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Abstract

Three-dimensional motion tracking has enjoyed various applications in computer1

graphics and other fields. One of the technical issues common in optical motion2

capture systems is time-consuming manual data correction for partially missing3

points and mis-tracking of objects. There has been several existing algorithms for4

recovering a point-to-point correspondence between two non-aligned point-sets at5

two distinct time frames. The many of these algorithms explicitly estimate trans-6

formation from one set of points to the other, but they often result in sub-optimal7

solution. Unlike this existing approach, we propose to exploit the distance matrix8

that is invariant under isometric transformation. This distance-based approach9

takes a form of quadratic assignment problem, that is efficiently approximated10

by a nested form of linear assignment problems. In numerical experiments, the11

proposed nested Hungarian algorithm found the one-to-one correspondence be-12

tween point-sets with missing points and mis-tracking more accurately than the13

alternative algorithms.14

1 Motion tracking by optical motion capture systems15

Three-dimensional motion tracking has enjoyed various applications in the field of computer graph-16

ics and biomechanics. In computer graphics applications, such as video games, films, and virtual17

reality, the motion dataset of human subjects is used to produce realistic motion of the virtual char-18

acter. In biomechanics, sports science, and their related research fields, recording human or animal19

movements provides the primary data source for the basic research on kinematic characteristics of20

their movements.21

The motion capture system records the shape/posture of a subject at each time point as a collection22

of points in the three-dimensional coordinates, (x, y, z), each represents the location of a marker at-23

tached on the subject. Among various motion capture technologies, optical motion capture systems,24

composed of multiple infra-red ray cameras and reflective markers, is of a standard choice to capture25

fine-grained motion patterns due to its high frame rate (over 240 frames per second). In principle,26

however, it has the technical limitation such that markers would be frequently dropped from the27

sample due to occluding objects. Since infra-red rays cannot pass through the subject’s body, the28

optical systems cannot detect reflective markers being occluded by the subject’s body or something29

occluders. The other problem is that the markers are often mis-tracked or switched over, when two30

markers pass similar spatial and temporal point.31

These two types of errors, dropping and mis-tracking, cause considerable cost in data cleaning, often32

made manually, before any data analysis of the data collected by the optical motion capture system.33

In practice, data cleaning, interpolation of the missing markers and identification of markers, is often34

manually performed and eyeball checked. It is time-consuming (e.g., 40 markers captured for 1035

minutes in 240 Hz produce 5,760,000 points), and it is often a bottle-neck of the work flow in any36
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use of motion data. The goal of this study is to propose an automated preprocessing algorithm for37

this class of problems.38

In 1970s, the researchers of computer vision have formulated the motion tracking as the so-called39

correspondence problem [10]. Since then, the correspondence problem is one of active research40

topics in computer vision. The correspondence problem is to find a one-to-one correspondence41

between the two given sets of points (point-sets). In the motion tracking case, each point-set includes42

multiple points, where each marker at a time frame is represented as a point in the 3D coordinates,43

and motion tracking is to find a one-to-one correspondence between points across the two point-sets44

at distinct time frames.45

A naive algorithm for the correspondence problem would be to match a nearest-neighbor point in46

a point-set to each point in the other one, under the assumptions that the two point-sets have the47

same number of points, and the point-set has points quite close to one of them in the other point-set.48

In practice, this algorithm may work well, if this assumption holds (that is likely, if two point-sets49

are the consecutive samples at high frame rate). With some markers missing in either/ both of the50

point-sets, however, this algorithm can fail to find a one-to-one correspondence.51

In practice, however, a number of markers keep missing for seconds or even longer interval, for52

example, when the subject’s limbs occlude the markers attached on his/her torso. With such long-53

term missing data points, the naive algorithm mentioned above cannot work properly. A class of54

algorithms, e.g., [1], is motivated to find a partial point-to-point correspondence under a certain55

assumption on the global consistency of the object. For instance, the subject’s body is supposed to56

be one or more rigid bodies, and a one-to-one correspondence between two point-sets is searched on57

the basis of point-to-point proximity under a certain isometric (distance-preserving) transformation.58

