

AIST

School of Information Science

Differential Entropy (1)

Definition 9.1.1: Differential Entropy

For continuous random variable X with a probability density function f(x), the differential entropy is defined as:

$$h(X) = -\int_{S} f(x) \log f(x) dx$$

where S is the set where X is defined.

Example: Uniform Distribution

If a random variable X is distributed over a uniform distribution f(x)=1/a, $0 \le x \le a$ the differential entropy of X is:

$$h(X) = -\int_0^a \frac{1}{a} \log \frac{1}{a} dx = \log a$$

Property: Value Range

The differential entropy can take negative values, as seen in the above example.

School of Information Science

Relation of Differential and Discrete Entropies (3)

Theorem 9.2.1: Discrete → Continuous

$$H(X^{\Delta}) + \log \Delta = -\sum_{-\infty}^{\infty} \Delta f(x_i) \log f(x_i) \to h(f) = h(X), \quad as \quad \Delta \to 0$$

Proof: Obvious

Example:

As we saw previously in an example, differential entropy h(X) of a random variable uniformly distributed over [0, a] is log a, and with a=1, h(X)=0. If we "quantize" this random variable following distribution [0, 1] with *n*-bit A/D converter,

$$h(X) = H(X^{\Delta}) + \log \Delta = H(X^{\Delta}) + \log 2^{-n} = H(X^{\Delta}) - n = 0$$

Therefore,

 $H(X^{\Delta}) = n$

which means that n bits are enough to express the *contiguous* random variable X while keeping *n*-bit accuracy.

	School of Information Science	
JAIST	Mutual Information (2)	
Theorem 9.4.1: Non Negativity of Kullback Leibler Distance		
	$D(f \ g) \ge 0$, and equality holds if and only if $f = g$.	
Proof:	$-D(f g) = \int_{S} f \log \frac{g}{f} \leq \underbrace{\leq}_{Jensen's unequality} \log \int_{S} f \frac{g}{f} = \log \int_{S} g \leq \log 1 = 0$	
Jensen's inequality for concave functions states that the equality holds if and only of $f=g$.		
Theorem 9.4.2: Non Negativity of Mutual Information		
$I(X;Y) \ge 0$, and equality holds if and only X and Y are independent. Proof: Obvious		
Theorem 9.4.3: Knowledge Decreases Uncertainty		
$h(X Y) \le h(X)$, and equality holds if and only X and Y are independent.		
Proof: Obvious		

	School of Information Science	
JAIST	Mutual Information (4)	
Theorem 9.4.7: Normal Distribution Maximize Entropy		
The Normal distribution maximizes the entropy among those distributions having the same variance.		
Proof: Le the densi variable v	et X be a zero mean random variable with variance σ^2 , following ity function $g(x)$. Also, let $\phi(X)$ be a zero mean Normal random with variance σ^2 . Then,	
$0 \le D(g$	$g\ \phi) = \int g \ln \frac{g}{\phi} dx = -h(g) - \int g \ln \phi dx = -h(g) - \int \left[-\ln \sqrt{2\pi}\sigma - \frac{x^2}{2\sigma^2} \right] g dx$	
	$= -h(g) + \ln\sqrt{2\pi}\sigma + \frac{1}{2\sigma^2}\int x^2 g dx$	
However	, since g and f have the same variance, $\int x^2 g dx = \int x^2 \phi dx$	
Therefore $0 \le D(x)$	e, $g \ \phi \rangle = -h(g) + \ln \sqrt{2\pi}\sigma + \frac{1}{2\sigma^2} \int x^2 g dx = -h(g) + \ln \sqrt{2\pi}\sigma + \frac{1}{2\sigma^2} \int x^2 \phi dx$	
	$= -h(g) - \int \phi \ln \phi dx = -h(g) + h(\phi)$	
The equa	lity holds if $g = \phi$	

