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Abstract

It is argued by a computational model that intuitive
groupings for natural categories exist, called category
coherence. The relationship between property and gen-
eralization of category, referred to as smoothness, is pro-
posed as a quantitative measure of category coherence.
A survey on early acquired noun categories suggests that
a basic-level category has smoothness. Similarity-based
categorization models can not account for category co-
herence, because the definition of category and feature
selection involves an essential circularity. We propose
here a semantic packing theory that produces smooth-
ness in categories. In the model, the learner’s two con-
flicting constraints on discrimination and generalization
are optimized simultaneously, as if packing knowledge
into memory. The equivalence between packing and
smoothness is mathematically proven under a specific
simplification. Furthermore, the simulation showed that
the packing constraint could reproduce the original cat-
egory organization based on partial survey data. These
results indicate that semantic packing could be a core
mechanism of fast mapping, a process by which children
generalize a novel instance without the need for trial and
error.

Introduction

Why Does “Category Coherence” Emerge?
Murphy and Medin (1985) define “category coherence”
as the intuitive and useful groupings that characterize
natural categories, and claim that this coherence is one
of most important aspects of semantic cognition. How-
ever, how we learn about feature selection in category
coherence remains to be clarified, as the relevant fea-
tures and clusters of features for a category depend on
the kind of category it is. For example, color is more im-
portant for discrimination when the item is a pea rather
than when it is a ball. How do we learn this? And how do
we use the knowledge that we have learned? How, when
we see an object-a potential pea or ball-do we know to
attend to color or not?

This problem of feature selection has played a key role
in theoretical discussions of the mechanisms that under-
lie category learning. Category-dependent feature selec-
tion is difficult to explain in terms of simple similarity-
based accounts such as feature lists (Murphy & Medin,
1985; Gelman & Williams, 1997). Murphy and Medin
(1985) claim that categorization based only on similar-
ity and its correlation is not enough to solve the coher-
ence problem, and they proposed the importance of folk

theory based on causal induction. Their major criticism
of similarity-based accounts is their circularity: catego-
rization depends on feature selection, and feature selec-
tion depends on the category. For example, “zebra” and
“barber’s symbol” are similar when the property ”has
stripe” is heavily weighted; thus some set of property
weighting is necessary to identify “zebra” to ”horse”. As
similarity per se can not determine categorization, one
must already know how to weigh the properties to know
what category an entity belongs to. Most category learn-
ing studies ignore this circularity and implicitly assume
the categories and the relevant properties. Resolving
this circularity issue of category property is essential in
semantic cognition.

Theory Outline
The main goal of this study is to propose a computa-
tional theory of internal semantic representation that ac-
counts for category coherence. The big idea of the model
is that a constraint on the learner should be considered
instead of category, similarity, or property. 1 .

This is because learners have practical reasons for why
a particular category structure is preferable, for example,
so that two categories can be discriminated with minimal
memory used to represent category and property infor-
mation. “Efficient” categorization is of practical impor-
tance to learners, who after all must deal with everyday
events in the world. Thus, as a solution of the circular
issue, we will argue what kind of learner efficiency should
be considered. More specifically, the essential trade-off
between generalization and discriminability is argued to
be learning efficiency. We will refer to the constraint
on efficiency as “semantic packing”, because it is anal-
ogous to packing various sized and shaped containers
(categories) into a larger but finite container (memory
and the attentional and retrieval processes that apply
to memory). We present the theory metaphorically and
then the formal mathematical specification later.

In the next section, for a more quantitative descrip-
tion, we propose a working definition of category coher-
ence, which we refer to as “semantic smoothness”. De-

1 In this study, “category” and “property” (“feature”) are
defined as a particular memorized set of entities from a uni-
verse. A “category” is linked to a set of “properties” , and
the pattern of the set “properties” is “generalization” (“prop-
erty weighting”) of the category. “Similarity” is defined as
psychological distance between a pair of “categories”, “prop-
erties” or “generalization” in property space.



velopmental studies have indicated children to be effi-
cient learners , who can systematically generalize even a
novel noun category. Furthermore, a survey of children’s
early acquired noun categories suggested that their sys-
tematic generalization is consistent with the correlation
between property and generalization. Therefore, chil-
dren show category coherence (i.e., they share the sys-
tematic intuition to novel entities), and the survey pro-
vided a quantitative measure of this coherence.

