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J“"" . In the last Chapters, we learned .....

We assumed that the channel input and output both
take discrete values:

We skip the transmitter and receiver!!!!
— Sreoaer (D et [

Binary/Non-binary finite alphabet i~ "Noise = Error source

We derived Channel Coding Theorem:

(1) There exists a (277, n) rate R code such that the maximum error probability A"
can be made arbitrarily small, if the code rate is lower than the capacity A<C.

(2) Conversely, any (277, n) rate R code that can achieve arbitrarily small A must
satisfy R<C.
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]“HI i In this and the next Chapters, we derive .....

Channel Coding Theorem for the channel where input
and output of the channel both take analog values.

For this, we eliminate the finite alphabet assumption.

Channel

Channel N
Encoder

Decoder

Lo
Analog values "

Noise

However, still we ignore the transmitter and receiver. The impact of having
to use physical transmitter and receiver is investigated in another course,
“Channel Coding”.
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]“HI e Differential Entropy (1)
Definition 9.1.1: Differential Entropy

For continuous random variable X with a probability density function fx),
the differential entropy is defined as:

h(X)=- j f (x)log f (x)dx
S
where S is the set where X is defined.

Example: Uniform Distribution

If a random variable X is distributed over a uniform distribution
f(x)=1/a, O0<x<a the differential entropy of X is:

h(X):—jailogidx= loga

0

Property: Value Range

The differential entropy can take negative values, as seen in the above
example.
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]“HI : Differential Entropy (2)

Example: Normal Distribution

If a random variable X is distributed over a Normal distribution M0,c?)
the differential entropy of X is:
L p{ < }
270? 20°

h(f)==[" f(x)log f (x)dx with f(x)=
After minor mathematical manipulations, we have:

2
h(f): E(XZ) +%|r‘|27z'0'2 =%+%|n2ﬂ'0'2 =£|r‘|e+%|r‘|27z'0'2

:%|n27ze<)'2 [nats] :%IogZ;zea2 [bits]

Theorem 9.1.2: Asymptotic Property
Let X}, X,, ...., X, be a sequence of i.i.d. random variable following a
density function £x). Then, the following holds:
~Llog £ (x,,%,.+++,x,) > E(~log f (x))=h(X)
Proof: Obvious
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Jg_‘?l.}".l .. Relation of Differential and Discrete Entropies (1)
Property:

There exists a value x such that the probability that a random variable X
takes a value between /A and (A1)A is given by:

Priia < X <(i+1)) = F()a=[ " F(dk
Where f(x) is the density function of X.
Proof: Obvious
fix) f'
: —=a— Area=Ax)A
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jg_"f-'.ﬁ.—" .. Relation of Differential and Discrete Entropies (2)

Definition 9.2.1: Xx*
Define a discrete random variable, X*=x, if iA<x<(i+1)A

Entropy of this random variable X is given by:
A)_ > R _ (i+1)A _
H(x*)= ; plogp,, with p=[ """ f(xdx=f(x)a
which leads to:

H(X®) == F(x)Alog(f (x)A)=—3" Af (x)log f ()~ > Af (x)log A

(R —
=1

=~ Af (%) log f (%)~ log A
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]“‘"' .. Relation of Differential and Discrete Entropies (3)

Theorem 9.2.1: Discrete = Continuous

H(X*)+logA =3 Af (x)log f () - h(f) =h(X), as A0
Proof: Obvious -
Example:
As we saw previously in an example, differential entropy /(X) of a random
variable uniformly distributed over [0, 4] is log a, and with a=1, A(X)=0.
If we “quantize” this random variable following distribution [0, 1] with -
bit A/D converter,

h(X)=H(X*)+logA =H(X*)+log2™" =H(X*)-n=0
Therefore,

H(X*)=n

which means that n bits are enough to express the contiguous random
variable X while keeping r-bit accuracy.
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]“‘"' . Joint and Conditional Differential Entropy (1)

Definition 9.3.1: Joint Differential Entropy

The differential entropy of a set X, X,, ..., X, of random variables
following the density function fx;, X, ..., X,) is defined as:

N(Xy, Xt Xo) == £ 00 X100 %) 10g T (0, X0+, X, )y, -+,

Definition 9.3.2: Conditional Differential Entropy

The conditional differential entropy of random variables Xand VY is
defined as:

h(X|Y) = -j f (x,y)log f (x|y)dxdy = -j f(x,y) Iog%dxdy =h(X,Y)=h(Y)

where A X, V) is the joint density of the random variable Xand Y.
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jg".‘-'.ﬁ" .. Joint and Conditional Differential Entropy (2)

