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Abstract 

In a long history of studies on language development, the 
lexical diversity has been used as one of measure of 
vocabulary growth. A typical analysis, type-token ratio, 
which is ratio of sample size of words to the number of 
unique types of words, has been used as a measure of lexical 
diversity. Because the type-token ratio is not valid for 
vocabulary sets with different token sample size, recently, an 
improved measure has been proposed. In the present study, 
however, we show that the diversity estimated by the past 
proposed measures are not robust for corpus with different 
sample sizes. Accordingly, we propose a new formal model of 
the lexical diversity, which distinguish the latent number of 
types and property of frequency distribution robustly for 
different token size. The proposed model is compared to other 
measures of lexical diversity. We also applied the method to 
an actual vocabulary development data. 

Keywords: Lexical diversity; Small sample size; Number of 
latent types; Power-law distribution 

Formal Measures of Lexical diversity 

Lexical diversity has been considered as one of central 

characteristics of a corpus. In corpus linguistic literatures, 

there are many proposals for a measure of the lexical 

diversity. However, most of these proposals have suffered 

from the problem that these measures of lexical diversity 

vary depending on the sample size. For example, the type-

token ratio is one of the most frequently used measure of 

lexical diversity. The type-token ratio is the ratio of types, 

the number of unique words, relative to tokens, the number 

of sampled words. It has been still used nowadays despite of 

its well-known flaw.  An apparent flaw of this method is 

that the type-token ratio depends on the sample size of 

tokens. A corpus with a larger number of tokens might have 

a relatively smaller number of types, because no types 

would appear after all possible types are sampled. Due to 

this nature of the type-token ratio, one must compare the 

type-token ratio of the same sample size. This is well known 

in the literatures (Javis, 2002; Malvern & Richard, 2002). 

Since measures of lexical diversity vary on the sample size 

more or less in general, many studies have proposed 

different ones in order to normalize the sample size effect. 

The first kind of proposal is to use a transformed function 

of type-token ratio, such as type-token ratio with squared 

sample size (Guiraud, 1954), logarithm (Herdan, 1960; 

1964), power function (Dugust,1979), etc. However, these 

transformations has the same problem as the type token 

ratio has (for example, Weitzman, 1971). 

The second kind of proposals is based on 

frequency spectrum, using the number of types sampled i-

times in sample size M, ( )MiV , . For example, Good 

(1953) propose the entropy of frequency distribution as a 

measure (Good, 1953), however, this measure also depends 

on sample size (Johnson, 1979). 

The third kind which has been proposed relatively 

recently is a curve fitting method using the type-token ratio 

as function of sample size. Malvern & Richard (1997, 2002) 

have proposed the slope parameter of the type-token ratio 

curve as a measure of lexical diversity. If the curve of type-

token ratio as function of sample size follows a particular 

class of function with some free parameter, this curve would 

be estimated by fitting the theoretical curve to multiple 

sampling points of an actual data set. Their basic idea seems 

attractive, because we do not need a large sample size if the 

curve can be estimated with a small number of samples.  

 

The Approach in the present study We follow the basic 

idea of this recent theoretical proposal, a curve fitting 

method. However, our approach is supposed to be a 

combination of the second and third type of proposals. That 

is our model estimates both the number of latent types and 

property of frequency distribution based on the curve 

regression. This method, estimating both types and property 

of frequency distribution at the same time, has two 

significant benefits. First, it is robust to different size of 

samples, because both number of types and property of the 

frequency distribution are theoretically sampling-invariant 

properties. Obviously, all the past efforts on measurement of 

lexical diversity aim to this, robustness of measurement to 

different sample size. However, as we show in later section, 

even the measure using curve regression is not robust. The 

reason is also relevant to the second point.  

Second, the estimation of the method which we 

propose has a smaller bias, because it separates number of 

latent types and property of frequency distribution which 

both influence the curve of sampled types in different ways. 

The basic idea of curve regression is that the slope of the 

type-sample curve should be robust to independently from 

the sample size. However, the slope of curve depends on 

both the latent number of types and tail-heaviness of 

frequency distribution (See also Theoretical Formulation). 

Accordingly, even if two given sets of corpora have the 

same numbers of latent types, this does not mean that the 

sampled results from these two corpora would be the same. 

For example, the corpus A has the uniform distribution of 

types in which any type is sampled in the same rate, in 



contrast, the corpus B might have a heavy-tail distribution 

such as the Zipf distribution in which a few types are 

sampled in high rate but most types are sampled in low rate. 