Working Definition: “Semantic
Smoothness” in Natural Categories

Many developmental studies using novel word general-
ization tasks have shown that children systematically
attend to different properties when generalizing differ-
ent types of entities, a process known as “fast mapping”.
For example, children generalized solid artifacts and non-
solid substances based on the similarity of shape and ma-
terial, respectively (Soja, Carey & Spelke, 1991). There-
fore, children seem to solve the circular problem, but nei-
ther younger children nor late talkers show the same gen-
eralization pattern (Jones, 2003). This finding suggests
that these differential weighting patterns are learned. An
adult survey study of the similarities that characterize
the first 300 nouns learned by children showed that their
attentional biases in noun extension tasks reflect the reg-
ularities in the corpus of early noun categories. Specifi-
cally, there is a high correlation between category gener-
alization (i.e., shape- or material-based category organi-
zation) and property (i.e., solidity) (Samuelson & Smith,
1999). In other words, this survey indicated that “prop-
erty” (i.e., solid or non-solid) of natural categories pre-
dicted “generalization” (i.e., property weighting: shape-
or material- based generalization), and vice versa. The
semantic space would be in our terms “smooth” if the
property-generalization correlation was universal in any
semantic domain as well as “solidity of early acquired
noun categories”, , that is, the property difference be-
tween any two categories would be correlated to any dif-
ference in how those categories are generalized (see also
Equation 11 for the mathematical definition). Further-
more, the smooth semantic space would form clusters
that have a correlated property-generalization relation-
ship; in other words, similarly distributed categories are
basically grouped near each other (i.e., domain specific
property weighting: Figure 1 (b)) 2. Thus “smoothness”
of the semantic space may be considered as a quantita-
tive measure of category coherence. Here, in an empiri-
cal study, we investigate the smoothness of the semantic
space of early-acquired nouns. The results indicate that
natural categories have “smoothness”, that similar cat-
egories (e.g., “cat” and “tiger”) share a similar property
and generalization pattern (whereas“cat” and “chair”
share a dissimilar property and generalization pattern).
Before a more detailed presentation of the theory, we
consider how one recent theory of category development

2Consistent with the mathematical term “smooth”,
“smoothness” here refers to the probabilistic degree of local
linearity of manifold (category-feature space) where general-
ization σi is curvature around µi .

has dealt with this issue.

Insufficiency of a Previous Model
Rogers and McClelland (2004) proposed a statistical
learning model that learns “coherent” categories more
easily than “incoherent” categories. More specifically,
they compared learning performance of their Parallel
Distributed Processing model, which is sensitive to sta-
tistical properties of the learning set, when given a set of
categories with correlated or randomly arranged proper-
ties. The model showed better learning of the correlated
set than of the random set. They claimed that the sta-
tistical learning model accounts for category coherence
because “coherent” categories (i.e., the correlated set)
were easier to learn than those with randomly organized
properties. However, there are three problems associ-
ated with their claim. First, they did not define the
“ category-property list” learned by the model. Recall
that the original question of category coherence is why
and how we “discover” such correlated organization in
natural categories (i.e., the category-property list). Is
the correlated “category-property list” in internal or ex-
ternal representation? Second, their model shows that
correlated sets imply easy learnability, but their model
does not show that easy learnability implies that the
data set is correlated. Third, the model does not ac-
count for the deeper mechanism of category coherence
because the PDP model is, without analysis of internal
structure, a black box. What aspect of the model causes
easier learning of the correlated set? In other words,
category coherence was simulated at a surface level, but
the essential question of why category coherence matters
was left unanswered.