Theorem 9.3.1: Normal Distribution

The differential entropy of random variables X, X, ..., X, following the
multivariate normal density function

F(X X000 %) = f(X):WeXp{—;(X— W) K (x— U)}
T
is given by n _
h(xl,xz,m,xn)=h(Nn(p,K)):Elog(zﬂe)”\K\ bits
where p=E(x) and ( )
X~
K = E[(x— ) (x—p)]= (Xz_.ﬂZ)((XrM) (ko= pty) - (%= s,)

Proof: (X" _ﬂ")

(1) =~ 10109 100k =~ 00~ 3 0= K- )2 T o
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jg".‘-'.ﬁ" .. Joint and Conditional Differential Entropy (3)

Proof Continued:

| ST K ) Y K

%Hn(ﬂ)"\K\”z

w2 1

=%Ine”+ln(\/§)”\K\ _Eln(Zme)”\K\ nats:%log(Zne)”\K\ bits

Exercise: Provide more detailed and more concrete proof for
this mathematical manipulation.
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]“L" : Mutual Information (1)

Definition 9.4.1: Kullback Leibler Distance
Kullback Leibler distance D(/|g) between two density functions is

defined as: f
D(f[g) = f IogE

with 0/og (0/0)=0 and S being the region where the random variables are
defined.

Definition 9.4.2: Mutual Information

The mutual information /(X; Y) between the two continuous random
variables Xand Y with the joint density function Ax,)) is defined as

: f(x,y)
YY) = [ f(x y)log———"dxd
1(X:;Y) = (6 y)log = ey
Property 9.4.1:
1(X;Y) =h(X)=h(X]Y) =h(Y)—=h(Y|X) = D(f (x, y)| f (%) f (¥))

Proof: Obvious.
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AIST .
ey Mutual Information (2)
Theorem 9.4.1: Non Negativity of Kullback Leibler Distance
D(f|g)=0 , and equality holds if and only if ~g.
_ g 9 _ _
Proof: —D(f\\g)—jsflog? < IogJ‘fT—loglgslogl—O

due to Jensen's unequality S

Jensen’s inequality for concave functions states that the equality holds if
and only of ~=g.

Theorem 9.4.2: Non Negativity of Mutual Information

1(X;Y)=0, and equality holds if and only Xand Y are independent.
Proof: Obvious

Theorem 9.4.3: Knowledge Decreases Uncertainty
h(X|Y)<h(X) , and equality holds if and only X'and ¥ are independent.

Proof: Obvious
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AIST :
ey Mutual Information (3)
Theorem 9.4.4: Chain Rule
h(Xl,Xz,-“,Xn)=Zh(Xi‘X1,X2,-~',Xi_1)
Proof: Obvious =
Theorem 9.4.5:
h(xl’XZ"“’xn)Szh(Xi)
i=1
and equality holds if and only Xand Y are independent.

Proof: Obvious

Theorem 9.4.6:
h(X +¢) =h(X)

i.e., translation does not change the differential entropy.

Proof: Obvious
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AIST .
ey Mutual Information (4)

Theorem 9.4.7: Normal Distribution Maximize Entropy

The Normal distribution maximizes the entropy among those
distributions having the same variance.

Proof: Let X'be a zero mean random variable with variance ¢?, following

the density function g(x). Also, let #(X) be a zero mean Normal random
variable with variance ¢®. Then,

0<D(glé) =g In%dx=—h(g)— [gIngdx=-n(g)- [ [—In@a—;?}gdx

1
57 J' x?gax

However, since g and fhave the same variance, Ingdx = Ix2¢dx
Therefore, 1

0<D(g|¢) =-h(g) +Inv2z0 + = jx?gdx =-h(g)+Inv2zo +
(o}
=-h(g) - [ ¢Ingdx = —h(g) + h(9)
The equality holds if 9=4¢

=—h(g)+InvV27z0 +

1

26°

J'x2¢dx
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,]é_‘-'-'-}"_-r..- : Mutual Information (5)

Theorem 9.4.8: Normal Distribution Maximize Entropy
- Multi-variable’s Case -

The n~dimensional zero-mean Normal distribution maximizes the entropy
among other n-dimensional zero-mean distributions having the same
covariance matrix K={;}.

Proof: Exercise
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,]é_‘-'-'-}"_-r..- : Summary

We have visited.....
1. Differential Entropy
- Definition
- Some Examples
- Asymptotic Property
2. Relation of Differential and Discrete Entropies
Joint and Conditional Differential Entropy
4. Mutual Information
- Some Important Properties

w




