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ABSTRACT
We propose a novel approach to discovering latent struc-
tures from multimodal time series. We view a time series
as observed data from an underlying dynamical system. In
this way, analyzing multimodal time series can be viewed as
�nding latent structures from dynamical systems. In light
this, our approach is based on the concept of generating
partition which is the theoretically best symbolization of
time series maximizing the information of the underlying
original continuous dynamical system. However, generat-
ing partition is di�cult to achieve for time series without
explicit dynamical equations. Di�erent from most previous
approaches that attempt to approximate generating parti-
tion through various deterministic symbolization processes,
our algorithm maintains and estimates a probabilistic distri-
bution over a symbol set for each data point in a time series.
To do so, we develop a Bayesian framework for probabilistic
symbolization and demonstrate that the approach can be
successfully applied to both simulated data and empirical
data from multimodal agent-agent interactions. We suggest
this unsupervised learning algorithm has a potential to be
used in various multimodal datasets as �rst steps to identify
underlying structures between temporal variables.

Keywords
Multi-stream time series, multi-agent communication, sym-
bol dynamics, generating partition

1. INTRODUCTION
One of the ultimate goals of studying multimodal interfaces
and multimodal interactions is to build intelligent agents
(e.g. robots or virtual avatars) that can smoothly interact
with human users through coupled multimodal behaviors.
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Achieving this goal relies on both theoretical breakthroughs
and also new �ndings from empirical studies. With ad-
vances in computing and sensing technologies, an unprece-
dented amount of data has been collected in various human-
computer interaction studies, including human-robot inter-
actions, human-avatar interactions, and human-computer
interactions through mobile devices. Such rich data from
multimodal interactions provide an unique opportunity to
systematically analyze behavioral data from human users
which has the potential to lead to breakthroughs at several
frontiers in human-computer interactions. First, the results
from data-mining multimodal user data can be directly used
to improve current multimodal interfaces. Second, the pat-
terns derived from such data can lead to a better under-
standing of the fundamental principles of multimodal com-
munication that may lead to theoretical advances. Third,
this data-driven approach will provide a much more objec-
tive way to evaluate a multimodal interface. Compared with
surveys or questionnaires, analyzing real-time behavior pat-
terns directly measured from human users can better reveal
user's reactions and preferences.

While there is probably no doubt that machine learning
and data mining techniques are playing more and more im-
portant roles in studying intelligent mulitmodal interactions
and interfaces, a particular challenge in this new data-driven
venue though is how to e�ectively data-mine temporal se-
quences and successfully deal with both individual data streams
changing over time, and multimodal synchrony and correla-
tion between those streams. More speci�cally, multiple tem-
poral streams may exhibit di�erent kinds of dynamics with
patterns changing from one moment to the next. Probably
because of this, most existing algorithms rely on a particular
kind of prior knowledge in temporal data mining. For ex-
ample, sequence matching needs the user to provide a query
pattern to start [1, 2]. Motif discovery (or anomaly detec-
tion) needs to be based on the assumption that a pattern is
either frequent or less frequent in a given dataset [3]. For
another example, Hidden Markov Models [4] and Markov
random �elds [5] have been widely used in various speech,
text and image datasets. However, those approach work well
with temporal data with certain structures that satisfy the
Markov Properties. It is not clear on how extend HMMs
and it variants [6, 7] to more stochastic data.

The present paper introduces a new temporal data mining
algorithm without a need of any preassumption of multi-
stream time series. Our approach is motivated by the idea
of dynamical system by viewing a time series as observed
data from a dynamical system. Accordingly, multimodal
time series can be viewed as analyzing underlying latent
structures of multimodal dynamical systems. The present
paper will �rst introduce our approach and then provide
two case studies (one with simulated data and one with real-
world data from multimodal interaction) to demonstrate the



potential of this approach as a general approach for a wide
range of multimodal data.

2. GENERATING PARTITION AS SYMBOL-
IZATION

We argue that one of the important directions in tempo-
ral data mining is to convert a time series into a symbolic
sequence. By so doing, a discrete representation opens up
many powerful techniques of information and communica-
tion theory in addition to the connection between discrete
mathematics and dynamical systems via the theoretical study
of symbolic dynamics. However, the challenge here is how
to maintain the bene�ts of a low-precision symbolic repre-
sentation and meanwhile minimize the loss of information in
the symbolization process. Many symbolization approaches
in data mining are based on the histogram distribution of a
time series. For example, in Symbolic Aggregation approxi-
mation (SAX, [2]), each symbol covers a particular interval
in continuous space so that the frequency of data points
falling in each symbol is nearly equal across all of the data
points in the time series. One advantage of SAX is that the
symbolization process approximates the Euclidian distance
between two time series in the original values with some up-
per bound of errors. However, SAX in principle is based
on the linearity assumption, because the distance metrics
used are computed by a linear sum of each local time se-
ries. Recently a compelling technique called Symbolic False
Nearest Neighbor (SFNN) has been developed in theoret-
ical physics and it has been demonstrated that this sym-
bolization approach has various advantages compared with
histogram-based approaches (e.g. SAX [2]). In the present
paper, we suggested that the original version of SFNN is a
deterministic algorithm which limits its performance to tol-
erate noises in the data. In light of this, we developed a
probabilistic algorithm with Bayesian updates. In the fol-
lowing, we will �rst introduce the SFNN and the concept
of generating partition. Next, we will present a conceptual
framework of our new algorithm called stochastic Dual Near-
est Neighbor (SDNN), followed by a detailed description of
the algorithm. Three simulation experiments will then be
reported to evaluate the performance of SDNN.