Efficiency in Semantic Cognition
Rosch, Mervis, Gray, Johnson & Boyes-Braem (1976)
claimed that natural categories, particularly at the in-
termediate level, called the ”basic level”, trade off be-
tween having the most information (i.e., they are more
abstract and include more classes) and being more dif-
ferentiated (i.e., they are more concrete and include less
classes). We argue that learning efficiency under the
trade off between generalization and discrimination is a
core mechanism of category coherence. We define “se-
mantic memory” for the purposes of this paper as a set
of categories and their features. A reasonable question
to ask is what features should be represented for any cat-
egory. In general, one would think that discriminating
features should be represented. For example, both dogs
and cats have “four limbs” so this feature does not dis-
criminate between two categories. One solution to this
is to store only exceptional features (or conjunctive fea-
tures that as conjunctions are unique, e.g., “four-limbed,
eyed, a pet, meat-eating, gather in crowds,…” as a single
feature only for ”dog”). However, this means that what
one knows about one category can not help in learning
or making decisions about another. In the ideal choice of
discriminating features, each category would be defined
by a single feature that is unique to that category. This
insight indicates that discriminability and generalization
from knowledge about one category to another trade off.
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Figure 1: 20 categories (ellipses represent contour of
probabilistic distributions) in property space. (a) Cat-
egory coding with exceptional feature: more property
space (dashed line) is needed for categorization. (b) Ef-
ficient category coding: less property space and more
discriminability. Categories with similar generalization
are localized. (c) Category coding with overlapped fea-
ture: feature is useless for categorization. (d) Category
packing is considered the balanced optimal state under
two constraints; memory parsimony (dashed arrow) and
discriminability of category (bidirectional arrow).

An efficient semantic memory may try to optimize both,
that is, it may work at some midlevel between these two
extremes.

We describe this trade-off relationship in a simple com-
putational form below. Assume that a category is for-
mulated as a probabilistic distribution in psychological
feature space (Figure 1). If one category is represented
by an exceptional feature, the category representation
must be sparse (Figure 1 (a): G gets smaller, but E1

gets bigger in Equation 5), because other discriminable
categories are unlikely to have this feature. In this case,
the system needs more features and thus memory space
(i.e., larger dashed-line enclosure). If, however, a cate-
gory is represented by features that overlap with other
categories, the category would not be discriminated well
(Figure 1 (c): E1 gets smaller, but G gets bigger in Equa-
tion 5). In this case, though the system needs less mem-
ory space, the categories are not discriminable. Efficient
category coding should be a balanced state that emerges
from the trade-off between the two limits (Figure 1 (b)).
What then would emerge in such a case?

We describe the optimal state as “category packing”,
where the system packs categories of a particular shape
close together, thus taking up less space overall (Fig-
ure 1 (d): both G, E1 and L get smaller in Equation
5). Assume one creates optimally organized categories
by moving the prototypes with fixed distributions. Al-
ternatively, one could move distributions with fixed pro-

totypes (note that this is not “category learning” but
is just exploring optimal organization). This process is
analogous to packing things into smaller space (cate-
gories or things avoid probabilistic or solid “collision”,
respectively). What category organization is most ef-
ficient for this packing? The most efficient packing of
different sizes and shapes of things (or categories, as we
propose here) involves packing similar shaped things to-
gether (e.g., angular things should be next to angular
things, and rounded things should be next to rounded
things). For categories, this means that categories with
similar feature distributions should be closer in the fea-
ture space (Figure 1 (b) and Equation 11). In other
words, semantic smoothness would emerge as a result
of category packing and, vice versa, a smooth seman-
tic space optimizes packing constraint. Next we briefly
introduce the detailed formulation of our theory in a sim-
ple case in which categories are defined by prototypical
representations.

Theoretical Formulation of Packing
We prove the equivalence between semantic packing and
smoothness, under the simplification that each category
is represented by its prototype and generalization pat-
tern. Note that the packing process does not assume
any predefined specific “property” or “category” in the
packing process. Pi(θ), the probability of ith category
occurrence given feature θ, is defined as a d-dimensional
normal distribution, which has a mean vector (i.e., pro-
totype) µi and covariance matrix (i.e., generalization or
feature weighting) σi. The superscript t refers to trans-
position.

