
School of Information Science

Japan Advanced Institute of Science and Technology
Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan

http://www.jaist.ac.jp

2009 2-2 Course
- Information Theory -

Entropy, Relative Entropy, and 
Mutual Information

Tetsuo Asano and 
Tad matsumoto

Email: {t-asano, matumoto}@jaist.ac.jp

School of Information Science

+

Noise

Information 
Source Destination

Encoder Fax Tx Fax Rx Decoder

Preliminary Experiment

Send the following three pictures via fax to your friend: 

Which picture required the longest time to send?
Why it required the longest time compared to the others?
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Objectives of this Chapter

(1) Encoder doesn’t know the picture to be transmitted.
- It only “scans” the picture Appearance of black and while (=pixels) 

is a random variable.

(2)   The transmission time depends on the picture.
- The fax encoder analyzes “characteristic” of pictures, and use it when 

converting the “scanned” data.
- The shorter the transmission time, the better “suits” the picture 

to the encoding rule.

Observations:

Objectives:

(1) Define information as a random variable, 
(2) Define measures of information, uncertainty, closeness, 

and reduction of uncertainty, and
(3)  Derive the relationships between the measures.
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Outline

1. Information Measures
- Entropy
- Joint Entropy and Conditional Entropy
- Kullback Leibler Distance (Relative Entropy)

2. Mutual Information
- Chain Rules

3. Information Inequalities
- Log Sum Inequality

4. Data Processing Inequality
5. Fano’s Inequality
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Entropy (1)

Definition 4.1.1:  Entropy
The entropy H(X) of a discrete random variable X is defined by:

( ) ( ) ( )xpxpXH
Xx

log∑
∈

−=

Definition 4.1.2:  Equivalent Description:

( ) ( )[ ] ( )⎥⎦
⎤

⎢
⎣

⎡
=−=

xp
ExpEXH pp

1loglog

where Ep is the expectation with respect to the distribution p.

where with the limit:

entropy H(X) does NOT take negative values.

00log0 =

Note that the base of the logarithm is in many cases 2, with which 
entropy measure is measured in bits.  However, it should not necessarily 
be always the case.  If the base is e, the measure is nats.
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Entropy (2)

Example 4.1.1: Binary Random Variable
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X

Sometimes, because of the definition above, the entropy is also 
denoted as

Property 4.1.1: Logarithm
Since ( ) ( )xpaxp abb logloglog =

holds, where Hy(X)=-p(X)logyp(X) with y=a or b.

,

( ) ( ) ( )XHaXH abb log=

Let with probability p
with probability 1-p

Then, ( ) )1log()1(log ppppXH −−−−=

( ) ( )pHXH =
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Entropy (3)

The entropy H(p) of the random variable in Example 4.1.1 is described as 
a function of p:

(1) Entropy is 0 when p=0 or 1.  This is reasonable, because the random variable is 
not random, and there is no uncertainty.

(2) Entropy is maximum when p=1/2.  This is reasonable, because with p=1/2 the 
uncertainty is maximum.

Observations:
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Entropy (4)

Example 4.1.2: 
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Exercise 4.1.1:
Consider a random variable which has a uniform distribution over 32 outcomes.  
To identify an outcome, we need a label that takes on 32 different values.  

(1) How many labels are needed to uniquely identify the outcomes?
(2) Calculate the entropy of the random variable.
(3) Are the results consistent with each other?
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Entropy (5)

Exercise 4.1.2: Horse Race
Suppose that we have a horse race with eight horses taking part. Assume that 
the probabilities of winning for the eight horses are given by

(1) How many labels are needed to uniquely identify the outcomes?
(2) Calculate the entropy of the random variable.
(3) Are the results consistent with each other?  If not, how can we label the each 

horse to minimize the average length of the label?
(4) Assume that you don’t know the result of the race, but someone else does.  

How many questions, in average, do you need to ask him in order to identify
the winning horse? The answer has to be “yes-or-no”.
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Joint Entropy and Conditional Entropy (1)

Definition 4.1.3:  Joint Entropy
The joint entropy H(X, Y) of discrete random variables X and Y is defined by:

( ) ( ) ( )∑∑
∈ ∈

−=
Xx Yy

yxpyxpYXH ,log,,

Note that H(X,Y) does NOT take negative values.