In this paper, we present our new algorithm to find a partial correspondence between two point-59

sets under the assumption that the object is a rigid body. Our algorithm is motivated to exploit the60

characteristics of the point-set, invariant under isometric transformation. Specifically, our algorithm61

uses the n×n andm×m distance matrices of the point-set with n points and the other point-set with62

m points, respectively. These distance matrices are invariant under any isometric transformation up63

to a permutation, and thus, the correspondence problem is reduced to find a permutation for each64

of these distance matrices. This computational process is closely approximated by a set of linear65

assignment problems [4]. As each linear assignment problem is solved efficiently by the well-known66

Hungarian algorithm [7, 11], we call our algorithm nested Hungarian algorithm.67

In Section 2, we briefly illustrate the correspondence problem. In Section 3, we introduce the special68

case of correspondence problem of a rigid body, and present the nested Hungarian algorithm. In69

Section 4, we evaluate the proposed algorithm in a series of numerical case studies by comparing it70

with the existing algorithms.71

2 Correspondence for real-world 3D shapes as point-sets72

2.1 The correspondence problem73

Suppose that there are n reflective markers, each attached on a body part of a subject, and the74

markers are fixed on the same points on the body over time. We assume the subject’s body is one or75

more rigid bodies, but not completely deformable matter.76

Let A ⊂ R3 and B ⊂ R3 be two point-sets, and each has the n markers (as points) in a three-77

dimensional Euclidean space. We identify each marker in the point-set by the indices i = 1, . . . , n,78

and denote the ith point in the point-setA by ai ∈ A (and the point-set B by bi ∈ B). The point-sets79

A and B represent the two set of markers recorded at two distinct time frames, but the identity of80

each marker is not always preserved by the indices across the two point-sets.81

For now, we suppose there is no missing marker: Every marker in the point-set A has exactly82

one corresponding marker in the point-set B. We will relax this condition later. Denote by the83

matrix with the vector ai at the ith row by A = (ai) ∈ Rn×3 (and with bi at the ith row by84

B = (bi) ∈ Rn×3).85

A one-to-one correspondence between the point-sets A and B is a bijective map p : {1, . . . , n} →86

{1, . . . , n}, that satisfies a certain condition. In a matrix form, such a bijective map is equivalent87

to a permutation matrix P ∈ {0, 1}n×n, where the sum of all elements in every row and column is88
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1. For given A and B, the corresponding problem under an unknown isometric transformation is to89

find a pair of permutation P and isometric transform f : Rn×3 7→ Rn×3 such that90

Pf(A) ∼ B, (1)

where the operator X ∼ Y represents a class of similarity between matrices X and Y . Equation (1)91

implies that there are two inter-dependent problems in the “chicken-and-egg” relationship [1]. If a92

permutation P is given, one can find the isometric tranformation f satisfying (1). If f is given, one93

can find the P . However, if all P and f are simultaneously unknown, it is not trivial to find P and f94

of a desired condition.95

2.2 Transformation-based and distance-based approach96

In past literature, there are at least two major classes of approach to the correspondence problem (1).97

The first approach is to explicitly estimate the isometric transformation f as well as P in an iterative98

manner, which we call transformation-based approach. The second one is to estimate only the99

permutation P by using the distance (dissimilarity) matrices constructed from A and B, which we100

call distance-based approach. The transformation-based one is computationally cheaper, but it may101

result in sub-optimal solution, due to its iterative procedure for dual-minimization of both P and f102

[12]. The distance-based approach essentially avoids the chicken-and-egg problem and need to find103

only permutation P , as the distance matrices are invariant under any isometric transformation. It is,104

however, computationally extremely costly, as its exact search is known as a NP-complete problem.105