The corpus with the uniform distribution seems to have high 

diversity than those with other skewed distributions even in 

a same sample size, because the sampled types to the 

number of samples would be larger in that with the uniform 

distribution.  

Therefore, when we measure the diversity by 

fitting the sample-type curve, which is compound of at least 

two separable properties of the corpus such as the latent 

number of types and the property of word frequency. 

Without separating these properties, a measure cannot avoid 

bias in estimator of type-sampling curve. As a result of 

using a biased estimator, two corpora may be estimated as if 

they had the same diversity even when they have different 

set of properties. 

 In the present study, we allow us to focus on a 

particular class of frequency distribution. That is the Zipf 

(Zeta) distribution or that known as “Zipf’s law” in which 

frequency of the type follows the power of ranks (Zipf, 

1949). Since the Zipf’s law is observed in many empirical 

corpora, it is useful to evaluate the lexical diversity of a 

broader range of corpora. We derive the average sampled 

types as function of sample size in case that frequency 

follows the uniform distribution or Zipf distribution. The 

theoretical type-sample curve was confirmed in a numerical 

simulation, and we compare this with the other standard 

methods estimating lexical diversity on analysis of 

empirical data.  

Theoretical Formulation 

Here we derive the theoretical number of types for given 

sample size. In the special case, when word frequency 

follows uniform distribution, the expected number of types 

is precisely obtained in an analytic form. Moreover, we 

approximately evaluate the expected number of types in an 

extended form when the word frequency follows the Zipf 

distribution. We call this the type sampling model, because 

it assumes independent sampling of each type. The lexical 

diversity in the model is defined with the two factors, the 

latent number of types in a corpus, which is the maximum 

number of types in sampling an infinite number of tokens, 

and the exponent of power-law frequency distribution. 

 

Types for the uniform frequency distribution 

We first derive the probabilistic distribution P(n,m,k) of the 

number of sampled types k for a given sample size (the 

number of types) m when there are n-latent types and their 

frequency follows the uniform distribution. That is 
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can be rewritten with the Stirling number of the second kind 
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possible combination of partitioning m elements into k  

groups. Using the Stirling number of the second kind, the 

probability is rewritten as follows: 

( ) ( ) ( )kmSnnkmnP m

k ,,, −=  where ( ) ( )!! knnn k −=  is the 

falling factorial. 

Next we derive the expectation of sampled 

types [ ]nmkE ,|  when m tokens are sampled from corpus 

with uniform-distributed n latent types. According to the 

property of the Stirling number, the recurrence formula 

( ) ( ) ( )kmkSkmSkmS ,11,1, −+−−=  and 
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1
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k kmSnn  are available. It leads the following 

recurrence equation: [ ] [ ]( ) 11,1|,| 1 +−−= −nnmkEnmkE . 

By solving this with [ ] 1,1| =nkE , the following is derived 

[ ] ( )( ) ( )( )11 exp111,| −− −−≈−−= mnnnnnmkE
m

           (1). 

This result suggests that the number of sampled types 

follows the sum of cumulative probability that each type is 

independently sampled until m tokens are sampled. Note 

that the ( )( )1exp1 −−− mn  is the cumulative exponential 

distribution with the sampling rate ( ) 1−= nkP . This insight 

is used for the extension of this result. 

 

Types for the power-law distribution 

Next we derive the number types for given sample size 

when the word frequency follows a power-law distribution. 

The Zipf distribution is ( ) a
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−−= 1

0
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and k is the rank of type in token frequency (i.e., k=1 for the 

most frequent type, and k=2 for the second most frequent 

one) and a is the exponent of power function. In fact, the 

uniform distribution is considered as the special case of the 

Zipf distribution with the exponent a=0. In general Zipf 

distribution, the probability distribution of the number of 

sampled types P(n,m,k) or the expected number of sampled 

types [ ]nmkE ,|  is hard to derive in a closed form. However, 

the expected number of sampled types can be calculated by 

assuming that sampling of each type is independent which is 

approximately true mentioned for the uniform distribution 

above. We use this insight in order to extend it to the 

number of types with a non-uniform distribution 

By assuming sampling of each type is independent, 

the calculation of the sum of number of types is simple. 

Replacing the probability of the uniform distribution 

P(k)=n
-1
 in equation (1) with the probability of the Zipf 

distribution ( ) akkkP −−= 1

0
, we obtain the following Equation. 

