1) + j.

With this theorem, we obtain the following result.

Corollary 1. For an arbitrary vector x ∈ RNk

and transition
matrix Q ∈ RNk×Nk

with its block diagonal matrices Qi ∈
RN×N , i = 1, . . . , Nk−1,

Qx = vec
(
(Q1x1, Q2x2, . . . , QNk−1xNk−1)

T
)

(8)

where xi ∈ RN (i = 1, . . . , Nk−1) satisfies

x = vec ((x1, x2, . . . , xNk−1)) .

IV. m-SHIFT STATIONARY DISTRIBUTION

As the number, 4k, of states of the kth-order Markov
process defined in Section III grows exponentially, we can-
not in practice compute the stationary distributions of such
processes for large values of k. This is a major obstacle when
in the analysis of games like IPD with reinforcement learning
introduced in Section I.

In analyzing a (k+m)th order Markov process, it is some-
times sufficient to calculate its marginal stationary distribution
conditional upon the states in the corresponding kth-order
process. This is a probability over series of k observations,
rather than its full stationary distribution over series of (k+m)
observations.

We define the kth-order marginal stationary distribution to
be the probability distribution over the final k observations in
states of the (k+m)th-order Markov chain obtained by taking
the expectation of the corresponding state probabilities over
all possible initial states in the kth-order Markov chain. The
probability vector corresponding to this distribution is Write a
stationary distribution

θk+m = lim
t→∞

(
P (hk+m(Xt+k+m

t+1 ) = i)
)Nk+m−1

i=0
.

Write modk(x) := x mod k and ⌊x⌋ for the greatest integer
y ≤ x. For each non-negative integer j, write

gN,k,m(i) := 1 +modNk

(
⌊ i− 1

Nm
⌋
)
.

The kth-order marginal distribution of the (k + m)th-order
Markov process is

θk,m := lim
t→∞

(
P
(
gN,k,m

(
hk+m(Xt+k+m

t+1 )
)
= i
))Nk

i=1
.

For instance, analysis of the long-term dynamics of IPD
involving reinforcement learners with long memories requires
the first-order marginal stationary probabilities of the four
possible outcomes on the final observations of states in the
associated (k + m)th-order Markov chain for large values of
m. This first-order marginal stationary distribution shows how
frequently each pair of moves (CC, CD, DC, DD) is to occur
when the game involves two learners with memories of length
k.

Suppose we wish to obtain a marginal distribution θk,m
in the limit m → ∞ for a small k. We consider a inductive
construction in which, for k < m, a probability vector xk ∈
RNk

with k past steps is mapped to xk+1 at step m−k. Denote
such a transition matrix from a probability vector xk ∈ RNk

to xk+1 ∈ RNk+1

by UN,k, and xk+1 := UN,kxk. Multiply
an infinite series of transition matrix UN,k, UN,k+1, . . . with
an arbitrary probability vector xk, we obtained a stationary
vector x∞, which converges to θ∞ uniquely under the regular
condition. Then, consider the diagonalization matrix ZN,k with
which θk,1 = ZN,kθk+1. The desired marginal distribution is
obtained by applying these matrices to an arbitrary probability
vector xk

θk,∞ = lim
m→∞

ZN,k . . . ZN,k+m−1UN,k+m−1 . . . UN,kxk.

SCIS&ISIS 2014, Kitakyushu, Japan, December 3-6, 2014

978-1-4799-5955-6/14/$31.00 ©2014 IEEE 288



Although an artibtrary xk converges in the limit, it is obvious
that xk = θk,∞ converges at the fastest rate for a finite m.
This motivates to define the m-shift stationary distribution

ωk,m := Fk,mωk,m

of its transition matrix

Fk,m := ZN,k . . . ZN,k+m−1UN,k+m−1 . . . UN,k.

Observe that the 1-shift transition matrix is exactly the kth-
order transition matrix, Fk,1 = Q(k). We expect this m-
shift stationary distribution converges the desired marginal
distribution at the best rate. In the following, we give a
specific form of ZN,k and UN,k, and describe the mathematical
properties of m-shift stationary distribution.

Definition 4 (Matrix form). Define the marginalization matrix

ZN,k := 1T
N ⊗ ENk .