In this study, we propose a computationally feasible algorithm as an approximation of the distance-106

based approach.107

3 Correspondence under isometric transformations108

3.1 Distance-based formulation of the correspondence problem109

The key observation of the distance-based approach is the distance matrix D(A) =110 (
dAi,j
)
i,j∈{1,...,n} ∈ Rn×n, where dAi,j = ‖Ai − Aj‖ and Ai ∈ R3 is the ith row of A, is invari-111

ant under isometric transformation f : i.e., D(f(A)) = D(A). Thus, the correspondence problem112

(1) is reformulated to find a permutation P ∈ Rn×n such that113

PD(A)P> ∼ D(B). (2)

Introducing an error function, such as the summed squared error E = ‖PD(A)P>−D(B)‖ where114

‖X‖ =
∑

i,j X
2
i,j , it is a quadratic assignment problem to find the minimizer P of E, that is known115

as a NP-complete problem [3].116

3.2 Nested linear assignment problems117

Therefore, we reformulate the problem (2) by a hierarchical linear assignment problem. To illustrate118

our idea, consider the special case PD(A)P> = D(B) with an exact correspondence between A119

and B. In this case, with such permutation P , there is some permutation Q ∈ Rn×n independent of120

P satisfies121

PD(A)Q> = D(B), (3)
andQ = P is unique, if there is no exchange of any two rows inA that preserves the distance matrix122

D(A). This means that there is permutation Q such that123

(dAj,1, . . . , d
A
j,n)> = Q(dBi,1, . . . , d

B
i,n)>, (4)

for all i, j such that Pi,j = 1 or ith point in B corresponds with jth point in A. For each pair (i, j),124

Q in (4) is solved by a linear assignment problem125

Q̂ := arg min
Q

tr (Di,jQ) , (5)

where Di,j := (‖dAj,k − dBi,l‖)k,l∈{1,...,n} ∈ Rn×n. Then the permutation P is given by another126

linear assignment problem127

P̂ := arg min
P

tr (CP ) , (6)
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ALGORITHM 1: Nested Hungarian algorithm

Input: Two point-sets A ∈ Rn×3 and B ∈ Rm×3

Output: Correspondence P
D(A) = (dA

i ) is the distance matrix of A
D(B) = (dB

j ) is the distance matrix of B
C ∈ Rn×m

for i = 1 to n do
for j = 1 to m do

Compute
[
Q̂, cij

]
using Hungarian(Di,j)

Set the (i, j) element of C to cij
end

end
Compute [P̂ , c ] using Hungarian(C)

where C = (ci,j) ∈ Rn×n with ci,j := minQ tr (Di,jQ). This observation holds only if there is128

no exact match PD(A)P> = D(B), but it reduces the original quadratic assignment problem (2)129

to the nested linear assignment problem of (5) and (6). As the linear assignment is solved by the130

Hungarian algorithm calling the function O(n3) times [4], this nested linear assignment problem is131

solved by O(n5) times of the function calls.132

In summary, this procedure mentioned above is implemented by the nested Hungarian algorithm133

described in the psudo-code (Algorithm 1) for the point-set A with n points and B with m points.134

In the pseudo-code, the function Hungarian(·) is an implementation of the Hungarian algorithm,135

computing the minimal total cost cijand the correspondence Q̂. Note that the nested for loops can136

be computed independently. Thus, the construction of C in Algorithm 1 can be parallelized, and137

then its computational complexity will be reduced to O(n3).138

4 Related works139

In the following section, we will report numerical studies comparing the nested Hungarian algorithm140

with the representative existing algorithms. Here we briefly overview them. Some of the following141

algorithms for shape/feature matching is not developed specifically for the correspondence problem142

of interest, but for more general problems than it. Here we choose the existing algorithms according143

to their applicability to the correspondence problem under isometric transformation.144