We view a time series as observable data generated by a
nonlinear dynamical system. In nonlinear physics, a parti-
tion which symbolizes the subspaces of a given phase space is
called generating if a symbolized sequence of su�cient length
for di�erent initial points of the system is distinguishable
[8]. More intuitively, such a generating partition would not
lose any information in discretizing the original phase space,
since the given symbol series can be mapped back onto an
unique point (or subspace) in the phase space. Although a
generating partition has theoretical properties preferable to
a non-generating partition, it has been supposed to be dif-
�cult to achieve for time series without explicit dynamical
equations (See [9] for the recent review of nonlinear time se-
ries). Recently, a new technique called Symbolic False Near-
est Neighbor [10, 11]; SFNN in short) has been developed to
overcome this challenge by estimating a generating partition
of a time series without explicit dynamical equations. The
central idea of SFNN is to construct a set of partitions which
map data points in the phase space to a set of symbols such
that two similar sequences in the symbol space are close in
the original phase space. Namely, neighboring points in the
symbol space should also be neighbors in the original space.
In other words, the method constructs a partition by mea-
suring and minimizing the number of false symbolic nearest
neighbors.

The present paper is motivated by the empirical insight of
SFNN � duality between symbolic and spatial nearest neigh-
borhood is the key to specify a dynamical property of time

series. In this study, we extend this idea so that it guides
us to �nd latent structures embedded heterogeneous time
series. Di�erent from the assumption most often used in
theoretical simulations, a dataset from the real world is un-
likely to purely generated by a single dynamical system with
no stochastic component. Instead, a dataset from the real
world may be heterogeneous in which multiple independent
systems interact with each other with some stochastic com-
ponents. Therefore, in order to utilize the theoretical sound
property of symbolic dynamics for an empirical time series,
we need to �nd out which dimension is of interest. However,
this is theoretically and practically challenging as a chicken-
and-egg problem: since the essential property of a dynami-
cal system may be characterized by a generating partition,
we need to estimate the dynamical property before knowing
which dimension may be of interest. Meanwhile, the esti-
mation of generating partition may depend on how well the
given dataset is organized � ideally it prefers a homogeneous
dataset in which all the time series should be generated by
a single dynamical system � but we cannot identify which
dimension may contain informative structures before esti-
mating its dynamical property.

Our solution for this chicken-and-egg problem is to simulta-
neously estimate a generating partition and select informa-
tive dimensions from the dataset. As mentioned above, the
key issue here is to �nd a symbol set in which symbolic near-
est neighbors tend to be the nearest neighbors in the phase
space. Di�erent from the SFNN which only optimizes the
symbol set in a �xed spatial con�guration, in our algorithm,
both the spatial con�guration and the symbol set are itera-
tively optimized. More speci�cally, our algorithm functions
in both symbolic and phase spaces. In one step of optimiza-
tion, a symbolic series is updated based on a given phase
space, and in the other step, the spatial con�guration is op-
timized so that the distances between data points in phase
space correlate to symbolic nearest neighbors. We call the
algorithm Stochastic Dual Nearest Neighbor (SDNN), since
both symbolic and phase spaces are mutually optimized to
form dual nearest neighbors.

2.1 Probabilistic distribution of generating par-
tition

In the following, we will �rst give a conceptual idea of the
algorithm, and then explain the SDNN algorithm step by
step with a formal description. The outline of the present
algorithm is shown in Figure 1. Suppose that we have a one-
dimensional time series (Figure 1A). The �rst step for ana-
lyzing such nonlinear dynamical system is to reconstruct the
phase space from a given time series. Since the underlying
dynamical nonlinear system may have higher dimensional-
ity than the observed variable, we use time delay embedding
in order to reconstruct topological structures of the phase
space [12]. The step from Figure 1A to Figure 1B is an
example in which a one-dimensional observed series is em-
bedded in three dimensional phase space by taking the time
delay copies {F (t), F (t+δ), F (t+2δ)}. In theory, the recon-
structed space of (2k+1) dimensions or higher is guaranteed
to be embedded, meaning that topological structures have
an injective mapping to the underlying phase space which is
typically unobserved, with a su�cient long time series [12].
The �rst step (Figure 1A to 1B) is necessary before symbol-
ization as a time series in a low dimensional space can be is
degenerated.

Theoretically, a standard generating partition is a deter-
ministic process that assigns an unique symbol to each data
point in the phase space (Figure 1B). In practice, a dataset
from the real world may miss some variables or have addi-
tional variables independent to the focal dynamical system.
In those situations, it is unclear how to assign a signal sym-
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Figure 1: The overview of the Stochastic Dual Nearest
Neighbor

