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Abstract― Postural balance is our basic motor ability that 

recently measured for clinical assessment of Parkinson’s 

disease. Based on our hypothesis that a loss of dopamine-

secreting neurons causes delay in reaction time, we 

explored to characterize postural balance ability by 

applying auto-regressive models with time delay to the 

center-of-pressure time series. The binary classification 

between Parkinson’s disease patients and healthy people 

achieved about 70% of accuracy, by adding features from 

auto-regressive models. 
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1. Postural balance and Parkinson’s disease 

Postural balance is one of the basic motor abilities to 

maintain our body’s center of gravity within our body’s 

base of support. The center of gravity outside the base of 

support raises a risk of falling over, which can be caused 

even by simple daily motions, such as walking and 

pushing/pulling. Thus, difficulty in keeping postural 

balance may significantly increase difficulty in our daily 

tasks and so in our life. 

Difficulty in postural control is often reported as one of 

the symptoms of Parkinson’s disease. Parkinson’s disease 

is known as a neurological degenerative disorder, 

specifically developed due to a loss of dopamine-secreting 

neurons in the substantia nigra [1]. It affects mainly the 

motor system of the patient’s brain. The observed motor 

symptoms of Parkinson’s disease include shaking of limbs, 

freezing of gait, and difficulty in postural balance [2,4]. 

Parkinson’s disease is typically slowly-progressive, and 

several medicinal treatments (e.g., levodopa injection) can 

be effective especially for patients in early stage. Earlier 

detection of Parkinson’s disease is desirable. 

The Hoehn-Yahr scale [2] is a clinical system commonly 

used for assessing the progression of Parkinson’s disease 

based on observed symptoms. Based on the current 

knowledge on Parkinson’s disease symptoms, namely 

difficulty in postural balance, the handy biomechanical 

device called “force plate” has been adopted to evaluate 

each patient’s ability of maintaining postural balance. 

Force plates are a measurement device on the floor to 

record the center of pressure (CoP) of the user, who 

mounted on it, instead of hardly-accessible the center of 

gravity of the user. The merits of using force plates are 

non-invasive, inexpensive, and easy-to-use. Previously, 

the length of a CoP path or trace (called “path length”) for 

a fixed time range [3] has been known to be a better 

predictor of the progression stage of Parkinson’s disease 

[4] in the sense of the Hoehn-Yahr scale. In this paper, we 

explore the use of a dynamic model-based characteristics 

to discriminate patients with Parkinson’s disease from 

healthy people, based on their CoP paths, toward early 

detection of postural balance difficulty, or Parkinson’s 

disease. 

 

2. Method 

2.1. Data collection 

The data was collected by [4] at Thammasat University 

in Thailand. We describe briefly here; see [4] for details. 

Sixty-two patients of Parkinson’s disease (in short, PD 

patients) and 53 healthy people were recruited. We call 

them simply participants. 

The center-of-pressure of each participant was recorded 

by a force plate, the Wii Balance Board from Nintendo. It 

contains four pressure sensors at the corners of the bottom 

and the four sensors are used to calculate the location 

(𝑥, 𝑦)  of the user’s center of pressure over time. Each 

sensor measures in unit of about 10 gram. The sampling 

rate is about 100 Hz. The side-to-side dimension (x) is 

511mm and the front-to-back dimension (y) is 316mm. 

For the data we used here, the participants were 

instructed to keep standing naturally on the force plate 

while looking at a marker on the wall in about 3m distant 

from them. The participants were just standing for the first 

and last 30 seconds with open eyes and were asked to close 

their eyes for 30 seconds in the middle of measurement. 

The raw time series for all 90 seconds were analyzed here. 

 

2.2. Hypothesis and statistical modeling 

Making an indicator of inability of postural balance has 

been attempted in clinical practice, for example, by the 

total length of a CoP path, called “path length”, for a fixed 

time range [3]. Path length can be convenient from a 

clinical point-of-view. But, the time series of CoP paths 

would enclose more to detect the latent presence of 

Parkinson’s disease than a scalar-valued quantity (path 

length). This motivated us to incorporate time-series 

models for characterizing the underlying dynamics behind 

CoP paths. 

Based on the current neurological findings that 

Parkinson’s disease correlates with a loss of dopamine-

secreting neurons and the symptoms include difficulty in 

postural balance, we hypothesized that there might be a 

time delay unusual in their sensor feedback and motor 

activation cycle (sensor-motor loop), so in their reaction 

time, hopefully due to the weakness of secreting dopamine. 

We suspect that accumulated effects of instantaneous 

delayed reactions cause instability of postural balance to 

(probably not all but some types of) Parkinson’s disease 

patients, and their delays in reaction time could be 

extracted from their CoP paths. For this hypothesis, the 

underlying dynamics behind a CoP path observed is 



modelled by an auto-regressive process with time delay, 

which can exhibit mean-reverting behaviors given some 

parameters. Indeed, observed CoP paths usually are 

apparently moving around some point, often the middle 

between their feet; otherwise, the participants fall over or 

get outside the force plate (we observed no such case). 