As an algorithm taking the transformation-based approach, Basl [1] has proposed Iterative clos-145

est point (ICP) algorithm that finds a locally minimal correspondence by iteratively searching the146

nearest-neighbor and the least-square rotation and translation. However, this algorithm often results147

in a local minimum, that is not sufficiently good in practice [12]. An extension of ICP algorithm [5]148

for non-rigid shape matching approximates non-rigid deformable subjects as a patchwork of small149

rigid segments.150

As an algorithm taking the distance-based approach, Maciel [9] and Berg [3] have proposed an151

algorithm to match image patch of a set of pixels, by formulating it as a constrained concave pro-152

gramming problem. Leordeanu [8] has proposed the spectral matching algorithm, that is motivated153

by the graph/network analysis techniques. It solves a Google’s Page rank-like problem on a graph154

of points (as nodes) A ∪ B and then extracts a node-to-node correspondence from the visiting fre-155

quency of the nodes. This spectral matching algorithm is computationally efficient and reported its156

good performances in practice [12].157

5 Experiments158

We tested our algorithm by comparing it with existing algorithms. Our motivation here is how159

accurately our algorithm finds the underlying one-to-one correspondence, rather than the running160

speed of algorithms. Thus, we analyzed the accuracy of estimated correspondence P under several161

perturbations, including measurement noise and isometric transformations (rotation and translation).162

For the notational simplicity, we identify point-set A and its matrix representation A in this section.163
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5.1 Implementation of existing algorithms164

We compared our algorithms with the existing ones proposed in [1, 9, 3, 8]. We implemented165

Itereative closet point algorithm [1] using the k-d tree [2] and the least-square algorithm [6]. For166

the shape-in-image matching algorithms [9, 3, 8], instead of the pixel-based point-sets in high-167

dimensional feature space, we just used the 3D coordinates in the Euclidean space, and their dissim-168

ilarity matrix was constructed from distances within A, within B, and between A and B.169

5.2 Tolerance against noise and invariance under isometric transformations170

To test these algorithms, we define the accuracy by the ratio of the number of datasets for which each171

algorithm found the exactly correct correspondence to the number of all datasets. Specifically, (1) a172

point-set A of size n× 3 are uniformly randomly generated within [0, 1]n×3. Then, (2) generate the173

opposite point-set by B = AR∆ + 1nT + E for a given matrix A, where 1n ∈ Rn×1 is the vector174

with every element being 1, R∆ ∈ R3×3 is randomly generated rotation matrix, T ∈ [0, τ ]1×3 is a175

translation vector with uniformly random values, and E ∈ Rn×3 is element-wise noise with each176

element drawn from the normal distribution N(0, ε) with the variance ε2. The rotation matrix R177

is generated via QR decomposition of uniform random matrix, and R∆ is R to the power of ∆.178

To evaluate the accuracy, each algorithm was tested for 100 randomly-generated A and B for each179

combination of ∆, τ , and ε. Here we set the number of points in the point-set A to be n = 10.180

Figure 1(a) shows the accuracy against the power ∆ = 0, 0.1, . . . , 1.2 to rotation given τ = ε = 0181

and (b) the accuracy against translation τ = 0, 0.1, . . . , 1.2 given ∆ = ε = 0. Our algorithm182

‘Proposed’ shown as red markers produced the correct correspondence P exactly 100% for all the183

rotations and translations. This result shows that the algorithm is robust for a wide range of isometric184

transformations. This robustness comes from the nature of our algorithm based on the distance ma-185

trix, is the invariant under isometric transformations. We found ‘Berg2005’ [9, 3] also performing186

as good as ours against rotation and translation, whose result overlaps underneath of the ’Proposed’187

one in Figure 1 (a) and (b). Iterative closet point algorithm ‘Basl1992’ [1] showed lower accuracy188

against larger rotations and translations, and the result shows its limitation under isometric transfor-189

mations.190

Figure 1(c) shows tolerance against measurement noise ε = 0, 0.01, . . . , 0.12 given ∆ = τ = 0191

and (d) against noise ε combined with rotation ∆ = 1 and translation τ = 1. In the conditions of192

noise effect alone (Figure 1(c)), our proposed algorithm performed worse than ‘Berg2005’ [9, 3] and193

