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Abstract 

The study of cognitive development hinges, largely, on the 
analysis of infant looking. But analyses of eye gaze data 
require the adoption of linking hypotheses: assumptions about 
the relationship between observed eye movements and 
underlying cognitive processes. We develop a general 
framework for constructing, testing, and comparing these 
hypotheses, and thus for producing new insights into early 
cognitive development. We first introduce the general 
framework – applicable to any infant gaze experiment – and 
then demonstrate its utility by analyzing data from three 
studies investigating the role of attentional cues in infant 
learning. Finally, we discuss general implications for 
construction and testing of quantitative linking hypotheses. 

Keywords: eye movement data; infancy methods; Bayesian 
data analysis; learning; attention 

Introduction 

The study of infant cognitive development hinges, largely, 

on the analysis of infant looking data (Aslin, 2007). Since 

Fantz’s (1964) landmark demonstration of visual memory in 

2-month-old infants, researchers have used his habituation 

technique, and other eye-movement methods, to ask deep 

theoretical questions about the ontogeny and development 

of human cognition. But analysis of eye-movements, like 

analysis of other high-dimensional cognitive measures (e.g. 

fMRI, EEG) carries particular challenges (Yu, Yurovsky, & 

Xu, 2012). In order to connect observed eye-movements to 

underlying cognitive processes, one must define a linking 

hypothesis that relates them (Aslin, 2007; Teller, 1984). 

Every eye gaze paradigm used to study infant cognition 

commits to a particular linking hypothesis. In habituation 

studies, decreased looking is hypothesized to indicate 

encoding, and recovery of looking indicates discrimination 

of a novel stimulus (Gilmore & Thomas, 2002). In violation 

of expectation studies, increased looking is hypothesized to 

indicate noticing a surprising event. Intermodal preferential 

looking studies hypothesize that a difference in looking time 

to one sound-object mapping over another indicates a 

difference in their associations. Critically, these linking 

hypotheses are qualitative; they assert that a relationship 

exists, but do not specify its quantitative, metric properties. 

Why should we prefer quantitative linking hypotheses? 

They help us, in several ways, to move from asking if a 

phenomenon occurs, to asking how and why. First, 

quantitative linking hypotheses allow researchers to clearly 

and unambiguously specify the assumptions and 

mechanisms in their theories. As theories grow in 

complexity, correctly deriving their (sometimes 

counterintuitive) predictions can become difficult. 

Formalizing theories makes such prediction tractable 

(Shiffrin, 2010). Second, without quantitative predictions it 

can be impossible to distinguish competing theoretical 

accounts of the same data, fueling debates about “rich” 

(conceptual) vs. “lean” (perceptual) theoretical explanations 

(e.g., Spelke, 1998). Third, quantitative linking hypotheses 

allow researchers to test the same theoretical model across 

experiments, integrating multiple datasets within one self-

consistent framework (Aslin, 2007; Schöner, & Thelen, 

2006; Shiffrin, 2010). 

Developmentalists who measure eye-movements, 

however, face several challenges to the construction of 

quantitative linking hypotheses. First, control of eye-

movements is complex, and saccades are moderated by 

multiple systems (Aslin, 2007). Thus, quantitative linking 

hypotheses may need to integrate interacting mechanisms. 

Second, although fixation duration is likely related to 

learning, their relationship may not be a simple linear one. 

Instead, learning and looking may be linked non-

monotonically, with a preference for familiarity appearing 

first, and a preference for novelty developing with further 

experience (Hunter & Ames, 1988). Linking hypotheses 

must be flexible enough to accommodate this kind of 

complexity. Third, early development is a time of rapid 

change, and the variability among infants of the same age 

may be surprisingly high. Thus, using the same linking 

hypothesis for each infant may distort true relationships in 

the data (Siegler, 1987). Because one cannot know apriori 

whether one’s data is best analyzed as one group, or two, or 

three or more, construction of linking hypotheses must 

adaptively accommodate this kind of variability. 

