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In the last Chapters, we learned ….. 

We skip the transmitter and receiver!!!!

+

Binary/Non-binary finite alphabet Noise = Error source

Channel 
Encoder

Channel 
Decoder

We assumed that the channel input and output both 
take discrete values:

We derived Channel Coding Theorem:

(1) There exists a (2nR, n) rate R code such that the maximum error probability λ(n)

can be made arbitrarily small, if the code rate is lower than the capacity R<C.
(2) Conversely, any (2nR, n) rate R code that can achieve arbitrarily small λ(n) must 

satisfy R<C.
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In this and the next Chapters, we derive …..

For this, we eliminate the finite alphabet assumption.

Channel Coding Theorem for the channel where input
and output of the channel both take analog values.

+

Analog values Noise

Channel 
Encoder

Channel 
Decoder

However, still we ignore the transmitter and receiver.  The impact of having
to use physical transmitter and receiver is investigated in another course, 
“Channel Coding”.
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Differential Entropy (1)
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For continuous random variable X with a probability density function f(x), 
the differential entropy is defined as:

Definition 9.1.1:  Differential Entropy

where S is the set where X is defined.
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If a random variable X is distributed over a uniform distribution 
the differential entropy of X is:

Example:  Uniform Distribution

( ) axaxf ≤≤= 0,/1

Property:  Value Range
The differential entropy can take negative values, as seen in the above 
example.
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Differential Entropy (2)

If a random variable X is distributed over a Normal distribution N(0,σ2) 
the differential entropy of X is:

Example:  Normal Distribution

Theorem 9.1.2:  Asymptotic Property
Let X1, X2, …. , Xn be a sequence of i.i.d. random variable following a 
density function f(x).  Then, the following holds:
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After minor mathematical manipulations, we have:
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Proof: Obvious
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Relation of Differential and Discrete Entropies (1)

There exists a value xi such that the probability that a random variable X
takes a value between i∆ and (i+1)∆ is given by:

Property:
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Proof: Obvious
Where f(x) is the density function of X.

i∆ (i+1)∆

Area=f(xi)∆
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Relation of Differential and Discrete Entropies (2)

Definition 9.2.1:  X∆

Define a discrete random variable, ( )∆+≤≤∆=∆ 1, ixiifxX i

Entropy of this random variable X∆ is given by:
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Relation of Differential and Discrete Entropies (3)

Theorem 9.2.1: Discrete Continuous

Example:
Proof: Obvious

As we saw previously in an example, differential entropy h(X) of a random 
variable uniformly distributed over [0, a] is log a, and with a=1, h(X)=0.
If we “quantize” this random variable following distribution [0, 1] with n-
bit A/D converter, 
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Therefore, 
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which means that n bits are enough to express the contiguous random 
variable X while keeping n-bit accuracy.
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Joint and Conditional Differential Entropy (1)

Definition 9.3.1: Joint Differential Entropy
The differential entropy of a set X1, X2, …, Xn of random variables 
following the density function f(x1, x2, …, xn) is defined as:

nnnn dxdxdxxxxfxxxfXXXh LLLL 21212121 ),,,(log),,,(),,,( ∫−=

where f(X,Y) is the joint density of the random variable X and Y.

Definition 9.3.2: Conditional Differential Entropy
The conditional differential entropy of random variables X and Y is 
defined as:
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Joint and Conditional Differential Entropy (2)

Theorem 9.3.1: Normal Distribution
The differential entropy of random variables X1, X2, …, Xn following the 
multivariate normal density function
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Proof:
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Joint and Conditional Differential Entropy (3)

Proof Continued:
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Exercise: Provide more detailed and more concrete proof for
this mathematical manipulation.
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Mutual Information (1)

Definition 9.4.1: Kullback Leibler Distance
Kullback Leibler distance D(f||g) between two density functions is 
defined as:

∫= S g
ffgfD log)(

with 0log (0/0)=0 and S being the region where the random variables are 
defined.

Definition 9.4.2: Mutual Information
The mutual information I(X,Y) between the two continuous random 
variables X and Y with the joint density function f(x,y) is defined as

dxdy
yfxf

yxfyxfYXI ∫= )()(
),(log),();(

Property 9.4.1:
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Proof:  Obvious.
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Mutual Information (2)

Theorem 9.4.1: Non Negativity of Kullback Leibler Distance

0)( ≥gfD , and equality holds if and only if f=g.
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Jensen’s inequality for concave functions states that the equality holds if 
and only of f=g.

Theorem 9.4.2: Non Negativity of Mutual Information

0);( ≥YXI , and equality holds if and only X and Y are independent.
Proof: Obvious

Theorem 9.4.3: Knowledge Decreases Uncertainty
, and equality holds if and only X and Y are independent.

Proof: Obvious
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Mutual Information (3)

Theorem 9.4.4: Chain Rule

Proof: Obvious
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Theorem 9.4.5:

Proof: Obvious

∑
=

≤
n

i
in XhXXXh

1
21 )(),,,( L

and equality holds if and only X and Y are independent.

Theorem 9.4.6:

Proof: Obvious
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i.e., translation does not change the differential entropy.
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Mutual Information (4)

Theorem 9.4.7: Normal Distribution Maximize Entropy
The Normal distribution maximizes the entropy among those 
distributions having the same variance.
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Proof: Let X be a zero mean random variable with variance σ2, following 
the density function g(x).  Also, let φ(X) be a zero mean Normal random 
variable with variance σ2.  Then,
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The equality holds if φ=g
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Mutual Information (5)

Theorem 9.4.8: Normal Distribution Maximize Entropy
- Multi-variable’s Case -

The n-dimensional zero-mean Normal distribution maximizes the entropy 
among other n-dimensional zero-mean distributions having the same 
covariance matrix K={Kij}.

Proof: Exercise
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We have visited…..