[ ] ( )( )∑ =

−−−−=
n

k

akmknmkE
1

1

0exp1,|  

This summation does not have a closed analytic form, but 

we approximate this with integral as follows. 
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0 ;1;, −−−− −−−= tkaaFtkaG  is the confluent 

hypergeometric function of the first kind. 

 

Monte Carlo simulation Since we approximately derive 

the expected number of types, we evaluate how much the 

theoretical function is dissociated from the numerical values. 

Figure 1 shows the theoretical number of types as function 

sample size in five cases, {N,a}={10
2
,1.2}, {10

2
,1.5}, 

{10
2
,2.0}, {10

3
,1.2}, {10

4
,1.2}. The numerical values were 

calculated by the average across samples in the Monte Carlo 

simulation. The theoretical values fit well to the numerical 

values in all five cases (R>0.99). 

 
Figure 1: The theoretical expected number of types as 

function of sample size. 

Simulation 

 In order to evaluate how precise the model can estimate the 

latent number of types, we ran Monte Carlo simulations of 

the number of sampled types. We compared the number of 

latent types estimated by the type sampling model with that 

of estimated by the Good-Turning method. The Good-

Turning estimation is derived upon a more general 

assumption, and thus it is distribution free estimator. Our 

model has a strong and less general assumption compare to 

the Good-Turning estimation, and thus the goal of the 

simulation is how this additional assumption gains the 

precise estimation on the number of types. We also compare 

it with the other curve-fitting method proposed by Malvern 

& Richards (1997, 2002) and its superordinate model 

(Sichel, 1986). 

Method 

Procedure In the simulation, for given the number of types 

and exponent of distribution, a set of randomly generated 

types are sampled m times. The set of types follow the Zipf 

distribution with the exponent -a and number of latent types 

n=1000. The sample size m and the exponent of the Zipf 

distribution a are manipulated. Specifically, the sample size 

varies m={300, 500, 1000, 2000} and the exponent varies 

a={0, 0.5, 1.0, 1.5} in the artificial corpora. 10 different sets 

of artificial corpora for each condition are used for 

calculating average and standard deviation of estimated 

values. 

 

Type sampling model The number of sampled types as 

function of the number sampled words is fitted with the 

equation (2) in Theory Formulation. The parameters n and a 

are estimated by minimizing the least square error 

( )( ) [ ]( ){ }∑ =
−=

M

m
nmkEmkL

1

2
,|loglog  where k(m) is the 

average number of sampled types when m words are 

sampled which is calculated from 50 reordered sets of the 

same sampled words (i.e., for the same set of sampled 

words, the sampled order m is randomized and averaged 

across the 50 duplicated sets).  

 

Exponent of Zipf distribution by regression 

The log-log plot of the Zipf frequency distribution as 

function of rank n is linear, and its slope is the exponent a. 

The regression of the log-log plot is used in order to 

estimate the empirical exponent of distribution for given 

samples. 

 

Good-Turing estimation  

According to Good (1953), the expected proportion of 

unknown types to all possible types is the proportion of 

types sampled only one time to all types sampled. Thus, the 

expected number of latent types n is estimated by 

( ) ( )∑
=

−=
m

k

mkVmVnn
1

1
,,1  where n  is the number of sampled 

types in m total token samples and ( )mkV ,  is the number 

of types with k tokens in m total token samples.  

 

Malvern & Richard’s vocd model 

Malvern & Richard (1997, 2002) have proposed a curve 

regression method to evaluate lexical diversity using a 

model fitting a type-token ratio curve. This is implemented 

as vocd function in CLAN system of the CHILDES project 

(MacWhinney & Snow, 1990), and we call this the vocd 

model hereafter. According to the vocd model, the expected 

number of sampled types is described with the following 

equation: [ ] DmDDDmkE −+= −1
21,|  where the D is a 

free parameter indicating the slope of the curve. Note that 

the original equation is for type-token ratio, but this is 

modified by multiplication with the sampled token size m. 

The vocd model does not have an explicit ceil of number of 

sampled types (i.e., [ ] ∞=
∞→

DmkE
m

,|lim ) The diversity 

parameter D in this model is originally derived from the 

inverse-Gauss-Poisson distribution (Sichel, 1986). We also 

analyzed the original equation (hereafter called the Sichel 

model) [ ] ( ) ( )( ){ }11exp12,|
1 −+−−= −

cNbbcDmkE  where 

b and c are parameters and ( ) 1
2

−
bc  is the theoretical number 



of latent types. The parameter D in the vocd model or b and 

c in Sichel’s model is estimated in the same way (the 

maximum likelihood) as parameters in the type sampling 

model are. 