Building on a growing body of statistical tools in 

Bayesian non-parametrics, this paper presents a rigorous, 

principled, empirically successful framework for the 

construction of quantitative linking hypotheses that meets 

the three challenges reviewed above. To demonstrate the 

utility of this framework, we analyze data from a set of 

experiments investigating the role of social and non-social 

cues in infant multi-modal learning (Wu & Kirkham, 2010). 

This analysis shows how quantitative linking hypotheses 

can provide leverage in understanding the development and 

operation of infant learning mechanisms. We begin by 

presenting the general framework, demonstrating its 

robustness in simulation studies, and then present the 

empirical data. 



General Model Framework 

In any eye-tracking experiment, infants are exposed to 

stimuli that encode some structure of theoretical interest, 

and the researcher measures the influence of this structure 

on their behavior. For instance, in word-learning 

experiments, infants are exposed to consistent pairings 

between words and objects, and their discrimination for 

consistent vs. inconsistent mappings is measured (e.g. Yu & 

Smith & Yu, 2011). However, we are typically interested 

not in the change in observed behavior, but rather in the 

cognitive processes it implicates (Aslin, 2007). Quantitative 

linking hypotheses let us describe these processes directly. 

For each infant, on each trial, the researcher observes 

some eye-gaze data ( ), and the researcher’s goal is to 

determine the model ( ) that best explains these observed 

eye-movements ( (   ) ). This can be formalized as a 

problem of Bayesian inference. The researcher can specify 

several possible models, each making different predictions 

about the gaze data likely to be observed ( (   )). The 

researcher may also prefer simpler models apriori, in accord 

with Ockham’s razor ( ( )). These properties can then be 

combined via Bayes’ rule to infer the model that best 

describes the infants’ cognitive processes (Equation 1). 

 

 (   )   (   ) ( ) (1) 

 

We present a graphical model (Figure 1) for connecting 

hypothesized cognitive models to observed eye gaze data. 

On each trial of an experiment, an infant ( ) is exposed to 

some experimental stimuli ( ) and produces observed eye 

movements ( ). This observed gaze data is encoded as 

proportion of dwell time over a set of hypothesized areas of 

interest (AOIs). The inference framework discovers the set 

of underlying cognitive processes ( ) that operate on the 

stimuli to generate the observed data. Intuitively, this is 

essentially a regression problem: inference finds the 

relationship between predictor variables ( , ) and observed 

outcomes ( ). Because gaze data are a distribution over 

AOIs rather than a single continuous variable, we connect 

predictors to outcomes via the Dirichlet distribution ( ). 
 

 
 

Figure 1: A graphical model for inferring the cognitive 

processes ( ) responsible for generated eye movements ( ) 

under particular experimental conditions ( ). 

The introduction identified three challenges for 

quantitative linking hypotheses: multiple processes may 

drive eye-movements, linking functions may be complex, 

and a group of infants may be heterogeneous. This 

framework meets all three challenges. Because   can encode 

any hypothesized cognitive model, the contributions of 

multiple processes can be estimated together without forcing 

a dichotomy (Anderson, 2011).  Nonetheless, if a process 

has little effect, this is found via the prior on parameter 

values   (Figuerido, 2002). Second, cognitive processes and 

observed eye movements need not be linked in a simple, 

linear way. In this framework, the cognitive model   can 

encode any functional link. For simplicity, and to minimize 

assumptions, we do so through arbitrary degree polynomials 

(see Jackson & Sirois, 2009). Again, the model parameter 

prior ( ) facilitates discovery of the most parsimonious 

linking function, penalizing complex polynomials.  

Formally, each cognitive model parameter   is modeled as 

coming from a 0-mean normal distribution whose standard 

is given a non-informative prior, making high values 

unlikely (Jeffreys, 1961). Each infant’s data are modeled as 

a draw from a Dirichlet distribution over the AOIs whose 

parameters are defined as the exponentiated product of the 

cognitive model parameters and experimental settings 

(Equations 2). This allows model parameters to be negative. 