Pi(θ) = ((2π)d|σi|)− 1
2 exp(−1

2
(θ−µi)tσ−1

i (θ−µi)) (1)

The amount of overlap of multiple independent cate-
gories F is defined as the joint probability of category
occurrences in the entire feature space Ω. The less F
gets (i.e., the less overlap that occurs among categories),
the more discriminability the feature space has.

F =
∫

Ω

n∏

i

Pi(θ)
1
n dθ (2)

As normal distribution has reproductive property in mul-
tiplication, Equation 2 can be rewritten as a normal dis-
tribution N(θ|A−1B, A−1) with mean A−1B and covari-
ance A−1. Assume that A =

∑n
i σ−1

i , B =
∑n

i σ−1
i µi，

C =
∑n

i µt
iσ
−1
i µi, and D = exp( 1

2n (BtA−1B − C)).
Then

F = D(|A|
n∏

i

|σi| 1n )
−1
2

∫

Ω

N(θ|A−1B,A−1))dθ (3)

. Assume that G = log(F ), and the integral term should
be one when Ω is whole space.

G =
1
2n

(BtA−1B − C − n log |A| −
n∑

i

log |σi|) (4)



Optimization for only the constraint ∂G
∂µi

or ∂G
∂σi

(i.e.,
discriminability in Figure 1) gives (µi−µj)t(µi−µj) →
∞ or |σi| → 0 , indicating an immense amount of feature
space or an instance as a category (no generalization),
respectively. Therefore, constraints to normal distribu-
tions E1 =

∑n
i ||µi||2 =

∑n
i µt

iµi and E2 = log |A−1|
are necessary. For the cognitive process, the constraints
E1 and E2 refer to the maintenance of constant memory
space (i.e., parsimony in Figure 1) and generalization
ranges, respectively. The Lagrange multiplier method is
used for optimization of the constraints. The Lagrange
equation with multiplier λ is L = G+λ1E1+λ2E2, which
indicates semantic packing (L) optimizes both discrim-
inability (G) and generalization (E1 and E2).

∂L

∂µi
=

∂

∂µi
(G + λ1E1) = −σ−1

i (µi − µ̄) + λ1µi = 0 (5)

where µ̄ = A−1B = (
∑n

i σ−1
i )−1

∑n
i σ−1

i µi.

µi = −(λ1σi − I)−1µ̄ (6)

where I is the identity matrix. Therefore the relationship
between a pair of categories when L is optimized as a
function of µ is

∆µij = λ1(λ1σi − I)−1∆σij(λ1σj − I)−1µ̄ (7)

where ∆µij = µi − µj and ∆σij = σi − σj . Next, in
addition to µi, L is optimized as a function of σi.

∂2G

∂σi
= −(µ̄− µi)tσ−2

i (µ̄− µi) + (A−1σ−2
i − σ−1

i ) (8)

Next, in addition to µi, L is optimized as a function of
σi. As ∂L

∂σi
= ∂

∂σi
(2nG + λ2E2) , thus applying ∂2nG

∂σi
=

σ−1
i (µ̄− µi)(µ̄− µi)tσ−1

i + nσ−1
i A−1σ−1

i − σ−1
i

σi
∂L

∂σi
σi = (µ̄− µi)(µ̄− µi)t + (n + λ2)A−1 − σi (9)

As σi
∂L
∂σi

σi − σj
∂L
∂σj

σj = 0

∆σij =
∑

k=i,j

(−1)δki(µ̂− µk)(µ̂− µk)t (10)

where δii = 1 when i = j, otherwise δij = 0.
Notice that σi is constant in Equation 7, and Equa-

tion 10 is ∆σij
∼= O(∆µij). Consequently, the approx-

imate monotonic relationship between ∆µij and ∆σij

with a given constant α (i.e., “smoothness”) emerges,
when ∂L

∂µi
= 0 or ∂L

∂σi
= 0 (i.e., “packing”).

||µi − µj || ≈ α||σi − σj || (11)

In other words, semantic smoothness, which is the cor-
relation between feature and generalization (Equation
11), is approximately equivalent to semantic packing. A
learning system with smooth categories that optimize
the packing principle, and vice versa.

