
Feature Discovery in Object Individuation

Shohei Hidaka
Kyoto University and JSPS Research Fellow

Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
hidaka@cog.ist.i.kyoto-u.ac.jp

Jun Saiki
Kyoto University

YoshidaNihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
saiki@cv.jinkan.kyoto-u.ac.jp

Abstract— Many developmental studies have pointed out the
relationship between children’s ability of object cognition and
word learning. In this study, the relationship between object
segregation and feature bias to objects in word generalization
was investigated with a connectionist model. In particular, the
model focused on building feature and object representation
from simple visual images. Some previously proposed connec-
tionist models could account for children’s systematic feature
bias in word generalization based on the frequency of word
learning. However, the previous model can not clearly account
for a special case that late talkers, who have smaller vocabulary
than average, do not show typical bias. We suggested that
the proposed model could account some key issues in object
segregation and word generalization including the late talkers’
pattern.

Index Terms— Statistical learning, Object segregation, Shape
bias, Late talkers.

I. I NTRODUCTION

Many developmental studies over the years have pointed
out the relationship between forming object concepts and
word acquisition [3]. This study considers the process of
forming object representations, and proposes a model as-
sociating empirical facts about object segregation and word
generalization to novel objects. We briefly review two previ-
ously proposed hypotheses involving the relationship between
object concept and its categorization. After reviewing experi-
mental facts of object segregation and novel word generaliza-
tion, we introduce the mainly focused hypothesis, statistical
learning account [16], for novel word generalization.

Luria and Yudovich [7] claimed that naming objects helped
children to categorize them. According to them, naming an
object makes children attend to the feature of the objects
relevant to the particular category. Meanwhile, according to
Piaget and Inhelder [10], children in the end of sensorimotor
period (18 to 24 months old) begin to symbolize the real
world, and can associate object symbols to linguistic sym-
bols. Therefore, Luria and Yudovich [7] claimed that linguis-
tic categorization leads to object concept formation, while
Piaget and Inhelder [10] clamed that object concept formation
leads to language acquisition. These two hypotheses do not
have to be mutually exclusive, in fact, some studies supported
both effects [12].

A. Fast mapping

The sensorimotor period is the same time when children’s
vocabulary increases rapidly, called “vocabulary spurt”. From
this period, children efficiently learn novel words even in a
single presentation, and this non-trial-and-error learning is
called fast mapping [4], [6], [17]. A well known example
of fast mapping is shape bias, that children systematically
generalize words for solid objects based on shape similarity
[6]. This systematic bias in generalization is found in various
entities such as objects, substances, animals, and syntax,
thus, these prior knowledge (bias) to perceptual objects and
linguistic structures are supposed to constrain the range of
generalization of novel words. The bias in word generaliza-
tion have been investigated by novel word generalization to
feature manipulated objects, called novel word generalization
task. For example, children prefer to generalize solid objects
based on shape similarity and nonsolid substances based on
material similarity [1], [17].

Recently, various developmental studies have shown em-
pirical evidences involving the mechanism of novel word
generalization to objects. Smith et al. [16] hypothesized
the mechanism as statistical learning of attention to object
features. According to this hypothesis, children learn asso-
ciational relationships among labeling, linguistic structures,
object properties. Children systematically attend to partic-
ular features of objects with particular cues, because they
learn the association between the cues and the features. For
example, children generalized novel nouns to solid objects
based on shape similarity [1], [4], [17], because most solid
objects have a particular rigid shape, are named based on
shape similarity, and belong to count nouns linguistically
[14]. Furthermore, connectionist models were proposed to
account for the mechanism why shape bias emerges in word
learning [1], [15]. In the models, the emergence of shape
bias is mainly due to the difference of learning frequency of
nouns (i.e. more count nouns are learned than mass nouns).
Specifically, when objects are defined by shape and texture,
bias in naming (learning of category A and B in Figure
1c works for attention to shape and disregard of texture)
influences learner’s generalization (i.e. whether shape- or
texture- based) of a novel exemplar (represented by “novel”
in Figure 1).



However, some empirical facts, that the models based
on leaning frequency can not account for, remain unclear.
For example, in long-term training with artificial categories,
learning with shape-similar categories enhanced children’s
shape bias, meanwhile, learning with material-similar cat-
egories did not enhance children’s material bias (i.e. no
significant difference to no-learning control group) [15].