bol to a data point in the phase space. With this observa-
tion, we relax the theoretical notion of generating partition,
and extend it into a probabilistic form with the assumption
that the dataset can be generated by a mixture of determin-
istic and probabilistic processes. More speci�cally, in the
second step of optimization, each data point in a time se-
ries is assigned a probabilistic distribution of symbols. In
Figure 1C, αi0 and αi1 correspond to the parameters of a
probabilistic distribution over symbols �0� and �1�. For ex-
ample, the bottom half and top half of the phase space in
Figure 1B are respectively assigned symbol 1 and 0, which
indicates the probability of a symbol is higher than that of
another symbol. The local patterns in the symbolic subse-
quences are called a symbol space (boxes with broken lines
in Figure 1C). The probabilistic distribution of each data
point gives the probabilistic distribution of the symbol set.
In Figure 1D, a triplet including the symbols in previous,
present and next time points forms a local temporal pattern
in the symbol space (e.g., 000, 001, 011 and so forth). A set
of the subsequences within a given window is called sym-
bolic nearest neighbors (e.g., the pattern 001 are found in
the two subsequences). A generating partition is a symbol-
ization process with an optimal inverse mapping from the
symbol space to the phase space. Therefore, it optimizes
the probabilistic distribution over the symbol set in order to
maximize the likelihood of symbolic nearest neighbors given
given a �xed set of spatial nearest neighbors. In the third
step of optimization, it adjusts the spatial con�guration of
phase space in order to maximize the likelihood of spatial
nearest neighbors given a �xed set of symbolic nearest neigh-
bors.

This whole alternative optimization can be formulated as
an EM process [13]: the expectation step here is step 2)
� to estimate the likelihood of symbolic nearest neighbors
given the current parameters of the phase space; and the
maximization step is step 3) � to maximize the likelihood of
the spatial con�guration given symbolic nearest neighbors.
As the whole, it maximizes the likelihood of dual nearest
neighbors given latent probabilistic distributions over the
symbol set.

3. STOCHASTIC DUAL NEAREST NEIGH-
BORS

This section presents mathematical details of the SDNN. As
an overall goal of optimization, we concern the dual nearest

neighbor which is a log-likelihood of spatial nearest neigh-
bors averaged with respect to given symbolic nearest neigh-
bors. We de�ne the likelihood of spatial nearest neighbors
as a normal distribution capturing a distance between two
data points i and j, Dij with a constant variance σ2. The
log-likelihood is {− 1

2
log(2πσ2)− 1

2σ
D2

ij}. The dual nearest
neighbor DNN(W, α), as a function of weights on dimensions
W and parameters of symbolic distribution α is de�ned as
follows.

DNN(W, α) = −1

2

∑
i,j

Sij(α)D2
ij(W ) (1)

where
∑

i,j Sij(1 − δij) = 1 (δii = 1 and 0 otherwise) is
the probability of symbolic nearest neighborhood for a pair
of data point i and j. In E-step, the probability of sym-
bolic nearest neighborhood Sij is computed based on a given
spatial distance Dij . In M-step, the expectation of log-
likelihood DNN is maximized with respect to the weights
on dimension W = {w1, w2, . . . , wK} where K is the dimen-
sionality of the phase space. The maximization of DNN
allows us to select a subset of dimensions {w1, w2, . . . , wk}
(k ≤ K) based on how likely time series on each dimension
is described as deterministic dynamical system.

3.1 E-step: Bayesian updates of symbol dis-
tribution

In E-step, the expectation of the likelihood of symbolic near-
est neighbors is computed for a given set of spatial distances
dij (i, j = 1, 2, . . . , N). In estimating the probabilistic dis-
tribution of symbol i, Xi (i = 1, 2, . . . , N), we start with a
random set of distribution and iteratively update it with
respect to the given set of spatial nearest neighborhood.
Since the dual nearest neighbor DNN is a function of spatial
distances, the symbolic distribution is updated so that its
symbolic nearest neighbors are likely to be spatial nearest
neighbors. Using Bayes' theorem, with the Dirichlet prior
distribution and likelihood of symbolic and spatial nearest
neighbors, the posterior distribution is as follows.

P (Xi|dual NN, Xj ̸=i) =
P (spatial NN, symbolic NN, X)

P (spatial NN, symbolic NN, Xj ̸=i)
(2)

3.1.1 Prior distribution of a symbol set
Now we assume that the probabilistic distribution of a sym-
bol set assigned to each data point i (i = 1, 2, . . . , N) fol-
lows a Dirichlet distribution with a particular set of pa-
rameters αi = {αi1, αi2, . . . , αiM} (αis ≥ 0). Let Xis de-
note a probabilistic variable of the data point i assigned
with symbol s and xis (s = 1, 2, . . . , M) be the probability
of symbols (

∑
s xis = 1). Assuming a symbol on a data

point is independent to another, the joint probability of
P (X) = P (X1, X2, . . . , XN ) is as follows:

P (X) =
N∏

i=1

B(αi)
−1

M∏
s

xαis−1
is (3)

where B(αi) =
∏M

s=1 Γ(αis)

Γ(
∑M

s=1 αis)
is a normalization term of Xi

and Γ(αis) is the gamma function.

3.1.2 Symbolic nearest neighborhood
Symbolic nearest neighbors with a window size τ between
i and j (i ̸= j) are de�ned as Xi+t = Xj+t (t = −τ,−τ +
1, . . . , τ) corresponding to all of the symbols in a symbol sub-
sequence {Xt} within the given window size i−τ ≤ t ≤ i+τ
and that within the given window size j−τ ≤ t ≤ j +τ . As-
suming probabilistic independence among symbol sequences,
the probability of correspondence between symbol i and j



is
∑

s xi, sxj,s. Thus the likelihood of data points i and j
being symbolic nearest neighbors which is de�ned as one-to-
one correspondences between paired symbol subsequences
is:

P (symbolic NN|Xi, Xj) ∝
τ∏

k=0

(∑
s

xi−k,sxj−k,s

)
(4)

3.1.3 Spatial nearest neighborhood
The conditional probability of spatial nearest neighbors given
symbolic nearest neighbors also follows the normal distribu-
tion of Dij , spatial distance between i and j, with mean 0
and variance σ2.