Definition 4.1.4:  Conditional Entropy

( )[ ]yxpEp ,log−=

where Ep is the expectation with respect to the joint distribution p.

If discrete random variables X and Y follow the joint distribution p(x, y),
conditional entropy H(Y|X) is defined as:
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Joint Entropy and Conditional Entropy (2)

Theorem 4.1.1:  Chain Rule

( ) ( ) ( )XYHXHYXH +=,

Proof:
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)()( XYHXH +=

Corollary 4.1.1:  Chain Rule in Probability Domain
( ) ( ) ( )XYpXpYXp loglog,log +=

Proof: Obvious from the conditional probability rule.
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Joint Entropy and Conditional Entropy (3)

Corollary 4.1.2: ( ) ( ) ( )ZXYHZXHZYXH ,, +=

Proof: Obvious from the chain rule.

Remark: ( ) ( )XYHYXH ≠

However, ( ) ( ) ( ) ( ) ):),(( nInformatioMutualYXHXYHYHYXHXH =−=−

Example 4.1.3:
Let random variables have the following joint distribution: { }4,3,2,1, ∈yx
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Joint Entropy and Conditional Entropy (4)

Example 4.1.3 (Continued):

Then, the marginal probability of X and Y are: 
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Hence, H(X)=7/4 bits and H(Y)=2 bits.  The conditional entropy H(X|Y) is:
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and the conditional entropy H(Y|X) is:

bits,

bits.

The joint entropy H(X,Y) is:

( )
8
27),(log),(,

4

1

4

1
=====−= ∑∑

= =x y
yYxXpyYxXpYXH bits.

School of Information Science

Definition 4.1.5:  Kullback Leibler Distance
The Kullback Leibler distance D(p||q) between the two probability distribution 
functions p(x) and q(x) is defined as:

( )
)(
)(log
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)(log)(

Xq
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xpxpqpD p
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∈

Property 4.1.2: Distance between Probability Distributions

(2) D(p||q) is non-negative, and is zero if and only if p=q for all x. 
(3) The Kullback Leibler distance is sometimes called relative entropy.  

(1)

∞==
0

log,00log0 pp
q

(4) If the probability distribution q, which is believed to be correct, 
is different from the true distribution p, we need 

bits on the average to describe the random variable following p. 

)()( qpDpH +

Kullback Leibler Distance

with .

generalinpqDqpD )()( ≠
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Definition 4.2.1:  Mutual Information
Consider two random variables X and Y with a joint probability distribution 
function p(x,y) and the marginal distributions p(x) and p(y).  The mutual 
Information I(X,Y) is the relative entropy between the joint distribution and
the product distribution p(x)p(y), i.e.,  
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Mutual Information (1)
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Theorem 4.2.1:  Entropy and Mutual Information
( ) )()(; YXHXHYXI −=

Observation:
The mutual information I(X,Y) is the reduction in the uncertainty of X by 
knowing Y. 

Exercise: Give a proof for Theorem 4.2.1.
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Mutual Information (2)

Corollary 4.2.1: ( ) ( ) ( ) ( ) ( ) );(; XYIXYHYHYXHXHYXI =−=−=

Proof: Obvious from the definition.
Corollary 4.2.2: ( ) ( ) ( ) ( )YXHYHXHYXI ,; −+=

Proof: Obvious from the definition.

Corollary 4.2.3: ( ) ( ) ( ) )(; XHXXHXHXXI =−=

Proof: Obvious from the definition.

H(X|Y) H(Y|X)I(X;Y)

H(X,Y)

H(X) H(Y)
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Mutual Information (3)

Theorem 4.2.2: Extension of the Chain Rule
Let X1, X2,…, Xn be random variables drawn from the joint distribution 
p(x1, x2,…,  xn).  Then, 

Proof:
( ) ( ) ( )12121, XXHXHXXH +=
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By continuing the process, we have:
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Mutual Information (4)

Definition 4.2.2:  Conditional Mutual Information
Conditional mutual information of random variable X and Y , given Z is 
defined by: ( ) ),()(; ZYXHZXHZYXI −=
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Theorem 4.2.3:  Chain Rule for Mutual Information
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Proof:
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Mutual Information (5)

Theorem 4.2.4:  Non-Negativity of Mutual Information

( ) ( ) 0)()(),(; ≥= ypxpyxpDYXI

( ) 0; ≥YXI

Proof:

with equality if and only if X and Y are independent.

with equality if and only if p(x,y)= p(x) p(y) , i.e., X and Y are independent.