If the only factor was frequency of learning to specific
association, not only shape but also material bias would be
acquired after the training. The further empirical evidence is
that late talkers, who are normal but have smaller vocabular-
ies than age-mates, showed texture bias, even though control
group showed shape bias [5]. To explain this with Figure
1c, late talkers learn smaller vocabulary than age-mate (e.g.
learning only category A) and do NOT learn texture-based
nouns more frequently than shape-based nouns (i.e. the late
talkers’ proportion of learned count and mass nouns was
similar with control’s [5]). However, the late talkers showed
texture bias instead of weak or no shape bias.

A solution for these conflicting facts is to consider that
shape is somehow special regardless of its learning frequency.
In fact, young infants (4.5- to 11.5- month-olds), who do
not produce words, tend to segregate objects based on their
shape. In this study, we extended the statistical learning
account to cover object segregation, and showed the model
could account for the conflicting problem. The statistical
learning account proposed in previous studies have focused
on the relationship between linguistic naming and word
generalization, as clamed by Luria and Yudovich [7]. In
other words, the previous model assumed that objects and
their features (shape, color, and texture) were independent
symbolic representations (Figure 1c). Shape bias depends
only on what feature were used for noun categorization (i.e.
shape bias emerges because most of nouns were categorized
by shape similarity). In this study, we investigated the process
that infants symbolize “independent” objects and features
from unsegmented context. In other words, as Piaget and
Inhelder [10] pointed out, we investigated what feature bias
emerges when representations of “objects” are built in segre-
gation process (Figure 1d). Next we briefly review some key
experimental facts of object segregation.

B. Object segregation in infancy

It makes sense that object individuation, to know what is an
object, is necessary to categorize objects. On the other hand,
strong relationship between individuation and categorization,
that object categorization helps object individuation, was
suggested. Furthermore, some studies suggested that young
infants could segment chunks from ambiguous context based
on the statistical structure. Needham et al. [9] investigated
how prior experience to a segregated object influences in-
fants’ segregation of the other similar object presented in
next scene. 4.5-month-olds did not generalize an experience

of a segmented object to segregation of the other objects
with different texture [8], but they generalized an experience
of three segregated objects with different texture from each
others to segregation of the other objects with different
texture [9]. Needham et al. [9] showed, with well manipulated
control experiments, that young infants form object categories
consisting of three objects, and the categorization influence
object segregation. Furthermore, the feature usage for object
segregation develops in order, shape and size (4.5 month),
texture (7.5 month), color (11.5 month) [18]. Therefore,
these infant’s object segregation studies seem to support our
conjecture, that shape is somehow special regardless of word
learning, and that categorization and segregation of objects
interact each other.

How do infants segregate objects? Empirical evidences
were reported that infants could learn chunks embedded in
context based on statistical information. Some developmental
studies suggested that infants could extract chunks from
auditory sequences or visual scenes without explicit labeling.
For example, 8-month-old infants found artificial words from
auditory sequences based on transitive probability [13], and
9-month-old infants found a frequently presented pair of
objects from visual scene with some other pairs based on
conditional probability [2]. In summary, word acquisition and
object segregation shares statistical learning as their junction.
In the next section, we propose a model building feature
structure for object segregation, which covers key issues
reviewed above.

II. SIMULATION

The purpose of the simulation is to investigate the rela-
tionship between object segmentation process and bias to
feature defining the object. Therefore, we ignored or sim-
plified both discriminability of realistic feature and learning
frequency of objects and features, and focused on integration
of perceptual features of objects in a simple visual model.
More specifically, a visual scene with object defined by
“shape”, “color”, and “texture” was presented (Figure 1a).
We simulated association of the visual images to object
representation defined by symbolic features such as “a bright
circle with check pattern”. Even though a simple visual
object set was used, the object set simulated essential points
identical to realistic structure, latent feature hierarchy. The
feature hierarchy argued here is that shape is defined by
relation of texture or color to background and texture is
defined by relation of color (Figure 1b).

The statistical learning model [1], [15] simplified that
object features (e.g. shape, color, texture, and solidity) were
independent, and it focused on different frequency of cate-
gorization types (i.e. learning with category A and B causes
shape bias in Figure 1c). However, the simulation here focus
on prior process, the feature symbolization regardless of
learning frequency, in order to extend the model to cover not
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Fig. 1. Feature representation of object: (a) an object in visual scene parsed
to shape, color and texture, (b) shape defined by color or texture contrast
segregates what color and texture is, (c) internal object representation as
combination of “independent features”, (d) independent-appeared features
share common representation.

only object-name association but also object-feature associ-
ation. Therefore, we mainly investigated how an associator
builds inter-feature relationship in object segregation when
the objects are categorized uniformly (i.e. all cells in Figure
1d are learned equally). Different from the model with
independent features (Figure 1c), in the object segregation,
some features can share a common representation (left box in
Figure 1d). In particular, the shared common representation
could be more efficient coding objects when shape consists
of relation among elemental features, such as texture or
color (Figure 1b). In this study, we argue that this object
building process is essential in both object segregation and
object categorization in early developmental stage. Thus the
proposed model investigated whether it could account for
qualitative pattern of the late talker’s bias in novel word
generalization [5] and feature usage in object individuation
[18]. The task in simulation was to output symbolic feature
category from an object embedded in visual scene (Figure 3).
We focused only on how much objects could be associated to
symbolic feature in its segregation process, and ignored the
other factors such as difference of learning frequency of fea-
tures or categories, which was considered in previous study
[1], [15]. In the simulation, well discriminated (associated)
feature was considered as the feature which was sensitive
in object individuation and object categorization. Notice that
we do not argue pure feature discrimination but building of
conjunct feature representation (i.e. ”object”).

A. Procedure

Visual objects in retinal field were defined by image with
20 by 20 pixels (Figure 2). The objects had different shape,

circle    triangle  square    diamond   

darkest   dark      bright    brightest 

horizontalvertical  check     plain     

Fig. 2. Visual objects (retinal images) defined by shape, color, texture

color and texture pattern from the background. The task was
to discriminate an object’s subclasses of shape, color, and
texture. The location of the visual objects was randomly
decided not to have them out of the visual field. Specifically,
a pixel consisted of a value (color) out of five (0, .25, .5, .75,
1), and the color pattern defines texture subclass (vertical
stripes, horizontal stripes, check, plain), and the contrast of
texture or color to background defines shape subclass (circle,
triangle, square, diamond). The object set consisted of 1728
patterns (i.e. possible combination of shape (4), color (4),
texture (4), background color (3), background texture (3) ,
random center location (3)). The visual images were filtered
by gabor functions defined by equation below as early visual
process.

G(x) = exp(−x2

σ2
) cos(2πf(x− θ)) (1)

where f and θ are frequency and phase, andx =√
(y − y0)2 + (z − z0)2 is distance from the center(y0, z0)

to a particular(y, z). The set of gabor functions consisted
of 216 filters (orientation (4:0◦, 45◦, 90◦, 135◦), frequency
(3: 0.5, 1.0, 2.0) , size of receptive field (2), location of
receptive field (9)). Through these filters, approximate 15.3%
information of the original image set was lost (15.7% in no-
background condition)1. After filtering the images by gabor
functions, the signals were compressed by Principal Com-
ponent Analysis (PCA) for ignoring 5% noise information ,
and we obtained input vectors with 47 and 51 dimension
in no-background condition and the other condition (see

1The lost information was estimated by the coefficient of determination
of K to I, whereJ = GI and K = (GT G)−1GT J . I and K are 400-
dimension column vectors representing an original images and the image
inversed from gabor signalJ (216-dimension column vector) withG (216-
by-400 matrix representing gabor filters).
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Fig. 3. Schematic image of simulation

also the next section), respectively. Therefore, total informa-
tion taken away from the original images after PCA were
approximately 20%. The PCA process means cognitively
hebbian learning, unsupervised association, and technically
a preprocess just for smooth learning of Multi-Layer Percep-
tron (MLP). The signals obtained from PCA were used as
input for MLP , and the inputs were associated to symbolic
feature, shape (e.g. circle) , color (e.g. darkest) and texture
(e.g. horizontal stripe). Specifically, the output was local
representation (e.g. (shape, color, texture)= (circle, bright,
horizontal stripe)=(1,0,0,0,1,0,0,0,1,0,0,0)). Correct ratio of
four subclasses in three features (i.e. discriminability) in each
learning epoch was measured as bias towards each feature.
Correctness was defined by match in each feature (four
subclasses) between the one values in a teacher vector and the
maximum value out of output vectors. This learning design
is also interpreted that 64 objects (represented by distributed
three features with four subclasses) are categorized (named)
with equal frequency (i.e. all cells in Figure 1d are uniformly
learned), against biased categorization (Figure 1c). Therefore,
the correct ratio of subclass in three features is independent of
its learning frequency of categories (i.e. main factor of shape
bias in previous model [1], [15]), but it depends only on how
the model built object representation. The chance level of
the correct ratio in each feature is 25%. Thus some networks
with lower correct ratio than 30% were considered as training
failure and were excluded in analysis. The criterion was
chosen, because the probability of the correct ratio higher
than .3, when the model responds randomly out of four
options 1728 times, is smaller than10−3.