An analytic solution to ∂L
∂µi

= 0 is demonstrated as
follows. Assume E′

1 =
∑n

i νt
iνi where νi = µi − A−1B

to be the constraint instead of E1, and note that the
replacement does not lose generality. Solving the La-
grange equation L = G

2 + λ
2 E′

1, we get ∂L
∂µi

= −σ−1
i νi +

λ
∑n

j (δij − σ−1
i A−1)νj where δii = 1 when i = j, oth-

erwise δij = 0. Let ν = (ν1, ν2, ..., νn)t be the d-by-n-
dimensional vector with νi as its ith elements, let Σ be
the super matrix with σi as its ith diagonal elements, and
A−1 be a super matrix with n2 A−1 as its all elements.
Then, we have

ν − λ(Σ−A−1)ν = 0 (12)

Thus, Equation (5) (i = 1, ..., n) can be solved by ν as
an eigenvector of (Σ−A−1) in Equation (12).

Method

Survey Procedure
The first step in the simulation study was to collect data
on the similarities of 48 nouns that are among the earliest
learned by children (Fenson et al, 1993). To determine
the relevant similarities across a broad range of proper-
ties, 104 Japanese undergraduates rated each noun cate-
gory using 16 pairs of adjectives (Hidaka & Saiki, 2004).
These adjective pairs are the potential features. Sub-
jects used a 5-point scale to indicate how well the pair of
adjectives described the items in the category (e.g., large
= 5, small = 1). The 16 pairs of adjectives were selected
by a pilot survey using 41 pairs collected from prior stud-
ies. We created questionnaires of 5 different orderings to
cancel out the order effect. Participants completed the
survey within one hour.

Stimuli
• Adjective pairs (linguistic scales)

dynamic-static, wet-dry, light-heavy, large-small,
complex-simple, slow-quick, quiet-noisy, stable-
unstable, cool-warm, natural-artificial, round-square,
weak-strong, rough hewn-finely crafted, straight-
curved, smooth-bumpy, hard-soft.

• Noun categories
butterfly, cat, fish, frog, horse, monkey, tiger, arm,
eye, hand, knee, tongue, boots, gloves, jeans, shirt,
banana, egg, ice cream, milk, pizza, salt, toast, bed,
chair, door, refrigerator, table, rain, snow, stone,
tree, water, camera, cup, key, money, paper, scissors,
plant, balloon, book, doll, glue, airplane, train, car,
bicycle

Analysis and Simulation
Correction of survey data The rating value was
corrected by a logistic function to make the correlation
between mean and variance zero. The original rating
showed a small positive correlation between the devia-
tion from the median and the variance, because an ex-
treme rating (i.e., a rating near one or five) has smaller



variance than a rating near the median. More specif-
ically, the parameters of the logistic function are esti-
mated to have zero correlation between |x − b| and a
standard deviation of x (x is rating, b = 3, and c = 1.2
in Equation (13)). The corrected mean and variance is
used for analysis and simulation.

f(x) = (1 + exp((x− b)c−1))−1 (13)

Index of semantic smoothness Semantic smooth-
ness, as predicted by Equation 11, was specifically calcu-
lated by norms of the mean vector and covariance matrix
in the model. The mean vector and covariance (or corre-
lation) matrix represent the mean and covariance across
the 16-adjective ratings for a subject in the human sur-
vey data. The correlation and contribution of the norms
of the mean vector and the covariance were used as an in-
dex of smoothness. The contribution of the major axis is
calculated by principal component analysis, because the
norms of both the mean and the covariance have vari-
ances. In other words, the coefficient of determination in
regression analysis underestimates contribution because
it supposes that only the dependent variance has error.

Simulation of packing category Two simulations
were run. The first simulation involved semantic pack-
ing of randomly generated categories for specific visual-
ization of coherent categories, and the other simulation
involved reproducing category organization based on hu-
man survey data for testing the packing effect by fast
mapping.

In the semantic packing simulation, we optimized the
mean and covariance of several categories, in which the
initial mean and covariance were generated randomly
(i.e., the gradient method, in which the parameters were
updated based on Equations 5 and 9). The smoothness
index was measured after updating was performed 100
times. The updated final state refers to optimization in
terms of balanced constraints.