For an arbitrary transition matrix Q(k) ∈ MNk(R) which
is block diagonal with Q

(k)
i ∈ MN (R), i = 1, . . . , Nk−1,

write Q
(k)
i =

(
Q

(k)
i,1 , Q

(k)
i,2 , . . . , Q

(k)
i,N

)
. With these matrices,

we define the shift matrix

UN,k :=
N∑
j=1

Nk−1∑
i=1

ENk−1,i ⊗ EN,j ⊗Q
(k)
i,j .

For a kth-order Markov process, the corresponding m-shift
transition matrix Fk,m ∈MNk(R) is defined as follows:

Define

Hi,j,m :=
{
l : i = hk ((g(l,m+ k − 1), . . . , g(l,m))) ,

j = hk ((g(l, k − 1), . . . , g(l, 0)))
}
.

(Fk,m)i,j :=
∑

l∈Hi,j,m

P
(
h−1
k+m(l) | h−1

k (j)
)
. (9)

Write

Hi,j = {l : 1 ≤ l ≤ Nk+m, gN,k,m(l) = i, gN,k,0(l) = j}.

Proposition 1 (Elements of m-shift transition matrix). The m-
shift transition matrix corresponding to the original kth-order
Markov chain, Fk,m ∈MNk(R) is defined by

(Fk,m)i,j :=
∑

l∈Hi,j

P (gN,k,m(l) = i | gN,k,0(l) = j) . (10)

An m-shift transition matrix can easily be expressed in two
forms — as a product (as per Definition 4), or recursively (as
per Proposition 2). These two forms are equivalent, but differ
in terms of computational complexity. In general, the recursive
form requires less space for computation but the factored form
is more efficient in time. Theorem 1 is used to make explicit the
factored and recursive forms of the m-shift transition matrix.

Proposition 2 (A recursive expression of m-shift transi-
tion matrix). For an arbitrary transition matrix Q(l) ∈
MN l(R)(l = k, k + 1, . . . , k + m − 1) with block diagonal

consisting of matrices Q
(l)
i ∈MN (R) where i = 1, . . . , N l−1,

write
Q

(l)
i =

(
Q

(l)
i,1, Q

(l)
i,2, . . . , Q

(l)
i,N

)
.

For 1 ≤ i ≤ Nk+m−2, define F
(k+m−1)

i := Q
(k+m−1)
i .

For k ≤ l < k +m− 1 and 1 ≤ i ≤ N l−1, define

F
(l)

i :=
(
F

(l+1)

N(i−1)+1Q
(l)
i,1, . . . , F

(l+1)

N(i−1)+NQ
(l)
i,N

)
.

Then we have the recursive form of the m-shift transition
matrix

Fk,m = F
(k)

1 .

The m-shift transition matrices can be used to estimate the
kth-order marginal stationary distribution:

Proposition 3. Let θk,∞ ∈ RNk

be a marginal stationary
distribution in the limit m→∞. Then,

θk,∞ = lim
m→∞

Fk,mθk,∞.

This can be rephrased using the recursive expression for the m-
shift transition matrix as stating that, for every 1 ≤ i ≤ Nm−k,

lim sup
m→∞

∥∥∥F (m)

i −Q
(m)
i

∥∥∥ = 0. (11)

Moreover, the error term of (11) is a non-increasing function
of m.

Proposition 3 motivates to approximate the limiting
marginal distribution θk,∞ with m-shift stationary distribution
ωk,m with a finite m via the following corollary.

Corollary 2. By Proposition 3, there is a series of distributions
ωk,1, ωk,2, . . . corresponding to Q(k), Q(k+1), . . . for which

lim sup
m→∞

∥ωk,m − θk,m∥ = 0.

V. NUMERICAL EXPERIMENTS

We present an analysis of the iterated prisoners’ dilemma
with rewards R00 = 1, R01 = −2, R10 = 2, R11 = 0 and
where the players are reinforcement learners with identical
sensitivity parameters β1 = β2 = β = 1/2, and identical
memory retention parameters α1 = α2 = α ∈ [0, 1].