Theorem 4.2.5:  Non-Negativity of Conditional
Mutual Information

( ) 0; ≥ZYXI

Proof: Obvious from the definition of the conditional mutual information.

with equality if and only if X and Y are conditionally independent given Z.
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Mutual Information (6)

Theorem 4.2.6: Entropy with Uniform Distribution

( ) )(log
)(
)(log)( XH

xu
xpxpupD −==∑ X

( ) Xlog≤XH

Proof: Let u(x)=1/|X| be the uniform probability distribution function over X, 
and let p(x) be the probability distribution for X.  Then, 

Let denote the number of the elements in a set X.  Then,

Hence, by the non-negativity of relative entropy, 

X

with equality if and only of x has a uniform distribution over X.

( ) )(log0 XHupD −=≤ X
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Mutual Information (7)

Theorem 4.2.7: Conditioning reduces entropy
( ) )(XHYXH ≤

Proof:
holds, with equality if and only if X and Y are independent.

( ) )()(;0 YXHXHYXI −=≤

Theorem 4.2.8: Independence Bound on entropy
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Let X1, X2,…, Xn be random variables drawn from the joint distribution 
p(x1, x2,…,  xn).  Then, 
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Proof:
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Information Inequalities (1)

Theorem 4.3.1: Log Sum Inequality

Proof:

For non-negative numbers, a1, a2, …., an and b1, b2, …., bn,  
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The function f(t)=t log t is strictly convex, since f’’(t)=(1/t)loge>0
for all positive t.  Therefore, by Jensen’s inequality, we have
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Theorem 4.3.2: Convexity of Relative Entropy

( ) ( ) ( ) 10,)1()1()1( 22112121 ≤≤−+≤−+−+ λλλλλλλ qpDqpDqqppD

D(p||q) is convex in the pair (p,q), i.e., if (p1,q1), (p2,q2), are two pairs of the 
probability distribution of           ,

Proof: Applying the log sum inequality to a term on LHS, 
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Summing this over all , we obtain the equation shown in the theorem.Xx∈

Definition 4.3.1: Concavity
A function f is concave, if –f is convex.

Information Inequalities (2)
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Theorem 4.3.3: Concavity of Entropy

( ) ( )upDpH −= Xlog

H(p) is a concave function of p.

Proof:

where u is the uniform distribution having cardinality |X|.  
Then the concavity of H(p) is obvious. 

Theorem 4.3.4: Concavity of Mutual Information

∑ =−=−=
x

xXYHxpYHXYHYHYXI )|()()()|()(),(

Let X and Y be random variables having a joint distribution p(x,y)= p(x) p(y|x).

Proof:

Mutual information I(X;Y) is a concave function of p(x) for fixed p(y|x), and 
a convex function of p(y|x) for fixed p(x).  

Information Inequalities (3)
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Theorem 4.3.4 (Proof continued-1):
If p(y|x) is fixed, then is fixed. )|( XYH
Also, because p(y|x) is fixed, p(y) is a linear function of p(x).  
Since H(Y) is a concave function of p(y), it is also a concave function of p(x).

Now, let’s consider two different conditional probability distribution p1(y|x)
and p2(y|x), with which the corresponding joint probabilities are: 
p1(y,x)=p(x) p1(y|x) and p2(y,x)=p(x) p2(y|x), and their marginals being
p(x) and p1(y), and p(x) and p2(y), respectively.  

Consider conditional, conditional, and marginal distributions:

)()1()()( 21 xypxypxyp λλλ −+=

),()1(),(),( 21 xypxypxyp λλλ −+=

)()1()()( 21 ypypyp λλλ −+=

Information Inequalities (4)
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Theorem 4.3.4 (Proof continued-2):
)()(),( ypxpyxq λλ =Define 

),()1(),(),( 21 yxqyxqyxq λλλ −+=Obviously, 

Since the mutual information is Kullback Leibler distance between the joint 
distribution and the product of the marginals, 

( )λλ qpDYXI =);(

and since the Kullback Leibler distance (=relative entropy) is a convex 
function of (p, q), it follows that the mutual information is a convex function
of the conditional distribution.  