In the simulation of survey data, the means of cate-
gories were reproduced by a solution of Equation 12 for a
given covariance matrix of survey data. This simulation
investigates the predictability of a prototype configura-
tion of real data based only on a generalization pattern.
The results were evaluated based on the correlation be-
tween the distances between all pairs of categories in the
reproduced configuration and the original prototype con-
figuration. The estimated number of degrees of freedom
of the configuration is 752 (number of categories without
pivot of rotation by property dimension is (48−1)×16).

Results
Figure 2 shows the relationship between the mean norm
and the correlation norm of the survey data. The cor-
relation and contribution are 0.466 and 0.733, respec-
tively. The correlation and contribution of the smooth-
ness index using covariance, rather than correlation, are
0.357 and 0.688, respectively. These results suggest that
the investigated category set has smoothness. Figure 4
shows a simulated “packing” of 20 categories with ran-
domly initialized prototypes and generalization in two-
dimensional property space. Adjacent prototypes have
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Figure 2: Scatter plot of mean vector norm (x axis:
prototype dissimilarity) and correlation matrix norm (y
axis: generalization dissimilarity) in survey data (R =
0.466)

similar generalization patterns (the result of a simulation
is shown in Figure 4). Moreover, the mean norm and
covariance norm of paired categories are shown (Figure
3). The average and standard deviation of the smooth-
ness index for 100 simulations were .490 and .181 respec-
tively. The correlation and contribution between the re-
produced mean matrix in the simulation and the mean
of survey data were 0.430 and 0.715, respectively. These
results suggest that semantic packing could reproduce
half of the data from only their generalization without
any knowledge of the category configuration.

Discussion
The results obtained for the smoothness index of the
survey data supports the hypothesis that property-
generalization clusters were formed in not only specific
domains (e.g., solidity-shape Samuelson & Smith, 1999)
but also more generally. In other words, the smoothness
index succeeded in quantifying category coherence as ar-
gued in previous studies. The result could be due to the
specific properties (i.e., adjective pairs) and noun cate-
gories selected. The nouns categories examined might be
efficient in terms of ”packing” because most are in ba-
sic level categories, which are assumed to be the most
efficient in terms of discrimination and generalization
(Rosch et al., 1976). Moreover, the selected adjective
pairs were chosen to be variable across categories and
thus to discriminate among categories. Therefore, the
set of categories and properties used in the survey might
be particularly “efficient”, as assumed in the packing
theory.

In the simulation, though the prediction is in the in-
verse direction from generalization to feature, since the
relation between them is symmetric (Equation 11), the
simulation reproduced survey data, which indicates suc-
cessful generalization for a novel category. Therefore,



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

mean norm

c
o
v
a
r
i
a
n
c
e
 
n
o
r
m

Figure 3: Scatter plot of mean vector norm (x axis:
prototype dissimilarity) and correlation matrix norm (y
axis: generalization dissimilarity) in simulation (smooth-
ness index: 0.604).

the partial success in reproducing the organization of
early learned nouns suggests that a category system con-
strained by the semantic packing principle could general-
ize a category to new instances without the need for trial
and error. This implies that the system would ”know”
the generalization pattern of a novel thing in a certain
region of feature space. Young children show precisely
this kind of knowledge in generalizing names for novel
categories, typically referred to in the developmental lit-
erature as “fast mapping.” Note that the system has
no domain-specific meta-knowledge , as theory-theory
claims, but smoothness, which emerges in efficient cod-
ing, works instead as meta-knowledge.

As a final conjecture, we propose semantic packing
to be deeply related to basic-level category, because, as
mentioned above, the basic-level category is the most
efficient for semantic tasks (Rosch et al., 1976). Accord-
ing to Rosch, cue validity, the validity of a given cue
x as a predictor of a given category y, is maximized in
the basic-level category. The overlap measure defined in
Equation 2 and cue validity might be considered to share
the similar principle qualitatively, because less category
overlap organization has a larger conditional likelihood
given the cue (i.e., a subregion of feature space). More
specific formulation is required to describe the mathe-
matical relationship between cue validity and packing.
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