Computing the m-shift transition matrix and its stationary
vector, we obtained the marginal stationary probabilities of
mutual cooperation (P (CC)), mutual defection (P (DD)), and
one-side defection (P (CD) = P (DC), with equality due to
the symmetry between two players). On our best computational
resource, we set m = 12. The calculation of these stationary
probabilities takes on the order 4m+1 ≈ 107.82 steps, and is
pushing the boundaries of what we can reasonably compute.
However, we suspect that a more sophisticated algorithm, using
the recursive form of the m-step transition matrix shown in
Proposition 2, can mitigate this computational problem to some
extent.

Figure 1 shows the marginal stationary probabilities esti-
mated by the m-shift stationary probabilities as functions of
the memory retention parameter α. The multiple lines of the
same color show the marginal probabilities for different values
of the shift m for a fixed value of α. The arrows indicate
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Fig. 1. The m-shift stationary distributions (curves) and marginal distributions
for α = 1 and k = 1000 (circles) as functions of the memory retention
parameter α.

the directions in which these groups of lines changes from
m = 1, 2, . . . , 12.

Observe that the probability for mutual defection P (DD)
increases with the memory retention parameter α. This result
is qualitatively consistent with the outcome of the classical
prisoners’ dilemma with two rational players. Our analysis
illustrates the counterpart of the classical Nash equilibrium in
the iterated version of the game with probabilistic reasoners
capable of remembering all the previous outcomes. Interpreting
the memory retention parameter α as the degree of rationality
of the agents, this indicates that, as players become more
rational, they are more likely to mutually defect.

For the exchangable case α = 1, the special computational
procedure described in Section III-A can be used even for large
values of k. We used this procedure to perform an analysis
of the exchangable case with k = 1000. In our analysis
the estimated marginal distributions appear to converge. The
results of this analysis are indicated by the filled circles in
Figure 1.

Treating the estimates obtained using the special property
of α = 1 as a the true stationary distributions, we analyzed
the sum of squared errors (SSE) in the estimated m-shift
stationary distributions with α = 1. The blue line in Figure
2 shows these SSEs as a function of m. As expected from
Proposition 3, the SSE is a decreasing function of m. This error
analysis validates the statement of Corollary 2, that the m-
shift stationary distribution approaches a marginal stationary
distribution in the limit m→∞.

In theory, as k → ∞, the difference between the kth-
order stationary distributions and the corresponding m-shifted
marginal stationary distributions could vanish in the limit.
Such convergence, however, is not obvious. The red line in
Figure 2 shows the sum of squared errors of the marginal
distributions calculated by the kth order Markov process. The
errors of the kth order Markov process shows slower conger-
gence (higher errors at each k = m) than the corresponding
m-shift stationary distribution. More importantly, it shows

m, k

m-shift

kth order Markov

S
u

m
 o

f 
sq

u
ar

ed
 e

rr
o

rs

Fig. 2. The sum of squared errors of the m-shift stationary distributions
(blue) and the kth order Markov process as functions of m or k, respectively,
by taking the corresponding marginal distribution for α = 1 and k = 1000
as normative values.

the error is a non-monotonic function of k. This suggests
that, regarding a marginal stationary distribution, a higher-
order Markov process analysis does not always give a better
approximation to stationary distributions in the limit k → ∞
than a lower-order one.

The non-monotonic error in estimation using kth-order
Markov processes also suggests that a certain range of finite
k may show a special pattern in its maginal stationary distri-
bution. In fact, our recent work [14] shows a consistent result
with this result: the IPD of a relatively high-order Markov
process k ≈ 10 tends to exhibit mutual cooperation in its long-
term dynamics, as compared to mutual defection dynamics
when k is either smaller or very, very large. Combined with the
analysis of the present study, this suggests that a certain range
of memory lengths k enables mutual cooperation, but learning
with very large memory lengths results in mutual defection, as
in the Nash equilibrium of classical prisoners’ dilemma.

VI. CONCLUDING REMARKS

When analyzing a game with probabilistic learners, higher
order Markov processes are unavoidable. Often, however, it is
information about the marginal stationary distribution which
one truly desires. The numerical evaluation of the previous
section confirms the computational advantage of using m-shift
stationary distributions over the stationary distributions of the
corresponding kth-order Markov chains. Our technique is not
limited to the current specific case, and is applicable in general
to the analysis of any higher order Markov process.
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