P (spatial NNij |symboli NNij) =
1√

2πσ2
exp

(
−D2

ij

2σ2

)
(5)

where Dij is the spatial distance between data points i and
j and σ is a hyper parameter for the likelihood of spatial
nearest neighbors.

3.1.4 Posterior distribution of a symbol set
Using Bayes theorem (Equation 2), the posterior distribu-
tion of symbols on the data point i is given as follows. Let
Pis denote P (Xi = s|dual NN, Xj ̸=i).

Pis ∝

∑
s

(∏
t Γ(αit+δst)

Γ(
∑

t αit+δst)

)−1∏M
t xαit+δst−1

it Qis∑
s Qis

(6)

where Qis = α̂is

∑
j

exp

(
−Dij

2σ2

)
αjsRτ

ij∑
j αjsRτ

ij
,

Rτ
ij =

∏τ−1
k=−(τ−1)

(∑M
t=1 α̂i−k,tα̂j−k,t

)
, and α̂js =

αjs∑
s αjs

.

Equation (6) indicates the posterior distribution of symbols
is a mixture Dirichlet distribution with the mixture proba-
bility Qis(

∑M
s Qis)

−1. Each Dirichlet distribution in prior
distribution generates M di�erent Dirichlet distributions in
the posterior distribution. It is impossible to exactly com-
pute since the number of variables to be calculated grows
exponentially. Therefore we approximate the mixture distri-
bution Pi(αis, Qis) with a single prototypical Dirichlet dis-
tribution Pi(γis) ∝

∏
s xγis

is ∼ Pi(αis, Qis) with parameter
γis. The detail is given in the next section. In the itera-
tive update of the probabilistic distribution, we start with
the parameter set αis = ϵ (i = 1, 2, . . . , N , s = 1, 2, . . . , M)
in which a small random positive value ϵ ≪ 0 allows any
symbols to occur with a nearly equal probability. The mix-
ture probabilistic distribution with the initial parameter set
P0(Xi; αis) gives the approximated distribution P̂0(Xi; γis).
Therefore we use Equation (6) to update the parameter set
αis by an iterative calculation of the approximated poste-
rior distribution γis as the prior distribution in the next step(
α

(0)
is ≈ γ

(0)
is ≡ α

(1)
is ≈ γ

(1)
is ≡ . . .

)
until it satis�es a given

termination condition.

3.1.5 Maximum likelihood approximation of mixture
Dirichlet distribution

Here we replace the mixture Dirichlet distribution (Equa-
tion 6) with a single Dirichlet distribution maximizing the
likelihood of the mixture distribution. The following equa-
tion gives the log-likelihood of mixture distribution H(γ)
given the approximating distribution with parameters γ =

{γ1, γ2, . . . , γN}.

H(γ) =

∫
log

(∏
s xγs−1

s

B(γ)

)∑
j

Pj

∏
s x

αjs−1
s

B(αj)

∏
s

dxs(7)

=
∑

s

(γs − 1)Bs − log B(γ) (8)

where αj = {αj1, αj2, . . . , αjM} is the parameter set of Dirich-
let distribution j and Bs =

∑
j Pj

{
ψ(αjs) − ψ

(∑
s αjs

)}
.

The equation on right hand side is derived with the for-

mula E[log(xs)] =
∫

log(xs)x
αs−1
s B−1(α)dx = ∂ log B(α)

∂αs
=

ψ(αs) − ψ(
∑

s αs) where ψ(α) = Γ(α)−1Γ(α)′ is a Gamma
function, The parameter set γ is estimated by the Newton
method with the �rst and second di�erentials of H(γ) with
respect to γ̂s = log(γs).

3.2 M-step: Dimension selection
Let S̃

(t)
ij denote the likelihood of symbolic nearest neighbor

P (symbolic NN|Xi, Xj ; Dt) estimated at step t. The expec-
tation of dual nearest neighbor (Equation 1) is rewritten:

L(w) = − 1
2

∑
i,j S̃ijD̃

2
ij as function of the linear projection

w = {w1, w2, . . . , wK}T where superscript T indicates trans-

position,
∑

i,j S̃ij(1−δij) = 1 (δii = 1 and 0 otherwise), and

D̃2
ij = {(yi −yj)

T w}2 is a squared distance between i and j
projected on w. yi = {yi1, yi2, . . . , yiK} is a vector of data
point i in the phase space. The likelihood function L is maxi-

mized subject to the constant average distance
∑

i,j D̃2
ij

N(N−1)
= 1

without loss of generality. The linear projection ŵ maxi-
mizing L(w) subject to the constraint of average distance is
given as the following a Lagrange equation with a multiplier
λ:

L̂(w) = −1

2

∑
i,j

P̃ijD̃
2
ij + λ

( ∑
i,j D̃2

ij

2N(N − 1)
− 1

)
(9)

Since the necessary condition for optimal w minimizing the
given cost function is that the partial di�erential with re-

spect to the vector w is zero, ∂L̂(w)
∂w

= 0. It gives the follow-
ing generalized eigenvalue problem.(

D̃ − λD
)
w = 0 (10)

where D̃ =
∑

i,j S̃ij(yi − yj)(yi − yj)
T and D =

∑
i,j(yi −

yj)(yi − yj)
T . The eigenvector of Equation (10) with the

minimum eigenvalue minimizes wtD̃w, and it is, thus, the
solution for linear projection w. Therefore, the selection
of W = {w1,w2, . . . ,wk} (λ1 ≤ λ2 ≤ . . . ≤ λk) makes
the minimum distance among the data points supposed to
be symbolic nearest neighbor (thus maximizes L(w)) in k
dimensional subset of the phase space.