B. Condition

There were 4 conditions, “base condition”, “single-feature
condition”, “large-capacity condition”, and “no-background

condition”. The base condition was the basis of all sim-
ulations, and the simulation in the other conditions had a
particular different parameter (Table I). In the base condition,
MLP with three layers (51 input units, 20 hidden units, and
12 output units) was trained to a set of objects 400 times by
batch processing (i.e. one training to all patterns is called one
epoch, thus the network was trained 400 epochs). Simulation
in all conditions consisted of 100 networks with different
initial states generated randomly.

The single-feature condition, the output of MLP was
changed to single feature (i.e. only four subclasses of shape,
color, or texture, thus there were four output units) on purpose
to investigate baseline discriminability of each feature in this
particular set. If feature representations in base condition
were independent to each other, the performance of base
condition and single-feature condition would be the same or
proportional.

In no-background condition, the input of MLP was
changed to images with single kind of background consisting
of a dark color and plain texture (“No background” in Figure
3). The purpose of this condition was to investigate how
object segregation influences on feature bias pattern. In this
condition, the model does not have to segregate object in
order to discriminate color and texture, because the color and
texture of background was fixed in any training exemplars.
Thus, in other words, the object segregation process in this
condition was broken (the broken arrow in Figure 1b).

In large-capacity condition, the number of hidden units
of MLP was changed to 30. The hidden units in MLP are
supposed to represent relationship between image and sym-
bolic feature, thus, the MLP with more hidden units has less
loading on memory capacity. The goal of this condition is to
investigate how the memory capacity for object segmentation
influence feature bias.

condition input hidden output No. of successes
base 51 20 12 71

single-feature 51 20 4 73
no-background 47 20 12 68
large-capacity 51 30 12 73

TABLE I

THE NUMBER OF UNITS OFMLP AND SUCCESSFUL NETWORKS

III. R ESULTS AND DISCUSSION

Two-factor analysis of variance (ANOVA) (37 levels of
learning epochs (10 epoch interval from 40 to 400 epoch,
except for the first 30 epochs with mean correct lower than
.3) by three features) to correct ratios in base condition
revealed the significant main effect of learning epochs (F (36,
10989)=22.6,p < 10−3) and features (F (2, 10989)=545.8,
p < 10−3) but no significant interaction (F (72, 10989)=1.04,
p=.387). This result indicated that the networks were trained



successfully, that the correct ratios of three features were
different, but that the relative correct patterns of three fea-
tures did not vary along the learning epoch (after the first
30 learning epochs). Thus it also suggests that a network
with higher performance in shape met a particular criterion
earlier (Figure 5). Therefore, we identified correct ratio in
the final epoch as developmental order of feature usage in
object segregation. The correct ratios of simulation in each
condition are shown in Figure 4. The error bars indicate the
half standard deviation, and the asterisks indicate significant
difference(p < .05) in one-factor ANOVA to correct ratio of
each condition. The Tukey’s multiple comparison test to the
result in base condition showed significant differences in all
three pairs of performances (i.e. combinations of shape, color
and texture). This result indicates that the mean order pattern
of feature bias was consistent to the order of children’s
feature usage for object segregation [18] (shape at 4.5 month,
texture at 7.5 month, and color at 11.5 month).