An auto-regressive model AR(p) we adopted here is 

𝑦𝑡+1 = 𝑐 +∑𝑎𝑖𝑦𝑡+1−𝑖

𝑝

𝑖=1

+ 𝜀𝑡 

where 𝑦𝑡  is observed variable at time 𝑡 = 1,… , 𝑇 , 

𝑎1, … , 𝑎𝑝 is auto-regression coefficients, 𝜀𝑡 ∼ 𝑁(0, 𝜎) is 

Gaussian noise, and 𝑐 is constant. AR(p) models predict 

future observation 𝑦𝑡+1  from its own past observations 

𝑦𝑡 , … , 𝑦𝑡+1−𝑝 . The coefficients 𝑎1, … , 𝑎𝑝  characterize 

linear dependence on past values of the process itself. The 

smaller |𝑎1|, the AR(1) is the more like the white noise, 

moving around near the mean. Given 𝑎1 = 1, the AR(1) 
is well-known the random walk, which can go away from 

the mean. The variance 𝜎2 of noise can be interpreted as 

a velocity of the AR(p) process. The larger 𝜎2, the AR(p) 
will move the more at an instant. 

To incorporate the effects of reaction time delays in 

AR(p) models, we replace 𝑦𝑡+1−𝑖 by 𝑦𝑡+1−𝑖𝛿  given step 

size 𝛿. We refer to 𝛿 > 0 as time delay parameter. Let us 

denote this by AR𝛿(𝑝). 
We set the task here to a two-class classification 

between patients with Parkinson’s disease and healthy 

people, based only on their CoP paths. That is, the task is 

identifying the latent medical/physical condition of a 

participant (PD patient or healthy person) from the force 

place data. We applied a logistic regression analysis for the 

feature vector consists of (𝑐, 𝑎1, 𝜎) estimated by AR𝛿(𝑝) 
models for 𝛿 = 1,… ,20. For each AR𝛿(𝑝), the best lag 𝑝 

was chosen so as to minimize AIC. The feature vector for 

each participant has length 3 × 20. 

Based on this AR𝛿(𝑝) model, we expect that the CoP 

paths of PD patients tend to show larger coefficients 𝑎𝑖 
and/or larger variance 𝜎2 , since combining both yields 

wider spreading, more fluctuated path within a fixed time 

range; it is considered to be instable in postural balance. 

Oppositely, we expect that the CoP paths of healthy people 

will show smaller 𝑎𝑖  and 𝜎2 , resulted in narrower 

spreading path is considered to be stable in balance. 

 

3. Results 

In our logistic regression analysis, 𝑁𝑃 = 62  of 

Parkinson’s disease patients and 𝑁𝐻 = 53  of healthy 

people were involved. A half from each class were 

randomly taken for a training set and the other half from 

each class for a testing set. Totally, 200 different training 

sets and testing sets were used to obtain the classification 

accuracy. 

The average accuracy of this binary classification was 

about 66.6% with auto-regressive features, while path 

length, one of the clinical standard measurements for 

clinical assessment, could achieve only near 50% change 

level in classification accuracy. Thus, our auto-regressive 

features might successfully extract more clues related to 

Parkinson’s disease from their CoP time series. 

We have also considered two other features, such as 

max{𝑎𝑖} and/or ∑ 𝑎𝑖
𝑎𝑖>0
𝑖=1  to characterize largest positive 

correlation and/or total positive correlation on their history 

(in our analysis, the first 𝑎1 > 0  for all participants). 

Adding those into the feature vectors increased the 

classification accuracy to about 70.1%. 

 

4. Discussion 

To know how the classification accuracy increased, we 

checked the weights (i.e., logistic regression coefficients; 

not 𝑎𝑖) of the logistic regression analysis. The 1st auto-

regression coefficient 𝑎1  of time delay 𝛿 = 3  had the 

largest contribution to the accuracy, and those of 𝛿 = 4, 5 

showed similarly but less. It has been known that the 

human reaction time for limb reflexes is about 25~35ms 

[5,6]. In our study, from the frame rate of the Wii Balance 

Board which is 100 Hz, the time delay 𝛿 = 3 corresponds 

to 30ms. Thus, this result might suggest that there are 

informative difference even in such small time fragments 

to discriminate participants’ medical/physical conditions 

relating their ability of postural balance. 

At this time delay δ = 3, we found that the coefficients 

𝑎1  of healthy people tended to take smaller values than 

those of Parkinson’s disease patients (𝑡(113) = 3.84, 𝑝 =
0.00) and the variances 𝜎2 also showed similar tendency 

( 𝑡(113) = 1.86, 𝑝 = 0.06 ). These results were roughly 

saying consistent with our expectation (the last paragraph 

of Section 2) based on AR𝛿(𝑝) models. Thus, our results 

suggest that our dynamic model-based characterization of 

participants’ CoP paths may capture some nature of the 

unknown underlying postural control systems, of human 

participants, which might be informative for early 

detection of difficulty in postural balance control. 

Hopefully, our findings promote early detection of some 

trends for Parkinson’s disease. 
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