4. CASE STUDY 1: SIMULATED DATA
Here we report three simulations with time series generated
by a pre-de�ned dynamical system. Although the ultimate
goal of developing this algorithm is to apply it with muliti-
modal datasets to discover unknown patterns and dynamics,
using simulated data is a critical step toward this goal as we
need to validate our algorithm with the ground truth before
we apply it to unknown datasets.

The �rst simulation validates E-step, the estimation of an
expected symbol distribution, without M-step (the optimiza-
tion of the spatial con�guration). This is a special case



of SDNN when we assume that a given time series is per-
fectly deterministic without a need to optimize the phase
space. The second simulation concerns a mixture of time
series in which some subset is generated by a dynamical
system and others are from a probabilistic process. In the
second simulation, we demonstrate that only E-step is not
su�cient to handle the mixture of time series. The third
simulation demonstrates M-step combined with E-step can
properly select dimensions of the focal dynamical system
and eliminate the noisy dimensions from the probabilistic
process. Through out all three simulation, we set hyper
parameters of symbolic nearest neighbor τ = 2 and spatial
nearest neighbor σ = σ̄

2
where σ̄2 is average variance of given

dataset.

4.1 Estimating symbol series for the dynami-
cal system

In order to validate SDNN, we estimate a symbol series from
a simulated dynamical system. We use Ikeda map which is
one of well known dynamical systems. In previous stud-
ies, Ikeda map 1 is used to validate the method estimating
generating partition [10, 11]. mean distance rank (MDR)
[10, 11] is applied as non-parametric statistics of the spatial
distances among those data points that are supposed to be
symbolic nearest neighbors. It has been showed that MDR is
correlated to the topological entropy of a dynamical system
which is often di�cult to calculate. Since a theoretical gen-
erating partition minimizes the topological entropy, we val-
idate our algorithm to check whether it can minimize MDR
as a substitution of topological entropy. In this simulation,
we use datasets generated by the dynamical equation with-
out noise for simplicity of the validation of the algorithm.
Thus, without the optimization of the spatial con�guration
(M-step), we focus on validating the Bayesian update of the
symbol distribution for a given �xed dataset.

Figure 2 shows one example of the Bayesian update of sym-
bol distribution in which one of the two symbols (colored
in either green or red) with a larger parameter αis is as-
signed on each data point. In iteration 0, the algorithm
starts with initial parameters with random values αis ∼
0.1 + 0.05U(0, 1) where U(0, 1) is an uniform distribution
between 0 to 1. In iteration 14, in the middle of optimiza-
tion, it gradually colored upper and lower region of the at-
tractors with green and red respectively, but the boundary
is not clear yet. In iteration 39, as the end of optimization
which satis�es |MDRt+1 − MDRt| ≤ 10−8, the upper and
lower half are colored in green and red, and its boundary is
clear in the middle. In fact, the estimated partition is very
close to the ground truth as indicated by MDR (the bottom
plot). In most of our simulations, it converges the similar
partition in 30 to 50 iterative steps regardless of their initial
values.

4.2 Estimating a generating partition for a dy-
namical system with noise

Next we demonstrate the application of E-step SDNN for a
dataset with a noisy dimension. Again each set of data is
generated by Ikeda map with di�erent initial values. On top
of the two dimensional time series from Ikeda map, we added
one additional stochastic time series in which each data
point is independently generated by a normal distribution.
The simulated dataset is three-dimensional {Xt, Yt, Nt} (t =
1, 2, . . . , 3000) in which Xt and Yt are two dimensions from

1Ikeda map is given as follows: zn+1 = p +

Rzn exp
(
iκ − iα

1+|zn|2

)
where p = 1, R = 0.9, κ = 0.4,

α = 6 are standard parameters, and i and zn are imaginary
and complex number of n-th point.

−1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Iteration 39: MDR= 0.023413

Dimension 1

0 5 10 15 20 25 30 35
0

0.2

0.4

M
ea

n 
D

is
ta

nc
e 

R
an

k

Iteration

−1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Iteration 0: MDR= 0.4569

Dimension 1

D
im

en
si

on
 2

−1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Iteration 14: MDR= 0.23223

Dimension 1

Figure 2: An optimization process of SDNN without M-step
on Ikeda map.
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Figure 3: An optimization process of SDNN without M-step
on Ikeda map with a noise dimension

Ikeda map, and Nt ∼ N(0, σ) is generated by a random
variable from a normal distribution with the average vari-
ance of the given data σ2 = 1

2
{V (Xt) + V (Yt)}. Due to an

additional random variable, spatial distances are di�erent
from those in the original Ikeda map. With the 10 di�erent
datasets with a noisy dimension, we run SDNN E-step in or-
der to estimate the symbol series on the noise-contaminated
dataset. The average MDR is 0.161. A typical optimization
process on the Ikeda map with a noisy dimension is shown in
Figure 3. Overall, the estimated symbol sets have a unclear
boundary on the middle of attractors (compare it with the
right panel in Figure 2). This result clearly shows even one
additional noisy series signi�cantly distracts the estimation
of a standard generating partition.