Moreover, two-factor ANOVA (100 networks by three
features) to correct ratios at 30 to 400 epoch in base
condition revealed the significant main effect of individual
difference (F (99, 10800)=256.8,p < 10−3), features (F (2,
10800)=8.15,p < 10−3), and significant interaction (F (198,
10800)=226.0,p < 10−3). The result indicated that the
correct pattern depended on individual difference of net-
works, thus we analyzed the pattern of individual networks
sorted by the mean correct ratio of three features. The sorted
performances were smoothed by mean with the closest 10
networks (e.g. the 50th-higher performance was substituted
with mean of 45th- to 55th- higher performance) (left sides
of Figure 6). The analysis showed the different structure
of the networks in base and large-capacity condition. Most
of the networks in base condition consistently had higher
shape performance than texture (right upper graph in Figure
6) , and texture than color, meanwhile, the worse group
of the networks in large-capacity condition had reversely
higher texture performance than shape (right bottom graph
in Figure 6). The detail analysis, shown in right sides of
Figure 6, revealed that the performances subtracted texture
from shape were positive in any networks in base condition,
and those were negative and positive in a group with lower
and higher performance in large-capacity condition. The
correlation between mean performances and the subtracted
values in base and large-capacity condition were respectively
-.226 (p = .055) and .692 (significantly different from zero,
p < .001). This result indicates that the networks basically
had shape dominant performance, but that some poor learners
with large capacity had texture dominant performance. This is
consistent with texture bias found in late talkers [5]. Jones [5]
showed that late talkers, normal children with relatively small
vocabularies, tended to generalize novel words to objects
based on texture similarity.

Generally speaking, the MLP with large number of hidden

units definitely have better performance to training set than
that with smaller number of hidden units. However, this is
not simply better in terms of generalization to novel inputs,
because some networks with large capacity are overfitted to
a training set and tends to lose generalization to a novel set.
Thus, the poor learners with large capacity in the model might
reflect that late talkers tend to memorize peripheral feature
of known objects and have trouble in its generalization to
unknown ones. In fact, a study about the relationship between
memory capacity and categorization suggested that infants
with high memory load can grasp only central feature and
infants with smaller memory load grasp both central and
peripheral feature [11]. The different bias in base and large
capacity condition might reflect this difference found in the
developmental study. The networks with smaller capacity (i.e.
high memory load) develop shape as central representation
of objects , meanwhile the networks with large capacity (i.e.
smaller memory load) were occasionally trapped by building
peripheral representation (i.e. texture).

In single-feature condition, when the network associated
objects to only single feature, the performance of each the
three single features showed no significant difference (F (2,
210)=.83,p=.44). This result indicates baseline difficulty of
each feature discrimination was not different. Therefore, we
could reject the possibility, that the result in base condition
reflected just difference of feature in a specific set. In stronger
interpretation, this result might suggest that making represen-
tation of three features in conjunct form (like base condition)
constrained to have shape bias, because representation for
only single feature (like single-feature condition) did not
show significant shape bias. In other words, the simula-
tion reflected the association of dependent feature (unlike
independent features in Figure 1c) to object, which was
described in Figure 1d. In no-background condition, when
the network associated all input images with the same back-
ground, showed significant difference in one-way ANOVA
to correct ratios (F (2, 216)=6.0,p <.005). Further analysis
with Tukey’s multiple comparison test showed significant
difference in the pairs shape/color and texture/color. The
model in this condition did not have to “segregate” object
from background because of constant background. Therefore,
the comparison of performance in this condition to that in
base condition suggested that object segregation would be
critical whether shape bias emerged. In other words, the
pressure, “segregating object”, makes a learner attend to not
texture but shape as representation of “object”. In that sense,
the object in no-background condition seems like a nonsolid
substance which does not have rigid shape. Thus, these results
might reflect that children tend to generalize novel word given
to nonsolid substance base on texture or material similarity
[1], [17].

In summary, the proposed model, which extended statis-
tical learning model to object-feature association, reproduce
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Fig. 5. Correct ratio in base condition along learning epoch

qualitative pattern (in base condition) of shape bias found in
novel word generalization [6] and development order of fea-
ture usage for object segregation [18]. Moreover, the model
with large capacity also showed late talkers’ texture bias [5]
as individual difference of a group of networks (i.e. “good” or
“poor” learners) regardless of learning frequency. According
to the comparison of simulations in the four conditions, the
emergence of shape bias and late talker’s pattern in this
model depends on capacity of internal representation, feature
conjunction, and object segregation.