Results and Discussion 

The two methods estimating the number of latent 

types are compared for the four artificial corpora following 

different frequency distributions with exponent=0, -0.5, -1.0, 

-1.5. The Good-Turning estimation succeeds in estimation 

of the number of types when the word frequency follows 

uniform distribution (exponent=0). However, the Good-

Turning estimation is poor when the word frequency 

follows the Zipf distribution with exponent -0.5, -1, and -1.5. 

Good-Turing estimation in all conditions but exponent=0 

did not have the true value (the number of latent type 

n=1000) in its average estimated number of types or range 

of one standard deviation (the middle row in Table 1). The 

Good-Turning estimation for the Zipf distribution is biased 

toward the sampled number of sampled types. For instance, 

the estimated number of types is 190.2 for the number of 

observed types 180.4 in case the exponent is -1.5. 

In contrast, the type sampling model predicts better 

than the Good-Turning estimation does when the word 

frequency follows the Zipf distribution. The number of 

latent types estimated by the model is close to the true value 

(the bottom row in Table 1). For both methods, estimated 

values are more inaccurate when the exponent of the Zipf 

distribution is small (large negative value). This would be 

due to the smaller number of sampled types. However, the 

type sampling model have the true value of number of types 

in its one standard deviation from the mean the even in a 

difficult case when the exponent is -1.5. One the other hand, 

the Good-Turning estimation does not predict the true value 

within the range of its one standard deviation. 

It is interesting that the exponents estimated by the 

type sampling model are more precise than the exponents 

estimated by regression using the empirical frequency (the 

sixth row in Table 1). The empirical exponents are 

estimated by linear regression of double logarithmic plot of 

probabilities and ranks. Although this is a simple and easy 

method often used, it is not as good as the estimation of type 

sampling model (the second lowest row in Table 1). 

Probably, this may be due to difference between the utilized 

information in two methods. The empirical exponents are 

estimated from frequency distribution of m-time sampled 

tokens. On the other hand, The type sampling model 

estimates it from the entire curve of the number of sampled 

types as function the sampling from 1 to m times. 

Next, with different sample sizes, the two methods 

are compared for the corpora whose word frequency follows 

the Zipf distribution with the exponent -1. Since the 

common aim in both vocd model and type sampling model 

is to estimate lexical diversity independently to the number 

of sample size, the result of this simulation is significant to 

evaluate the models. Table 2 shows the results of the 

simulation. In the Good-Turning estimation, the estimated 

numbers of types in any sample size from 300 to 2000 are 

all biased, and the estimate is worth with a smaller sample 

size (the middle row group in Table 2). As well as the 

Good-Turning estimation, the empirical exponents 

estimated by regression analysis are also biased toward 

smaller values, and the bias is bigger with a smaller sample 

size (the second top row group in Table 2). In addition to 

these two above, the curve fitting methods using the vocd 

model (Malvern & Richard, 2002) and Sichel’s model 

(Sichel, 1986) were also compared (the two bottom row 

groups in Table 2). The result shows the parameters in both 

two models varies along sample size. Also the number of 

latent types estimated by Sichel’s model has huge deviation 

from the true value. This suggests that the vocd and Sichel’s 

model are not robust estimator of lexical diversity when the 

frequency of types follows the Zipf distribution. 

In contrast, the type sampling model estimates both 

number of types and exponents fairly well in any sample 

size from 300 to 2000. In particular, the estimation of 

exponents seems good independently to the sample sizes of 

tokens (the bottom rows in Table 2). The standard deviation 

of estimated exponents is quite small even in the sample 

size 300. The mean number of latent types estimated by the 

type sampling model seems to have a small bias, and its 

standard deviation increase with the larger sample size of 

tokens. However, from the sample size 500 which gives 

only 215.2 sampled types (i.e., 20% of the true number of 

latent types 1000), the model can estimate a closer value 

(n=1177) than the other methods do. Moreover, the type 

sampling model is fitted to the actual number of types better 

than the alternatives. The summed square error (SSE) of the 

vocd model and Sichel’s model are significantly larger than 

that of the type sampling model. It means the type sampling 

model fits the empirical curves given by Monte Carlo 

sampling better than others do. 

 

Table 1: The number of latent types (denoted by “Types”) 

estimated by the Good-Turing method and the type 

sampling model. The asterisk indicates the closed value to 

the true value in all methods. 