4.3 Dimension selection for a dynamical sys-
tem

With the dataset from the real world, it is unlikely that we
know in advance which dimension would be more or less
informative beforehand. The following simulation is mo-
tivated by such supposed heterogeneous time series which
requires a selection of latent dynamical structures in noisy
time series. Here we intend to demonstrate dimension selec-
tion on the same time series used before, 2-dimensional Ikeda
map with a noisy dimension. Note that the estimation in
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Figure 4: An optimization process of SDNN with both E-
step and M-step on Ikeda map with a noise dimension. The
spatial con�guration is also optimized.

the previous simulation uses only E-step with a �xed spatial
con�guration. In this simulation, not only symbols but also
the spatial distances are dynamically and simultaneously es-
timated. Figure 4 shows a typical optimization process of
SDNN using M-step on the noisy time series. The most left
panel shows the two dimensional projection of the dataset
assigned with random symbols. The two dimensional projec-
tions are obtained by principal component analysis (PCA).
All the three dimensions have similar variances and small
correlations, and thus the PCA projection shows nearly an
equal-mixture of three dimensions. On the middle panel
in Figure 4, the algorithm found some spatial con�guration
by rotating and selecting the original three dimensions, and
generate a better symbol set. Finally, on the right panel, the
algorithm estimates the symbol set (MDR=0.005) as good
as or even better than the estimation on the dataset with-
out noise (MDR=0.023; Figure 2). At the same time, the
�nally estimated spatial con�guration (note: the rotation of
the coordinates does not a�ect the result) is very similar as
the original Ikeda map. This result suggests that SDNN is
able to select the time series generated by the dynamical sys-
tems from a heterogeneous dataset by removing irrelevant
dimensions.

5. CASE STUDY 2: MEASURING TEMPO-
RAL DYNAMICS IN MULTIMODAL COM-
MUNICATION

5.1 Multimodal data
One of our primary motivations for investigating temporal
data mining is to use it to measure adaptive behaviors and
temporal dynamics in human-human and human-robot in-
teraction. We collected multimodal data in such interactions
in which two agents (adults, children, or robots) were asked
to jointly accomplish a task (e.g. a human user teaches a
robot a set of object names, or a parent teaches his/her child
how to recognize and name a set of toys). Thus, both agents
jointly coordinate their behaviors to maintain a smooth in-
teraction. The goal here is to discover the characteristics
of coordinated behaviors at the multimodal sensorimotor
level. Our multimodal data include video streams from up
to 6 cameras recorded simultaneously with a frequency of
30 frames per second, speech, body movement data cap-
tured from a motion tracking system, and gaze data from
an eye tracker. We developed various tools to automatically
pre-process data and derive various time series (e.g. the
location of a particular object/person over time from a par-
ticular video stream, the movement trajectories of the head

1

agent A-obj1-size

agent A-obj2-distance

agent B-obj2-motion

agent A-head-speed

agent A-obj1-saliency

agent B-head-motion

Figure 5: Examples of multi-stream continuous time series
from agent A and B.

over time, the visual saliency of objects/people in a video
stream). Technical details of our data processing approach
can be found in [14, 15]. As a result, we have extracted
multiple time series measuring both perceptual and action
data from interacting agents. From such data, the goal of
this research is to discover the fundamental principles at
the sensorimotor level that lead to smooth human-human
and human-robot interaction. More speci�cally, within an
agent, what one visually perceives determines what action
would be taken next (e.g. usually we generate an eye �x-
ation on the target object before we start to reach for the
target). Similarly, the current action from the agent deter-
mines what the same agent will perceive next (e.g. a head
movement would switch the agent's visual �eld). Meanwhile,
across two agents, what one agent perceives also depends
on the other agent's actions. The goal of our research is
to �nd perception-action dynamics and dependencies from
those multiple sensory and action time series. Our �rst ef-
fort is to quantify the overall temporal dynamics between
multimodal time series.

To our knowledge, previous studies on the generating parti-
tion focused on mathematical simulation but this approach
has never been applied to complex heterogeneous time se-
ries collected from the real world with potentially various
dynamic properties and as well as various levels of noise.
Figure 5 shows an example of 6 time series used in this study
from which we cannot easily spot any patterns as those tem-
poral pro�les vary from one moment to another moment and
apparently in di�erent ways. In total, we used 71 time series
like the ones shown in Figure 5, each containing from several
hundreds to over a thousand data points. Again the tempo-
ral streams are derived from raw multimedia data, describ-
ing various perception and action behaviors generated by
two agents in a face-to-face interaction. From those micro-
level behavioral time series such as head motion, or visual
patterns from multiple cameras from di�erent viewpoints,
the goal here is to reconstruct the physical and social dy-
namics behind the time series that captures characteristics
in the interaction.