Information Inequalities (5)
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Definition 4.4.1: X Y Z

Data Processing Inequality (1)

Random variables X, Y, Z are said to form a Markov Chain in the order
X Y Z, if the joint probability follows:

)()()(),,( yzpxypxpzyxp =

Property 4.4.1:

(2) X Y Z implies Z Y X. 

(3)  If Z=f(Y), then X Y Z.

(1)X Y Z if and only if X and Z are conditionally independent of Y given,
i.e.,

)()(
)(

)(),(
)(

),,(),( yzpyxp
yp

yzpyxp
yp

zyxpyzxp ===
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Theorem 4.4.1: Data Processing Inequality

Data Processing Inequality (2)

If X Y Z, then );();( ZXIYXI ≥

Proof:     Since );();();();(),;( YZXIYXIZYXIZXIZYXI +=+=

However, since X and Z are conditionally independent of Y given, 
0);( =YZXI

Since 0);( ≥ZYXI , we have: );();( ZXIYXI ≥ .
Corollary 4.4.1:

Proof: Obvious from the definition.);();( ZXIZYI ≥
Corollary 4.4.2:

Proof: Obvious from the definition.If X Y Z=f(Y), then ))(;();( YfXIYXI ≥

Corollary 4.4.3:
Proof: Obvious from the definition.If X Y Z, then );();( YXIZYXI ≤

Observation reduces the dependence of the random variables!!!

Function does not increase information!!!
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Fano’s Inequality (1)

Proof:  Define variable corresponding to the error event:

( ) )(1log)( YXHPPH ee ≥−+ X

Theorem 4.5.1: Fano’s Inequality

+
Noise = Error source

Source Estimator
g(Y)X Y )(ˆ YgX =

Consider a very simple communication system described below:

From the received signal Y, the estimator g(Y) estimates the transmitted 
source X.  
Faon’s inequality specifies the bound of the probability of error: Pe=Pr(          )XX ≠ˆ

⎩
⎨
⎧

=
≠

=
XXif
XXifE ˆ0

ˆ1

Using the chain rule for entropies, we can expand H(E,X|Y) in the following 
two ways:
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Fano’s Inequality (2)

43421
0

),()(),(
=

+= YXEHYXHYXEH
Theorem 4.5.1 (Proof continued-1):

(a)Since E is a function of X and g(Y), if the receiver knows X, Y and g(Y) as 
conditions of E, there is no uncertainty on E, and hence this term is zero.

(b) Since conditioning reduces entropy,
(c) This term is bounded as: 

(a)
( )
4342143421

1log)(

),()(
−≤≤

+=
Xee PPH

YEXHYEH

(b) (c)

)()()( ePHEHYEH =≤

( )
443442144 344 21

1log0

)1,()1()0,()0(),(
−≤=

==+===
X

EYXHEProbEYXHEProbYEXH

(d) (e)

(d) Since given E=0, X=g(Y) is known.  Therefore, there is no uncertainty.
(e)Given E=1, we can upper-bound the conditional entropy by the 

logarithm of the remaining outcomes |X|-1.

Combining these results, we obtain Fano’s inequality.
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Fano’s Inequality (3)

Proof:  In the proof of Theorem 4.1.16, (b) and (e) can further be 
upper-bounded by 

( ) )(log1 YXHPe ≥+ X or

Corollary 4.5.1: Wider Sense of Fano’s Inequality

Xlog
1)( −

≥
YXH

Pe

( )
4342143421

1log1)(

),()()(
−≤≤≤

+≤
Xee PPH

YEXHYEHYXH

(b’)

( ) ( )XX log1log),( ee PPYEXH ≤−≤

(c)

(e) (e’)

respectively.
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Summary

1. Information Measures
- Entropy
- Joint Entropy and Conditional Entropy
- Kullback Leibler Distance (Relative Entropy)

2. Mutual Information
- Chain Rules

3. Information Inequalities
- Log Sum Inequality

4. Data Processing Inequality
5. Fano’s Inequality

We have made a journey on the topics:


