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Send the following three pictures via fax to your friend:

Which picture required the longest time to send?
Why it required the longest time compared to the others?
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]“"" i Objectives of this Chapter

Observations:

(1) Encoder doesn’t know the picture to be transmitted.
- It only “scans” the picture - Appearance of black and while (=pixels)
is a random variable.

(2) The transmission time depends on the picture.
- The fax encoder analyzes “characteristic” of pictures, and use it when
converting the “scanned” data.
- The shorter the transmission time, the better “suits” the picture
to the encoding rule.

Objectives:

(1) Define information as a random variable,

(2) Define measures of information, uncertainty, closeness,
and reduction of uncertainty, and

(3) Derive the relationships between the measures.
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RS, Outline

1. Information Measures
- Entropy
- Joint Entropy and Conditional Entropy
- Kullback Leibler Distance (Relative Entropy)
2. Mutual Information
- Chain Rules
3. Information Inequalities
- Log Sum Inequality
4. Data Processing Inequality
5. Fano’s Inequality
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Definition 4.1.1: Entropy

The entropy H(X) of a discrete random variable X is defined by:

H(X)=-3" p(x)log p(x)

xeX
where with the limit:  0log0=0
entropy H(X) does NOT take negative values.

Note that the base of the logarithm is in many cases 2, with which
entropy measure is measured in bits. However, it should not necessarily
be always the case. If the base is e, the measure is nats.

Definition 4.1.2: Equivalent Description:

H(X )=—E,[log p(x)]= E{'Ogﬁ}

where E, is the expectation with respect to the distribution p.
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,]é_‘-'-'-}"_-r..- : Entropy (2)

Property 4.1.1: Logarithm
Since log, p(x)=log, alog, p(x) ,

H,(X)=(log, a)H,(X)

holds, where H,(X)=-p(X)log,p(X) with y=a or b.
Example 4.1.1: Binary Random Variable

Let « _{l with probability p

0  with probability 1-p
Then, H(X)=-plog p—(1- p)log(l- p)

Sometimes, because of the definition above, the entropy is also
denoted as
H(X)=H(p)
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The entropy H(p) of the random variable in Example 4.1.1 is described as
a function of p:

Observations:
(1) Entropy is 0 when p=0 or 1. This is reasonable, because the random variable is
not random, and there is no uncertainty.
(2) Entropy is maximum when p=1/2. This is reasonable, because with p=1/2 the
uncertainty is maximum.
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JE_‘?I-H-I'..- - Entropy (4)

Example 4.1.2:

with probability 1/2
with  probability 1/4
with probability 1/8
with probability 1/8

Let
X =

o o T o

1.1 1, 11,11, 1.7 .
Then, H(X)=-L10gL - LiogL - Liogt-Liogi=L pit
(X)=-7log ~,logy —glogg—glogg =7, bits

Exercise 4.1.1:

Consider a random variable which has a uniform distribution over 32 outcomes.
To identify an outcome, we need a label that takes on 32 different values.

(1) How many labels are needed to uniquely identify the outcomes?
(2) Calculate the entropy of the random variable.
(3) Are the results consistent with each other?
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]“L" : Entropy (5)

Exercise 4.1.2: Horse Race

Suppose that we have a horse race with eight horses taking part. Assume that
the probabilities of winning for the eight horses are given by

p 111 1 1 1 1 1
hse 10" 4’ 8 16’ 64’ 64’ 64' 64

(1) How many labels are needed to uniquely identify the outcomes?

(2) Calculate the entropy of the random variable.

(3) Are the results consistent with each other? If not, how can we label the each
horse to minimize the average length of the label?

(4) Assume that you don’t know the result of the race, but someone else does.
How many questions, in average, do you need to ask him in order to identify
the winning horse? The answer has to be “yes-or-no”.
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] —- Joint Entropy and Conditional Entropy (1)
Definition 4.1.3: Joint Entropy

The joint entropy H(X, Y) of discrete random variables X and Y is defined by:

H(X,Y)==3">"p(x y)log p(x,y) =~E,[log p(x, y)]

xeX yeY
where E, is the expectation with respect to the joint distribution p.

Note that H(X,Y) does NOT take negative values.