ACKNOWLEDGMENTS

This work was supported by Grants-in-Aid for Scientific
Research from JMEXT (No. 15650046), JSPS Research
Fellowships for Young Scientists, and the 21st Century COE
Program from JMEXT (D-2 to Kyoto University).

REFERENCES

[1] E. Colunga and L. B. Smith, ”From the Lexicon to Expectations About
Kinds: A Role for Associative Learning”, Psychological Review, vol.
112, no. 2, pp. 347-382, 2005.

[2] J. Fiser, and R. N. Aslin, ”Statistical learning of new visual feature
combinations by infants”, Proceedings of the National Academy of
Sciences, vol. 99, no. 24, pp. 15822-15826, 2002.

0 20 40 60

0.3

0.4

0.5

network ranks
m
o
o
t
h
e
d
 
c
o
r
r
e
c
t
 
r
a
t
i
o

shape

color

texture

mean

0 20 40 60

0

0.05

0.1

0.15

network rank

s
h
a
p
e
-
t
e
x
t
u
r
e

0 20 40 60

0.3

0.4

0.5

0.6

network rank

s
m
o
o
t
h
e
d
 
c
o
r
r
e
c
t
 
r
a
t
i
o

shape

color

texture

mean

0 20 40 60

-0.1

-0.05

0

0.05

network rank

s
h
a
p
e
-
t
e
x
t
u
r
e

Fig. 6. Corret ratio (left) and the difference of its shape and texture (right)
in base (upper) and large-capacity (bottom) condition smoothed and sorted
by the mean performance.

[3] A. Gopnik and A. Meltzoff, ”Categorization and Naming: Basic-Level
Sorting in Eighteen-Month-Olds and Its Relation to Language”, Child
Development, vol. 63, p.p. 1091-1103, 1992.

[4] M. Imai, and D. Gentner, ”A cross-linguistic study of early word
meaning: universal ontology and linguistic influence”, Cognition, vol.
62, pp. 169-200, 1997.

[5] S. S. Jones, ”Late talkers show no shape bias in object naming”,
Developmental Science, vol. 6, no. 5, pp. 477-483, 2003.

[6] B. Landau, L. B. Smith and S. S. Jones, ”The Importance of Shape in
Early Lexical Learning”, Cognitive Development, vol. 3, pp. 299-321,
1988.

[7] A. R. Luria and F. Yudovoch, ”Speech and development of mental
processes in the child”, London: Staples, 1959.

[8] A. Needham, ”Object Recognition and Object Segregation in 4.5-
Month-Old Infants”, Journal of Experimental Child Psychology, vol.
78, pp. 3-24, 2001.

[9] A. Needham, G. Dueker and G. Lockhead, ”Infants’ formation and use
of categories to segregate objects”, Cognition, vol. 98, pp. 215-240,
2005.

[10] J. Piaget and B. Inhelder, ”The psychology of the child”, New York:
Basic, 1969.

[11] P. C. Quinn, ”The categorical representation of visual pattern informa-
tion by young infants”, Cognition, vol. 27, pp. 145-179, 1987.

[12] G. C. Roberts and K. N. Black, ”The effect of naming and object
performance on toy preferences”, Child Development, vol. 43, p.p. 858-
868, 1972.

[13] J. R. Saffran , R. N. Aslin and E. L. Newport, ”Statistical learning by
8-month-old infants”, Science, vol. 274, p.p. 1926-1928, 1996.

[14] L. Samuelson and L. Smith, ”Early noun vocabularies: do ontology,
category structure and syntax correspond?”, Cognition, vol. 73, pp. 1-33,
1999.

[15] L. Samuelson, ”Statistical Regularities in Vocabulary Guide Language
Acquisition in Connectionist Models and 15-20 Month Olds”, Develop-
mental Psychology, vol. 38, pp. 1016-1037, 2002.

[16] L. B. Smith, S. S. Jones, B. Landau, L. Gershkoff-Stowe and L.
Samuelson, ”Object name learning provides on-the-job training for
attention”, Psychological Science, vol. 13, p.p 13-19, 2002.

[17] N. N. Soja, S. Carey, and E. S. Spelke, ”Ontological categories
guide young children’s inductions of word meanings: object terms and
substance terms”, Cognition, vol. 38, pp. 179-211, 1991.

[18] T. Wilcox, ”Object individuation: infants’ use of shape, size, pattern
and color”, Cognition, vol. 72, pp. 125-166, 1999.