A specific formulation is presented in the next section. 
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Finally, infants in a sample may come from two or more 

different kinds of groups, (e.g. slow and fast learners: Yu & 

Smith, 2011). This framework automatically and adaptively 

determines the number of groups of infants, and the infants 

who belong to each group. Each distinct group is best 

represented by a different cognitive model. The estimation 

of unique groups is performed using the Chinese restaurant 

process (Aldous, 1985), which has been used successfully to 

determine unique groups in adult experiments (Navarro, 

Griffiths, Steyvers, & Lee, 2006). Clusters are discovered in 

this process by treating participants by analogy to customers 

in a Chinese restaurant. As each customer enters, he sits at 

each occupied table ( ) with probability proportional to the 

number of occupants, but also chooses a new table with 

some small probability ( ). This implements a rich-get-

richer scheme in which groups that account for the behavior 

of many infants become favored, and the most parsimonious 

number of groups is discovered. A hyper parameter ( ) 

prevents us from having to make a direct decision about the 

probability of choosing a new table (Equations 3). Each 

cluster has different cognitive parameter values ( ). 
 

     ( ) 
(3) 

     ( ) 



Case Study: Attentional Cues and Infant Learning 

To demonstrate how this framework’s utility in a concrete 

case, we applied it to data from a set of studies investigating 

the role of attentional cues in infant multi-modal learning. In 

each experiment, 8-month-old infants watched videos in 

which sounds and objects’ on-screen locations were reliably 

related. When objects appeared in the top-left and bottom-

right boxes, one sound was heard. When they appeared 

instead in the top-right and bottom-left boxes, a different 

sound was heard (Figure 2). In some conditions, infants 

were cued to one of the two objects. Subsequently, infants 

were exposed to test trials on which they heard a sound from 

training, but all four boxes were blank. If infants had 

learned sound-location regularities, they were expected to 

attend preferentially to locations consistent with each sound. 

Submitting these test preferences to ANOVAs, Wu and 

Kirkham found reliable multi-modal learning only in the 

presence of the Face cue (2a), but not when infants were 

cued with a flashing square (2b) or received no cue (2c). We 

reanalyze this data to reveal significantly more structure, 

and to provide new insights into infant learning. 

To this end, we define quantitative linking hypotheses for 

these experiments, formally specifying the connection 

between the observed eye-movement data ( ), observable 

experimental conditions (  ), and the unobservable, 

hypothesized cognitive processes (  ). By analogy to 

regression, the data are the dependent variable, experimental 

conditions are the independent variables, and the cognitive 

processes parameterize these independent variables. On 

each trial of the experiment – whether training or testing – 

infants saw a black screen containing four boxes, one in 

each corner of the screen (Figure 2). Thus, we define five 

areas of interest (AOIs): one for each of the four boxes, and 

a fifth to capture all other looks (including off-screen looks).  
 

  
 

Figure 2: Training and testing trials from Wu & Kirkham 

(2010). In the Face condition (2a), a centrally-located face 

directed infants’ attention to one of the boxes. In the Square 

condition (2b), a red flashing square highlighted one of the 

boxes. In the No Cue condition (2c) only the multi-modal 

regularity was present. On test trials (2d), all boxes 

remained empty while infants heard a sound from training. 

The total data ( ) for an individual infant is thus the entire 

set of gaze proportions observed on each trial. Formally, this 

is a matrix in which rows correspond to trials, columns to 

AOIs, and each cell to the proportion of looking to a 

particular AOI on a particular trial. This whole matrix is the 

outcome to be predicted from the experimental conditions 

( ) and hypothesized cognitive processes ( ). 
Next we specify the experimental conditions on each trial. 

While all four boxes were empty on test trials, on training 

trials two of the four boxes contained pictures of animals 

(Figure 2a-c). These are coded with binary indicator 

variables         specifying whether a box ( ) contains a 

picture. Further, in the Face and Square conditions (Figure 

2a-b), one of the boxes was highlighted by an attentional 

cue. We similarly define an indicator variable     . 
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In addition to the visual stimuli, each trial also included a 

sound that could alter looking patterns if infants learned 

sound-location contingencies. To formalize this learning 

process (below), we encode infants’ experience with these 

contingencies in the experimental conditions (e). Thus, we 

let            be the cumulative time an infant has fixated 

a given box ( ) in the presence of a particular sound ( ). So, 

on trial   that plays sound    and on which we observe data 

  , where  (   ) is Kronecker’s delta function, 
 

           (    )  ∑  (     )     ( )
   

   
 (5) 

 

Last, we define cognitive processes that act on 

experimental condition variables to produce observed gaze 

data. First, infants may have a baseline preference for some 

locations over others. Thus, we include a preference 

constant    for each AOI, allowing the contributions of the 

other variables to be estimated relative to proper baselines. 

Second, an infant’s preference for a box may be altered by 

the presence of an object (       ), or the presence of an 

attentional cue (    ). We let the strength of these factors 

be linearly scaled by parameters   and   respectively, which 

function like slope terms in linear regression. 

Finally, in these experiments, the question of interest is 

whether infants learn to associate sounds with 

objects/locations. We define the effect of association 

between a sound and location as a change in preference for 

that location through exposure to the contingent sound. 

Specifically, we define association between a sound and 

location as a function of time spent fixating that location in 

the presence of that sound (          ). To avoid making 

assumptions about the association function (e.g. that it is 

linear, or monotonic), we let association between box   and 

sound   on trial   be an arbitrary degree polynomial 

function of cumulative looking time to   while hearing  . 



Since polynomials can approximate any functional form, 

this is a general solution (Jackson & Sirois, 2009). As in 

testing for higher-order terms in standard regression, 

polynomial coefficients are pushed down to zero by model 

priors if they do not contribute to predictive power. 
 

      (   )  ∑              (   )
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After formally specifying the experimental conditions and 

hypothesized cognitive process that act on this input, we can 

infer the effect of each hypothesized factor on infant the 

gaze data. As in regression, differences in parameters across 

conditions help us understand whether and how different 

cues affect infant multi-modal learning. To infer parameter 

values, we perform Bayesian inference in the model 

specified in Figure 1. Because this model has non-conjugate 

priors, we use an MCMC sampling algorithm that alternates 

Metropolis-Hastings updates with Split/Merge steps for 

cluster assignment (Jain & Neal, 2007). Sampling estimates 

the true distribution for each of these parameters, producing 

a set of credible intervals (similar to confidence intervals) 

that can be used to determine the likelihood that parameters 

are non-zero, as well as their likely range (Kruschke, 2011).  

Simulations 

In order to ensure that it behaves as expected, we validate 

the analysis in a set of simulation studies by generating gaze 

data from a known cognitive model and trying to recover its 

parameters. In these simulations, we show that this 

framework can deal with all three challenges for 

quantitative linking hypotheses: non-homogenous samples 

of infants, interactions among multiple cognitive processes, 

and non-linear functions linking learning to looking. 

Infants in Wu & Kirkham’s (2010) study were simulated 

in training and testing trials like those in their experiments. 

Each simulated infant was exposed to four consecutive 

blocks, each consisting of six training trials and a test trial. 

On each training trial, objects appeared in two of the boxes 

(top-left and bottom-right, or top-right and bottom-left), and 

the lower box was cued. Each configuration of objects also 

co-occurred with a unique sound. Each of the two 

configurations occurred three times in each block of training 

trials, and order was randomized within a block. After all 

six training trials, infants saw one test trial where the screen 

was empty, but one of the two sounds was heard. Simulated 

infants then saw three more blocks, and each sound was 

tested twice in random order across the four test trials. 

Simulation 1 

In Simulation 1, we generated gaze data from known 

models in which the infants in a sample were drawn from a 

mixture of one, two, three, or four distinct groups. Formally, 

the 30 infants on each run were drawn from a multinomial 

distribution with equal probability for each group. 

Parameters for each group were drawn randomly without 

replacement from         〈       〉 ,         
   〈       〉 , and                〈          〉 . 

Baseline AOI preferences for each box were drawn 

uniformly from [     ]  and off-screen preference was 

drawn from [      ]. These values were representative of 

those found in the empirical analysis (next section).  

Across all 120 simulations (30 runs at each group size), 

the correct number of groups was identified in all but 1. On 

one run at group size 4, the analysis identified only 3 

clusters. Further, individual infants were almost always 

assigned to the right group. Group assignment was perfect 

when the number of true groups was 1 or 2, and less than a 

quarter of one percent (<.0025) of infants were misclassified 

at the higher group numbers. Thus, this framework deals 

well with heterogeneous groups of infants. 

Simulation 2 

Simulation 2 tested the framework’s ability to recover 

correct quantitative parameter values when multiple 

processes interacted to produce eye movements. This time, 

all infants were drawn from one group, but group 

parameters were parametrically manipulated to sample the 

space of parameters recovered in the analysis of Wu & 

Kirkham’s empirical data. Six unique parameter values were 

chosen for each hypothesized cognitive processes, and one 

simulation was run at each combination. Baseline 

preferences on each run were drawn as in Simulation 1. 

Figure 3 (next page) shows parameter estimates and true 

values for each combination of parameter values. Inference 

was successful:    values were exceedingly high. 

 

 
Figure 3: Best fit lines for true and inferred parameter 

values for each of the three factors hypothesized to affect 

infant gaze patterns in the experimental data. 



 
Figure 4: True functions (solid) and 30 inferred functions 

(dashed) for each learning function tested in Simulation 3.  

Simulation 3 

Simulation 3 tested the framework’s ability to recover non-

monotonic learning functions, for instance, a preference for 

familiarity followed by novelty. On each run of the 

simulation, 30 infants were generated with one of four 

possible learning functions: linear increasing, linear 

decreasing, u-shaped up, and u-shaped down (Figure 4). All 

other model parameters were drawn as in Simulation 2. 

Bayesian 95% credible intervals for estimated parameters 

were analyzed to determine how often a 0-valued parameter 

was estimated to be non-zero (0%) and how often a non-

zero parameter was estimated to be 0 (2.5%). Thus, both 

Type I and Type II error rates were low (Kruschke, 2011). 

Empirical Analysis 

We now apply the same inference procedure to gaze data 

from real infants. Instead of comparing the effects of 

different attentional cues on raw looking patterns, as in 

standard analyses (e.g. ANOVAs), inferring cognitive 

model parameters for each condition lets us analyze the 

effects of cues directly on attention and learning.  

Method 

Inference was performed using the same model as in the 

Simulations above. Infants each saw a series of training and 

testing trials, and gaze data on each trial were coded as a 

proportion of looking to each on-screen box as well as a 

fifth AOI for all other looks (Figure 2). As before, inference 

recovered the joint distribution for all parameters (s) 

explaining looking as a function of experimental conditions. 

Full parameter descriptions are in the Simulation section. 

Gaze data included 26 infants in the No Cue condition, 29 

infants in the Face condition, and 30 infants in the Square 

condition (see Wu & Kirkham, 2010 for full details). 

Before presenting the results, we review Wu & Kirkham’s 

ANOVAs for test trial looking. These analyses showed 

associative learning only in the Face condition. In contrast, 

infants in the No Cue condition showed no learning, and 

infants in the Square condition preferred the cued locations, 

but did not learn to sound-location associations. 

Results and Discussion 

Inference yields full posterior distributions for all cognitive 

model parameters, estimating the contribution of each factor 

in the context of all other factors. We focus on two key 

factors: attention to the cue ( ) and the association function 

(     ). Figure 5 shows estimated parameter values for 

both factors for infants in each experimental condition. 