Definition 4.1.4: Conditional Entropy

If discrete random variables X and Y follow the joint distribution p(x, y),
conditional entropy H(Y|X) is defined as:

H(Y|X)=" p()H(Y[X = x)==3" p(x)3 ply[x)iog p(y[x)

xeX xeX yeY

== % p(x)p(ylx)logp(yjx)=-3 " p(x, y)logp(y|x)=—E ., log p(¥|X )}

xeX yeY xeX yeY
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jé“ﬂ - Joint Entropy and Conditional Entropy (2)

Theorem 4.1.1: Chain Rule
H(X,Y)=H(X)+H(Y|X)

Proof:

H(X,Y) ==Y p(x y)logp(x, y)=->"3" p(x, y)logp(x) p(y/x)

XeX yeY xeX yeY

—-3 3 p(xy)logp(x)- 3 3" plx,y)logp(y}x

xeX yeY xeX yeY

== p()1og p(x)- 33" p(x, y)logp(y|x)

xeX xeX yeY
=H(X)+H(Y|X)
Corollary 4.1.1: Chain Rule in Probability Domain
log p(X,Y)=log p(X )+ log p(Y\X)

Proof: Obvious from the conditional probability rule.
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jé“hl - Joint Entropy and Conditional Entropy (3)
Corollary 4.1.2:  H(X,Y|z)=H(X|z)+H(Y|x,Z)
Proof: Obvious from the chain rule.

Remark:  H(X]Y)=H(Y|x)
However, H(X)-H(X[Y)=H(Y)-H(Y|X) (=H(X,Y):Mutual Information)

Example 4.1.3:
Let random variables X,ye{l, 2, 3, 4} have the following joint distribution:

X

—

(101 1 1]

8 16 32 32

1111

— _y)=|16 8 32 32

lo(Xfx,ny)fii 171 y

16 16 16 16

1 0 0 O

L4 ]
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]“HI - Joint Entropy and Conditional Entropy (4)

Example 4.1.3 (Continued):

Then, the marginal probability of X and Y are:

1111

p(X=x>={f 11 f} and p0f=y)=[Z 21 ﬂ

Hence, H(X)=7/4 bits and H(Y)=2 bits. The conditional entropy H(X|Y) is:
HIXY)=3 Pt = DHOY =9 =5 bis
and the conditional entropy I—y|EY|X) is:
H{YIX)=3 p(X = H(Y|X =) =§ bits.
1

The joint entropy H(X,Y) is:

4 4

H(X,Y)=-3"3"p(X =x,Y = y)log p(X =xY = y)-—7 bits.

x=1 y=1
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Definition 4.1.5: Kullback Leibler Distance

The Kullback Leibler distance D(p||q) between the two probability distribution
functions p(x) and q(x) is defined as:

pP(x) _ p(X)

D(pjq p(x)log——==E_ log— =

(pla)= Zx: q(x) " T a(X)

WlthOIogf—O , plogp

Property 4 1.2: Dlstance between Probability Distributions
1) D(p|a) = D(q|p) in general

(2) D(pJiq) is non-negative, and is zero if and only if p=q for all x.
3) The Kullback Leibler distance is sometimes called relative entropy.
(4) If the probability distribution g, which is believed to be correct,

is different from the true distribution p, we need

H(p)+D(p|a)
bits on the average to describe the random variable following p.
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Mutual Information (1)
Definition 4.2.1: Mutual Information

Consider two random variables X and Y with a joint probability distribution
function p(x,y) and the marginal distributions p(x) and p(y). The mutual

Information 1(X,Y) is the relative entropy between the joint distribution and
the product distribution p(x)p(y), i.e.,

1(6:Y)= 33 px,y)log I

Just

] POIP(Y)
{p(x, Y)[p(¥) ()} p(xy)[ 95 p()

Theorem 4.2.1: Entropy and Mutual Information
[(X;Y)=H(X)=H(X]Y)
Observation:

The mutual information 1(X,Y) is the reduction in the uncertainty of X by
knowing Y.

Exercise: Give a proof for Theorem 4.2.1.
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]“HI : Mutual Information (2)

Corollary 4.2.1:1(X;Y)=H(X)-H(X|Y )= H(Y)=H(Y|X)=1(Y; X)
Proof: Obvious from the definition.
Corollary 4.2.2: 1(X;Y)=H(X)+H(Y)-H(X,Y)
Proof: Obvious from the definition.
Corollary 4.2.3: 1(X;X)=H(X)-H(X|X )= H(X)
Proof: Obvious from the definition.
H(X,Y)

H(X) H(Y)
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Theorem 4.2.2: Extension of the Chain Rule
Let X, X,,..., X, be random variables drawn from the joint distribution
P(Xy, Xgy. -, X,). Then,

H(Xy, Xp0 o X, )= S THOG X, X,)
i=1

11 2)= H(X1)+ H(XZ‘Xl)
5)= H(X1)+H(X2’X3‘X1)
=H(X,)+ H(Xz‘xl)Jr H(X3\X2, X,)

By continuing the process, we have:

>
N
>

H(Xy, Xy, X, ) = H(X )+ H XX )4+ H (XX, o, X,)

ZZH(Xi‘Xi—l""’Xl)

i=1

>
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Definition 4.2.2: Conditional Mutual Information
Conditional mutual information of random variable X and Y , given Z is

defined by: |(X;Y|Z)=H(X|Z)—H(X|Y’Z)
=E iy IogM
p(X|Z)p(Y[Z)

Theorem 4.2.3: Chain Rule for Mutual Information
(X5, Xg0mn, XsY )= DG Y X, X X))
Proof: I(Xl,xz,...,xn;Y)zH()I(:i,xz,...,xn)—H(xl,xz,...,xn‘Y)

n

H(Xi‘xi—l"”7 Xl)_ZH(Xi‘Xi—l"”' X17Y)

M-

=2
AN

= |(Xi;Y‘X1,X2|"'!Xi—1)

i=1
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Theorem 4.2.4: Non-Negativity of Mutual Information

1(X;Y)>0

with equality if and only if X and Y are independent.