Exponents 0 -0.5 -1 -1.5 

Types 1000 1000 1000 1000 

T
ru

e
 

V
al

u
es

 

Sample 

size 2000 2000 2000 2000 

Types 864.7864.7864.7864.7    790.8790.8790.8790.8    494.9494.9494.9494.9    180.4180.4180.4180.4    

S.D. 10.96 9.7804 9.7804 6.132 

Exponents ----0.40.40.40.483838383    ----0.6260.6260.6260.626    ----0.8900.8900.8900.890    ----1.2211.2211.2211.221    E
m

pi
ri
c
al

 

S.D. 0.0082 0.011 0.011 0.028 

Types 1001.91001.91001.91001.9****    929.2929.2929.2929.2    569.2569.2569.2569.2    190.2190.2190.2190.2    

G
o
o
d-

T
u
rn

in
g 

S.D. 19.76 20.44 12.78 7.16 

Types 1007.51007.51007.51007.5    1018.11018.11018.11018.1****    1093.91093.91093.91093.9****    1554155415541554****    

S.D. 18.51 24.65 96.15 1125 

Exponents ----0.080.080.080.083*3*3*3*    ----0.5030.5030.5030.503****    ----0.9960.9960.9960.996****    ----1.521.521.521.52****    

T
yp

e
 s

am
pl

in
g 

S.D. 0.073 0.012 0.011 0.021 



Accordingly, the simulation suggests that the type sampling 

model is more robust to various sample size than other 

methods are. In particular, a typical corpus obtained in 

developmental studies does not offer a large sample size, 

but they rather have small numbers of sample sizes for 

individual children. The results in this simulation suggest 

that the type sampling model is suitable for such situations. 

For instance, the number of latent types, which is supposed 

to be the potential vocabulary size, might be estimated 

accurately based on a relatively small size of corpus. 

 

Table 2: The number of latent types estimated by five 

methods for different sample sizes. The asterisk indicates 

the closest value to the true value in all methods. 

Exponents -1 -1 -1 -1 

Types 1000 1000 1000 1000 

T
ru

e
 V

al
ue

s 

Sample 

size 300 500 1000 2000 

Types 145.1145.1145.1145.1    215.2215.2215.2215.2    337.7337.7337.7337.7    495495495495    

S.D. 6.30 6.07 10.96 9.78 

Exponents ----0.6550.6550.6550.655    ----0.6940.6940.6940.694    ----0.7880.7880.7880.788    ----0.8900.8900.8900.890    

E
m

pi
ri
c
al

 v
al

ue
s 

S.D. 0.0276 0.0142 0.0214 0.011 

Types 224.9224.9224.9224.9    307.4307.4307.4307.4    428.8428.8428.8428.8    569569569569    

G
o
o
d-

T
u
rn

in
g 

S.D. 16.60 15.46 17.00 12.78 

Types 1115.71115.71115.71115.7****    1177117711771177****    1144114411441144****    1094109410941094****    

S.D. 400.08 212.88 157.19 96.15 

Exponent ----1.0031.0031.0031.003****    ----0.9990.9990.9990.999****    ----1.0051.0051.0051.005****    ----0.9960.9960.9960.996****    

S.D. 0.041 0.024 0.020 0.011 

T
yp

e
 s

am
pl

in
g 

SSE 0.0140.0140.0140.014****    0.0100.0100.0100.010****    0.0180.0180.0180.018****    0.0320.0320.0320.032****    

D 56.5656.5656.5656.56    64.0364.0364.0364.03    76.8676.8676.8676.86    79.4279.4279.4279.42    

S.D. 8.37 6.01 6.14 2.84 

V
o
c
d 

SSE 0.420.420.420.42    0.880.880.880.88    1.571.571.571.57    2.872.872.872.87    

Types 

1.831.831.831.83××××

1010101014141414    

6.636.636.636.63××××

1010101011111111    

8.718.718.718.71××××

1010101011111111    

5.485.485.485.48××××

1010101011111111    

S.D. 

5.71×

1014 

1.39×

1012 

1.17×

1012 

5.36×

1011 S
ic

h
e
l 

SSE 0.340.340.340.34    0.760.760.760.76    1.781.781.781.78    2.582.582.582.58    

Analysis 2: Application to Vocabulary 

Development 

Next we applied the type-sampling model to a real 

development data. We used corpora from a longitudinal 

study on conversations of three child-caregiver pairs in free 

play situation (Brown, 1973) in CHILDES database 

(MacWhinney & Snow, 1990). The corpora include a short 

time conversation (30 to 60 minutes) of for each age from 

27 months to 61 months old. For each corpus, the model is 

applied to child’s and caregiver’s word frequency separately. 