First, in no condition were infants best described as a 

single homogeneous group. Two distinct groups were 

identified in the Face and No Cue conditions, and four 

groups were found in the Square Condition. Thus, even 

within one condition, infants learned and used cues 

differently. Second, all learning functions were linear; 

credible intervals for all association coefficients ≥2 

overlapped 0 in all conditions. Thus, Figure 5 shows the 

first-order association coefficient (  ) for each group.  

Finally, we turn to the parameter values and their 

implications. First, all infants in the No Cue condition 

appeared to be learning (    ), although approximately ⅔ 

had low association values, indicating that they learned 

slowly. The Face condition had a comparable number of 

equally fast learners, and these fast learners did not show 

evidence of using the cue (   ). However, the larger, slow 

group of learners did use the cue, and learned faster than the 

slow learners in the No Cue condition. Learners had two 

routes into learning the regularity: quickly and directly, or 

slowly and indirectly. This detailed level of structure 

underlies and explains Wu & Kirkham’s coarser analysis. 

The Square condition also had a small group of fast 

learners who used the cue. However, in contrast to the other 

conditions, approximately ½ of the infants did not learn, and 

these infants all used the cue (   ). These results directly 

confirm Wu and Kirkham’s hypothesis that the flashing 

square may interfere with learning by competing for 

attention, and that only the fastest learners may be able to 

learn from these kinds of competing cues. Together, these 

results both confirm the major findings from the standard 

analysis and provide deeper insight into how attentional 

cues guide (or interfere with) infant multi-modal learning. 
 

 
Figure 5: Posterior distributions for cue ( ) and association 

(  ) parameters for infants from Wu & Kirkham (2010). 

Each circle indicates a cluster, and its size indicates the 

proportion of infants in that condition in that cluster. Circles 

are centered at median parameter values, and dashed lines 

indicate 68% credible intervals, akin to +/-1 SE. 



Non-monotonic learning functions. Simulation 3 showed 

that this framework can recover non-monotonic functions 

linking learning to looking when appropriate for the data 

(Hunter & Ames, 1988). However, no such functions appear 

in the Empirical Analysis above. Why? One possibility is 

that non-monotonic linking functions arise in a different 

kind of experiment or at a different age. An alternative 

possibility is that non-monotonic linking functions are seen 

when infants’ baseline preferences are not controlled. In our 

analyses, we included a set of parameters    to encode 

baseline preferences for each location. When these 

parameters were not included, we did find non-monotonic 

linking functions in all conditions. Thus, we propose that, at 

least in some cases, observation of non-monotonic linking 

functions may be an artifact of different baseline preference 

rather than a core property of the learning system itself. 

 

Competing Hypotheses. One strength of quantitative 

linking hypotheses is that they facilitate direct comparison 

of competing theories for the same data. In the previous 

sections, we argued that changes in looking preferences over 

the course of these experiments arise from associations 

between heard sounds and fixated locations, and modeled 

this learning with the       function. Alternatively, 

preferences could change over time through habituation; 

infants’ preferences could change as a function of looking to 

a location independent of the concurrent sound. We tested 

this directly, by modeling habituation as an arbitrary-degree 

polynomial function of cumulative looking time to a 

location (Equation 7). However, 95% credible intervals for 

      parameters overlapped 0 in all conditions, out this 

explanation for the data. Thus, quantitative looking 

hypotheses allowed us to directly compare two hypothetical 

explanations of this data and to choose the best alternative. 
 

      ( )  ∑   (∑   ( )
   

   
)
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General Discussion 

Infant researchers have made tremendous progress by using 

eye gaze data to ask questions about early cognition and 

development. The majority of this work has used qualitative 

linking hypotheses, but we propose that even faster progress 

can be made through model-based analyses using 

quantitative linking hypotheses (Aslin, 2007; Teller, 1984). 

While quantitative linking hypotheses have been proposed 

for specific experiments (e.g. Gilmore & Thomas, 2002; Yu 

& Smith, 2011), this paper presents a general framework 

applicable to all eye movement experiments. We hope this 

work will facilitate asking and answering future questions 

about early cognitive processes and their development. 
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