Proof: 1(X;Y)=D(p(x, y)[p(x) p(y))=0

with equality if and only if p(x,y)= p(X) p(y) , i.e., X and Y are independent.

Theorem 4.2.5: Non-Negativity of Conditional
Mutual Information

1(X;Y[z)>0
with equality if and only if X and Y are conditionally independent given Z.

Proof: Obvious from the definition of the conditional mutual information.
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J“L" : Mutual Information (6)

Theorem 4.2.6: Entropy with Uniform Distribution

Let |X |denote the number of the elements in a set X. Then,
H(X)<logX |
with equality if and only of x has a uniform distribution over X.

Proof: Let u(x)=1/|X| be the uniform probability distribution function over X,
and let p(x) be the probability distribution for X. Then,

D(p||u)=z p(x)log%: logX |-H(X)

Hence, by the non-negativity of relative entropy,

0<D(p|u)=logX |-H(X)
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Theorem 4.2.7: Conditioning reduces entropy
H(X[Y)<H(X)

holds, with equality if and only if X and Y are independent.

Proof: 0<1(X;Y)=H(X)=H(X]Y)

Theorem 4.2.8: Independence Bound on entropy

Let X, X,,..., X, be random variables drawn from the joint distribution

P(Xy, Xp,..., X,). Then, n
H(lele""xn)SzH(Xi)
i=1

Proof: H(X,, X0 Xn)=Zn:H(Xi\XH,“', X,)< Y H(X;)

i=1 i=1
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]s_‘-'-'- LI Information Inequalities (1)
Theorem 4.3.1: Log Sum Inequality
For non-negative numbers, a,, ,, ...., &, and by, by, ..., by,
n n Zai
D a Iog%z[Zaijlog =
i=1 i i=1 b

3, )
with equality if and only if F‘=constant for any i
Proof: The function f(t)=t log t is strictly convex, since f’(t)=(1/t)loge>0
for all positive t. Therefore, by Jensen’s inequality, we have

Zaif(ti)zf(Zaiti) for «; 20, Zai=1

Setting o =b/>.b; and t =a/b,
j=1

We have: Z%loggzzn&|ogz%
5
i= i= E
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]“HI : Information Inequalities (2)

Theorem 4.3.2: Convexity of Relative Entropy

D(pllq) is convex in the pair (p,q), i.e., if (p,,q,), (p,.0,), are two pairs of the
probability distribution of Xe X ,

D(p, + (- 2) p,|Aq, + (- 2)q, )< AD(p,ja, )+ 21— 2)D(p,|a,), 0<2<1
Proof: Applying the log sum inequality to a term on LHS,

(2p, +(1-2) pz)log[ﬂpl("”(l—ﬂ) pz(X)J

A0,(X) + (1= 2)q,(x)

00, o (- 2)p,(9)
<2909 log( o (x)]“l ) pz(x)log( i (X)]

Summing this over all X e X, we obtain the equation shown in the theorem.

Definition 4.3.1: Concavity
A function f is concave, if —f is convex.
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]“HI : Information Inequalities (3)

Theorem 4.3.3: Concavity of Entropy
H(p) is a concave function of p.
Proof.  H(p)=logX |~ D(plu)
where u is the uniform distribution having cardinality |X].

Then the concavity of H(p) is obvious.

Theorem 4.3.4: Concavity of Mutual Information
Let X and Y be random variables having a joint distribution p(x,y)= p(X) p(y|x).

Mutual information I1(X;Y) is a concave function of p(x) for fixed p(y|x), and
a convex function of p(y|x) for fixed p(x).

Proof:  1(X,Y)=H(Y)=H(Y[X)=H ()= pOOH(Y | X =x)
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ey Information Inequalities (4)
Theorem 4.3.4 (Proof continued-1):

If p(y|x) is fixed, then H(Y | X) is fixed.
Also, because p(y|x) is fixed, p(y) is a linear function of p(x).
Since H(Y) is a concave function of p(y), it is also a concave function of p(x).

Now, let's consider two different conditional probability distribution p,(y|x)
and p,(y|x), with which the corresponding joint probabilities are:

P.(y:x)=p(x) p,(y|x) and p,(y,x)=p(x) p,(y|x), and their marginals being
p(x) and p,(y), and p(x) and p,(y), respectively.