Since the used data is a brief conversation at a particular age, 

the estimated number of words would not reflect the entire 

number of words but that in a particular context. Although 

the data source is limited, it can describe the lower bound of 

the latent word acquired until the age.  

Method 

Data The brief sessions of conversations in mother-child 

pairs are analyzed. Three children analyzed are Adam (55 

sessions from 27.1 to 60.4 month of age, 60 minutes long 

each), Eve (20 sessions from 18 to 27 month of age, 60 

minutes long each), and Sarah (139 sessions from 27.2 to 

61.2 month of age, 30 minutes long each). 

 

Analysis The set of frequency of all types are submitted to 

the type-sampling model and the vocd model. Frequency of 

a child and his or her caregiver in each session is analyzed 

separately. The procedure is the same as that in analysis of 

artificial datasets. Two sessions in Sarah’s corpora were 

excluded from analysis due to too small numbers of tokens.  

Results and Discussion 

For each conversation session, the type-sampling model 

and vocd model are applied. First we compared the model 

fitting of type-sampling and vocd model. Both models 

reasonably fit the sampled-type curve in overall (R>0.98). 

However, for all sessions of both child and caregiver’s 

separately sampled words, the type sampling model fits 

better than the vocd model does. The summed square error 

of the type sampling model in all sessions is 4.01, and that 

of vocd model is 19.53. This suggests the empirical 

frequency in child-caregiver conversation is well described 

with the Zipf distribution rather than inverse-Gauss-Poisson 

distribution that the vocd model assumes. 

Next we focus on the number of latent types and 

exponent of frequency distribution estimated by the type 

sampling model. The analysis shows that the numbers of 

latent types in all three children increase along their age. In 

contrast, the caregivers’ number of latent types does not 

increase very much along the children’s age except for 

Eve’s caregiver. Sarah and her caregiver’s numbers of latent 

types estimated by the type sampling model are shown in 

Figure 2. Adam and Sarah’s number of latent types start 

from a smaller point and tend to converge to their 

caregivers’ number of latent types. Although the number of 

latent types might depend on the context of each session, the 

correlation between mother and child is not high enough to 

explain the entire pattern of child’s number of types. Thus, 

this increment pattern of number of types might be due to 

child’s development.  

The patterns in the estimated exponents of frequency 

distribution show correlation to child’s age except for Sarah. 

Adam’s and his caregiver’s estimated exponents are shown 

in Figure 3. Figure 3 shows Adam’s exponent grows higher 

along his age. Sarah’s exponents vary from -0.6 to -1.1 at 

her 27 to 30 months of age, but it converges to -0.8 which is 

close to her caregiver’s average exponent -0.77. From the 

estimated exponents, we could not observe a common and 

consistent child-caregiver pattern among three pairs. 

Due to the small number of children, we cannot draw a 

strong and general conclusion, but the analysis reveals a 

common growth pattern of the number of latent types in all 



three children, and it is more correlated to children’s age 

than those of caregivers do. 

 

Table 3: Correlations among the latent number of types and 

exponents of age, the child, and caregiver. *: p<0.05, **: 

p<0.01. 

    
Child-

Age 

Caregiver-

Age 

Child-

Caregiver 

Types 0.789** -0.181 0.151 

Adam Exponent 0.451** -0.365** 0.125 

Types 0.759** 0.697** 0.827** 

Eve Exponent 0.474* 0.207 0.329 

Types 0.704** 0.302** 0.436** 

Sarah Exponent 0.008 -0.306** 0.250* 

 
Figure 2: Sarah’s (indicated by crosses) and her caregiver’s 

(indicated by dots) number of latent types estimated by the 

model. 

 
Figure 3: Adam’s (indicated by crosses) and her caregiver’s 

(indicated by dots) exponents estimated by the model. 

General Discussion 

In the present study, we propose a new method for 

estimation of the number of latent types and property of 

frequency distribution. Both Monte Carlo simulation and 

application to an empirical data suggest robustness of the 

type sampling method compared to its alternatives. The type 

sampling method may be applicable to multiple corpora 

with smaller sizes of tokens which are expected in language 

developmental studies. Typically, the number of words 

acquired by a child has been examined by parental reports 

(Fenson et al., 1993) or longitudinal diaries. These methods 

have their own advantage and disadvantage. The check list 

is easy but underestimates the actual number of words 

(Robinson, 1999). On the other hand, the diary study is 

costly but more accurate. Our proposal may be the third 

alternative in between the two methods. 
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