‘Basl1992’ [1] as the scale of noise increased. This is probably due to the two algorithms ‘Berg2005’194

[9, 3] use the distances between points within each point-set A or B, as well as distances between195

the point-sets A and B. In contrast, our proposed algorithm is based on the distances within each196

point-setA orB. However, combining noise and transformations shown in Figure 1(d), our proposed197

algorithm outperformed others, since our algorithm less affected by isometric transformations. Thus,198

these analyses with noise and isometric transformations revealed both advantage and disadvantage199

of our algorithm.200

5.3 Tolerance against missing values: partial subset correspondence201

Next, we tested our algorithm against missing values. Specifically, we generated two point-sets A202

and B in the same procedure above. Then, after generated A and B, 7 rows (7 points) of A were203

dropped as missing values. By this, all the corresponding points of A still exist inB but some points204

of B has no corresponding points in A, i.e., the problem of injective partial correspondence. In this205

analysis, the accuracy is defined by the ratio of the number of datasets for which each algorithm206

could find the exactly correct correspondence between non-missing points between A and B to the207

number of all datasets. Here we supposed that the all 3 remaining points of A are on the same rigid208

body of the subject, but the other 7 omitted points of A can be on arbitrary rigid bodies other than209

this one. In other words, this experiment was intended for the cases finding a partial (subset) corre-210

spondence between a single rigid body A and multiple rigid bodies B, or finding a corresponding211

subset of A in B.212

Figure 2(a)–(d) show the results of partial correspondence under the same conditions as Figure 1(a)–213

(d). In Figure 2(a) rotation only and Figure 2(b) translation only, our proposed algorithm achieved214

100% of accuracy. But, for these conditions, ‘Berg2005’ [9, 3] greatly decreased its accuracy of215

correct response, in contrast to the full correspondence case (see Figure 1(a) and (b)). In (c) noise216
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Figure 1: Rates of producing correct correspondence in several conditions. The number of points
in A and B is both 10, and no missing value. Types of perturbations differ: (a) rotation only, (b)
translation only, (c) noise only, (d) combination of noise, rotation and translation.
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Figure 2: Rates of producing correct “partial” correspondence in several conditions. The number of
points inA is 3 and in B is 10. There are 7 missing values. Types of perturbations differ: (a) rotation
only, (b) translation only, (c) noise only, (d) combination of noise, rotation and translation.

only, our proposed algorithm hardly produced correct partial correspondence under largely noisy217

conditions, but ‘Berg2005’ [9, 3] and ‘Basl1992’ [1] kept higher accuracy overall. It is probably218

due to the use of distances between point-sets. However, again in (d) combination of noise and219

transformations, our proposed algorithm relatively worked better than other existing algorithms.220

Again, this analysis on the partial correspondence shows the advantage of using the invariant under221

isometric transformations.222
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6 Discussion223

In applications to realistic data recorded by optical motion capture systems, the relationship between224

the smallest distance between points and the scale of noise matters. The precision of a recent optical225

motion capture system [13] achieves up to 0.5 mm. When using a standard marker placement,226

the smallest distance between two markers is about 100 mm. In the experiments in the previous227

section, the smallest distance between two points is in average about 0.165. Thus, the corresponding228

precision (scale of noise) in the previous experiments is about 0.000825 (= 0.5 × 0.165/100).229

At this scale of noise ε = 0.000825 with random Euclidean transformations (∆ = τ = 1), the230

accuracy or the rate of exactly correct response over 97% in average was achieved by our proposed231

algorithm for finding partial (subset) correspondence (as Figure 2(d)). However, at the same scale232

of noise, the other algorithms achieved less than 2% of correct response. Thus, when to find full and233

partial correspondence between two point-sets at two largely-apart time frames, the proposed nested234

Hungarian algirithm alone is effectively applicable to a recorded data with optical motion capture235

systems.236

Our algorithm currently has limitation in finding a correspondence between two multiple rigid bod-237

ies. Extension of our algorithm for two multiple rigid bodies is our on-going future work.238
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