Consider conditional, conditional, and marginal distributions:
P, (Y]X) = 2, (y[¥) + (L~ 2) . (¥]X)
P (Y, %) = Ap, (Y, X) + (1= 2) p, (¥, X)
P;(Y) =Py (y) + (1= 2) p,(Y)
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Theorem 4.3.4 (Proof continued-2):
Define @,(X,Y)=p(X)p,(y)
Obviously, d,(X,y)=40,(x,y)+(1-2)q,(X,y)

Since the mutual information is Kullback Leibler distance between the joint
distribution and the product of the marginals,

1(X;Y)=D(p,|a,)

and since the Kullback Leibler distance (=relative entropy) is a convex
function of (p, q), it follows that the mutual information is a convex function
of the conditional distribution.
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Definition 4.4.1: X=>Y>Z
Random variables X, Y, Z are said to form a Markov Chain in the order
X->Y->Z, if the joint probability follows:

p(x, ¥,2) = p(x) p(y|x) p(zy)

Property 4.4.1:
(1) X=>Y->Zif and only if X and Z are conditionally independent of Y given,

ie.,
by = P2 _POIBEN ) 5

(2) X=2>Y>Z implies Z>Y->X.

(3) If Z=R(Y), then X>Y>Z,
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,]é_‘-'-'-}"_-l'__- : Data Processing Inequality (2)

Theorem 4.4.1: Data Processing Inequality
If X>Y=>Z, then I(X;Y)=1(X;2Z)
Proof:  Since 1(X;Y,Z)=1(X;Z)+1(X;Y[Z)=1(X;Y)+1(X;Z]Y)
However, since X and Z are conditionally independent of Y given,
1(X;Z[Y)=0
Since 1(X;Y[2)20, we have: 1(X;Y)>1(X;Z)

Corollary 4.4.1:
I1(Y;Z)=1(X;Z) Proof: Obvious from the definition.

Corollary 4.4.2:
If X>Y->2Z=f(Y), then I (X;Y) > 1(X; f(Y)) Proof: Obvious from the definition.
Function does not increase information!!!

Corollary 4.4.3:
If X>Y>Z, then 1(X;Y|Z)<I(X;Y) Proof: Obvious from the definition.

Observation reduces the dependence of the random variables!!!
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]“L" : Fano’s Inequality (1)

Consider a very simple communication system described below:

Source Estimator
—
X % YL Ix=g0n)
Noise = Error source

From the received signal Y, the estimator g(Y) estimates the transmitted

source X. R
Faon’s inequality specifies the bound of the probability of error: P =Pr(X # X)

Theorem 4.5.1: Fano’s Inequality
H(P)+P,log(X [-1)>H(X]Y)
Proof: Define variable corresponding to the error event:
E_ 1 if )E;tX
0 if X=X
Using the chain rule for entropies, we can expand H(E,X]|Y) in the following
two ways:
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Theorem 4.5.1 (Proof continued-1):
H(E, X|Y) =H(X|Y)+H(E[X,Y) = H(E)Y) + H(X|E,Y)
—

%r_/
=0 <H(PR,) <R, log([X |-1)

€Y (b) (©

(a)Since E is a function of X and g(Y), if the receiver knows X, Y and g(Y) as
conditions of E, there is no uncertainty on E, and hence this term is zero.

(b) Since conditioning reduces entropy, H(E|Y)<H(E)=H(P,)

(c) This term is bounded as:

H (X|E,Y) = Prob(E =0)H (X|Y,E =0)+Prob(E=1)H (X|Y,E =1)
| | S
< (d) <log(X |-1) (e)
(d) Since given E=0, X=g(Y) is known. Therefore, there is no uncertainty.

(e) Given E=1, we can upper-bound the conditional entropy by the
logarithm of the remaining outcomes |X|-1.

Combining these results, we obtain Fano’s inequality.
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jé‘-‘-'-ﬁ" ¥ Fano’s Inequality (3)

Corollary 4.5.1: Wider Sense of Fano’s Inequality

1+Plog(X [)>H(X)Y) or P >w
¢ - ° loglX |

Proof: In the proof of Theorem 4.1.16, (b) and (e) can further be
upper-bounded by

H(X|Y)<H(E)Y)+H(X|E,Y)

<H(R)<L  <Plog(X |-1)
() (©

H(X|E,Y) <P, log(X |-1)<P log(X |)
(e) (e)
respectively.
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jz“- L Summary

We have made a journey on the topics:

1. Information Measures
- Entropy
- Joint Entropy and Conditional Entropy
- Kullback Leibler Distance (Relative Entropy)
2. Mutual Information
- Chain Rules
3. Information Inequalities
- Log Sum Inequality
4. Data Processing Inequality

5. Fano’s Inequality