71 time series derived from multimodal interaction are ana-
lyzed using SDNN. The labels of 71 variables are classi�ed
with a combination of three terms: agents, objects, and sen-
sor types. The two agents A and B (denoted as �A� and
�B� respectively) are shown as pre�x of a label. Objects
including object 1, 2, 3, hands, head, naming target, and
non-naming target (denoted with abbreviations O1, O2, O3,
Hnd, Hd, T, and N respectively) are shown as the middle



part of a label. Sensor types including the size of an object
in a camera's view, the temporal di�erence of object size in
view or the speed of object, the distance of object from the
center of view, the saliency (based on low-level visual fea-
tures such as motion, orientation, and intensity) of object
in view (denoted with abbreviations Sz, Spd, Dst, and Sal
respectively) are shown as the su�x of a label. For example,
�A-O1-Sz� indicates the temporal variable coding the size of
object 1 from Agent A.

We �rst apply the logarithm of the original data and nor-
malize the results to have 0 as a mean and 1 variance across
time. The hyper parameter of symbolic is τ = 1, and that of
spatial nearest neighbors is σ = 1

2
(Note that the standard

deviation is normalized to be 1 in each dimension). The
linear weights (w in Equation 10) are used as a measure of
the dynamical structure of 71 temporal variables. SDNN
estimates 71 linear weights ({w1, . . . ,w71}), and we chose
the �rst 50 weights out of 71 which have shorter distances
among those data points supposed to be symbolic nearest
neighbors. Thus, an analysis of the linear weights suggests
that the variables similar in the linear weights would be in-
volved with similar dynamical processes.

5.2 Results
The data contain 1029 time points of 71 variables. The pat-
terns of linear weights, indicating the dynamical properties
of variables, are visualized using Multidimensional scaling
(Figure 6A). As a comparison, we also analyze the raw time
series and the results are shown in Figure B. In both Figure
6A and 6B, the distances between points approximate the
cosine of two variables in a higher dimension (either distance
50 dimensional eigenvector space or distance in the raw time
series).

However, the ways those time series are clustered are dif-
ferent. Figure 6A shows two di�erent types of clusters. one
type of clusters seems to be agent-based, containing the tem-
poral variables derived from only one of the two agents, and
the other type appears to be data-type-based, containing
temporal variables from both agent A and B but sharing
the same data types. Speci�cally, on both the top and the
bottom in Figure 6A, several variables from agent A and B
(e.g., �A-O1-Spd�, �A-O2-spd�, �A-O3-Spd�, etc., those vari-
ables coding the motion of three objects in agent A's view
form a cluster at the bottom) are visulized as separable clus-
ters. On the other hand, on both the left and the right side in
Figure 6A, temporal variables from two agents are grouped
into the same clusters with shared sensor types. For ex-
ample, the distances of multiple objects from agent A's or
B's camera view (e.g., �A-O1-Dst� and �B-O2-Dst�) are close
to each other. Those variables coding the distances of ob-
jects from a camera's view indicate which object that agent
wearing the head-amount camera is attending at a moment.
Based on a theoretical assumption, the variables with sim-
ilar linear weights in SDNN are supposed to share similar
dynamical properties. Thus, our results show that di�erent
variables coding what agent A and B are looking are identi-
�ed as sharing similar dynamical properties. Based on this
result, we can futher infer that agents A and B dynamically
adjust their behaviors to build and maintain joint attention
of the same object. For anexample, the motion saliency of
the same object either in agent A's view or B's view reveals
di�erent dynamical properties, while the motion saliency of
di�erent objects in the same agent's view shares similar dy-
namical properties. This pattern re�ects the physical setting
in the experiment � multiple objects captured from the same
camera may block each other and thefore co-vary over time.
In sum, SDNN analysis can capture both types of tempo-
ral correlations, one from the physical setting of experiment
and the other from social interaction between two agents.

00.20.40.60.81

B−T−Dst
B−N−Dst
B−O2−Dst
B−O1−Dst
B−O3−Dst
B−T−Sz
B−N−Sz
A−Hnd−Sz
A−O1−Dst
A−O3−Dst
A−O2−Dst
A−N−Dst
A−T−Dst
A−O1−Sal
A−O3−Sal
A−O2−Sal
A−N−Sal
A−T−Sal
A−T−Sal
A−N−Sal
A−O1−Sz
A−O3−Sz
A−O2−Sz
A−−Sal
A−T−Spd
A−N−Spd
A−Hd−Spd
B−−Dst
B−Hnd−Spd
B−Hd−Spd
A−O1−Sal
A−O3−Sal
A−O2−Sal
B−T−Spd
B−N−Spd
A−−Sal
B−O1−Spd
B−O2−Spd
B−O3−Spd
A−Os−Nmb
B−Os−Nmb
A−−Dst
A−Hd−Spd
A−O1−Spd
A−O2−Spd
A−O3−Spd
A−T−Sz
A−N−Sz
A−Hnd−Dst
B−Hd−Spd
A−O1−Sal
A−O2−Sal
A−T−Sal
A−N−Sal
A−O3−Sal
B−Hnd−Dst
A−O1−Dst
A−O3−Dst
A−T−Dst
A−N−Dst
A−O2−Dst
A−Hnd−Spd
B−Hnd−Sz
B−O1−Sz
B−O2−Sz
B−O3−Sz
B−O1−Dst
B−O2−Dst
B−T−Dst
B−N−Dst
B−O3−Dst

(A) SDNN

Normalized Cosine
00.20.40.60.81

B−N−Dst
B−N−Dst
B−O3−Dst
B−O3−Dst
B−O1−Dst
B−O1−Dst
B−T−Dst
B−T−Dst
B−O2−Dst
B−O2−Dst
B−Hnd−Dst
B−−Dst
B−Hd−Spd
B−Hd−Spd
A−O1−Dst
A−O1−Dst
A−N−Dst
A−N−Dst
A−O2−Dst
A−O2−Dst
A−Hd−Spd
A−Hd−Spd
A−O3−Dst
A−O3−Dst
A−T−Dst
A−T−Dst
A−Hnd−Dst
B−Os−Nmb
A−O1−Sz
A−N−Sz
A−O1−Spd
A−N−Spd
A−O1−Sal
A−O1−Sal
A−N−Sal
A−N−Sal
A−O1−Sal
A−N−Sal
A−−Sal
A−−Dst
A−O3−Sz
A−O3−Spd
A−O3−Sal
A−O3−Sal
A−O3−Sal
A−Os−Nmb
A−O2−Sz
A−O2−Spd
A−O2−Sal
A−O2−Sal
A−O2−Sal
A−T−Sal
A−T−Spd
A−T−Sz
A−T−Sal
A−T−Sal
A−Hnd−Sz
A−Hnd−Spd
A−−Sal
B−O1−Sz
B−O2−Sz
B−N−Sz
B−O3−Sz
B−T−Sz
B−Hnd−Sz
B−O1−Spd
B−T−Spd
B−O2−Spd
B−N−Spd
B−Hnd−Spd
B−O3−Spd

(B) Raw Time Series

Normalized Cosine

Figure 7: Hierarchical clustering of (A) SDNN and (B) raw
time series

This observation is also supported by hierarchical cluster-
ing of the linear weights from SDNN (Figure 7A). In those
small clusters within shorter distances, we found the vari-
ables coding similar physical properties (e.g., �B-O1-Dst�,
�B-O2-Dst�, �B-O3-Dst� on the bottom of Figure 7A), but,
in the next level of clustering with longer distances, the sim-
ilar sensory variables from two agents (e.g., �B-O*-Dst�, �A-
O*-Dst� are next to each other on bottom of Figure 7A) are
grouped together.

Meanwhile, the comparable analysis on raw time series, by
taking cosine of two time series as metric, show very di�er-
ent patterns (Figure 6B and Figure 7B). It fails to detect
any between-agent clusters and captures only the overall
physical setting of sensors: variables from one agent tend to
be similar in both MDS visualization and hierarchical clus-
tering regardless of sensor types. This result suggests that
the analysis on raw time series may not be able to capture
deeper correlations of �social interaction� between agent A
and B, but only some simple correlations at the surface. We
already know that those variables derived from Agent A are
generally correlate with each other. The goal of analyzing
multimodal interaction data is to discover and quantify mul-
timodal measures between interacting agents.

The present case study using time series data derived from
multimodal agent-agent interactions demonstrates that SDNN
successfully captures social interactions between two agents
without any prior knowledge on experimental settings such
as types of sensors used or the fact that two agents are com-
municating. Since our goal is to pursue a deeper understand-
ing of multimodal communication between two agents, we
have to go beyond what we have already know. SDNN as an
unsupervised machine learning technique shows a promise
that may suit for this purpose well by providing objective
measures and analyses on multivariate time series.

6. CONCLUSION
The present study proposes a new symbolization algorithm
for �nding latent dynamical properties in heterogeneous time
series. The algorithm relies on generating partition which
theoretically characterizes essential properties of a given dy-
namical system. Unlike the previous versions of generating
partition, SDNN is robust to noise and suitable for the ap-
plication for the dataset from the real world with unknown
noise, due to its two inherent properties. First, SDNN o�ers
a Bayesian framework for symbol dynamics. It enables us



Figure 6: Multidimensional scaling visualization of (A) SDNN and (B) raw time series

to access symbol dynamics in a general form, and it opens
secondary use of it. Second, supported by the probabilistic
framework, unsupervised dimension selection works for dis-
covery of dynamical property and reduction of noise factor.
In particular, the second feature of SDNN, dimension selec-
tion, is useful for analyzing unknown time series including
unknown dynamical property and noise factors. With two
case studies in the present work, we suggest that SDNN
based on generating partition has the potential to be used
as a way to analyze multi-stream time series.

Large datasets of multimodal time series with high temporal
(up to 10ms) and spatial (image pixel level) resolutions pose
an unprecedented challenge in machine learning. Besides the
pure amount of data, a particular demand is that very often
such dataset creates an enormous search space for poten-
tially interesting patterns. Therefore, a critical step is to
start from scratch and analyze the overall temporal dynam-
ics and structures from a set of temporal variables. By doing
so, we can dramatically reduce the search space and boot-
strap the whole pattern discovery process. Here we argue
that SDNN introduced in this paper can serve this purpose
by exploring statistical regularities in unsupervised mode
without the need to add any prior knowledge/constraint.
Just as a microscope allowing biologists to see objects too
small for the naked eye, we suggest that data mining tech-
niques combined with high-resolution multimodal data allow
us to �nd novel micro-level behavioral patterns in multi-
modal interactions. Our present work shows the promise of
this new data-driven venue.
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