In-Place Algorithm for Image Rotation

Tetsuo Asano', Shinnya Bitou', Mitsuo Motoki', and Nobuaki Usui?

1 School of Information Science, JAIST, Japan
% Tmaging Engineering Div., Products Group, PFU Limited, Japan

Abstract. This paper presents an algorithm for rotating a subimage in
place without using any extra working array. Due to this constraint, we
have to overwrite pixel values by interpolated values. Key ideas are local
reliability test which determines whether interpolation at a pixel is carried
out correctly without using interpolated values, and lazy interpolation
which stores interpolated values in a region which is never used for output
images and then fills in interpolated values after safety is guaranteed.
It is shown that linear interpolation is always safely implemented. An
extension to cubic interpolation is also discussed.

1 Introduction

Demand for scanners is growing toward paper-less society. There are a number
of problems to be resolved in the current scanner technology. One of them is
to detect the direction of a document scanned, i.e., which side is the top of the
document. One way is to use OCR technology to read characters which is now
common to scanners. Of course, we want to avoid using OCR since it takes time.
Another common problem which we address in this paper is correction of rotated
documents. If the document contains only characters, then OCR is definitely a
solution. Since it is costly, a geometric algorithm for such correction is required.
It consists of two phases. In the first phase we detect rotation angle. Some
scanners are equipped with a sensor to detect rotation angle. If no such sensor
is available, we could rely on another algorithm called Hough transform [1, 2] for
finding line components to detect rotation angle. To simplify the discussion, we
assume a hardware sensor to detect rotation angle.

Once rotation angle is obtained, the succeeding process is rather easy if suffi-
cient working storage is provided. Suppose input intensity values are stored in a
two-dimensional array a[.,.] and another array b[., .] of the same size is available.
Then, at each lattice point (pixel) in the rotated coordinate system we compute
an intensity value using appropriate interpolation (linear or cubic) using inten-
sity values around the lattice point (pixel) in the input array and then store
the computed interpolation value at the corresponding element in the array b[.
Finally, we output intensity values stored in the array b[|. It is quite easy. This
method, however, requires too much working storage, which is a serious draw-
back for devices such as scanners in which saving memory is a serious demand
for their built-in softwares and their costs. Is it possible to implement the inter-
polations without using any extra working storage? This is our question in this

paper.

2 T. Asano et al.

We propose an efficient algorithm for correcting rotation of a document with-
out using any extra working storage. A simple way of doing this is to compute an
interpolation value at each pixel in the rotated coordinate system and store the
computed value somewhere in the input array a[| near the point in the original
coordinate system. Once we store an interpolation value at some element of the
array, the original intensity value is lost and it is replaced by the interpolation
value. Thus, if the neighborhood of the pixel in the rotated coordinate system
includes interpolated values then the interpolation at that point is not correct
or reliable. One of keys is a condition to determine whether interpolation at a
given pixel is reliable or not, that is, whether any interpolated value is included
in the neighborhood or not. Using the condition, we first classify pixels in the
rotated coordinate system into reliable and unreliable ones. In the first phase
we compute interpolation at each unreliable pixel and keep the interpolation
value in a queue, which consists of array elements outside the rotated subimage.
Then, in the second phase we compute interpolation at every pixel (z,y) in the
rotated coordinate system and store the computed value at the (z, y)-element in
the array. Finally, in the third phase for each unreliable pixel (z,y) we move its
interpolation value stored in the queue back to the (z,y)-element in the array.

There are increasing demands for such memory-efficient algorithms. The work
in this paper would open a great number of possibilities in such directions in
applications to computer vision, computer graphics, and build-in software design.
Image rotation is one of the most important topics for devices such as scanners. In
fact there are a number of patents such as [3] proposing a method for rotating
images so that the number of disc accesses is minimized and [4] using JPEG
compression. Unfortunately, as far as the authors know, there are no theoretical
results on this topics.

This paper is organized as follows. In Section 2 we give a mathematical
description of our problem after preparing necessary notations and definitions.
Then, in Section 3 we present a condition to determine whether interpolation
at a given pixel is reliable or not only using local geometric information. Using
the condition, we give an in-place algorithm for correcting a rotated subimage
without using any extra working storage. We conclude the paper together with
some open problems.

2 Problem Definition

In this section we formulate a problem mathematically. An input is an image
which contains a subimage rotated by some angle . We assume that the rotation
angle is a part of our input. Furthermore, for simplicity of argument we assume
that the document is rotated in a counter-clockwise way. Rotation in the opposite
direction can be dealt with in a symmetric manner.

Refer to Figure 1. The leftmost one is an image taken by a scanner. A doc-
ument part in the figure is rotated. Given such a rotated image, we want to
correct the rotation. The right figures ullustrate our strategy in this paper. We
first execute interpolation at each pixel in the rotated subimage and store those

In-Place Algorithm for Image Rotation 3

interpolated values over the input image. Finally, we shift the subimage to the
center position.

Fig. 1. An image containing a rotated subimage. A schematic illustration for correcting
rotation is given in the right figures.

2.1 Input image and rotated subimages: G,n and Ry gy

Input image G consists of h x w pixels. Each pixel (z,y) is associated with an
intensity level. The set of all those pixels (or lattice points in the zy-coordinate
system) is denoted by Gih and its bounding rectangle by G-

Rotated subimage R consists of h x W pixels, which form a set Rﬁ, of pixels
(or lattice points in the XY-coordinate system). Intensity levels at each pixel
(X,Y) is calculated by interpolation using intensity levels in the neighborhood.

2.2 Output image and location function

An interpolation value calculated at a pixel (X,Y") € Rﬁ, g in the rotated subim-
age is stored (or overwritten) at some pixel s(X,Y) € Gﬁh in the original input
image. The function s() determining the location is referred to as a location
function. A simple function is s(X,Y) = (X,Y) which maps a pixel (X,Y) in
R¥ ., to a pixel (X,Y) in G¥, . We could use different location functions, but
this simple function seems best for row-major and column-major raster scans.
So, we implicitly fix the function.

Then, an output image after correcting rotation is a range of the function.
It is rather easy to move the output image to the center position of the original
rectangle G, in an in-place manner.

4 T. Asano et al.

2.3 Correspondence between two coordinate systems

Let (x0,yo) be the xy-coordinates of the lower left corner of the rotated document
(more exactly, the lower left corner of the bounding box of the rotated subimage).
Now, a pixel (X,Y) in Rﬁ,H is a point (z,y) in the rectangle G, with

r=x9+ Xcosh —Ysinb,
Yy =1yo+ Xsinf + Y cosb.

The corresponding point (z,y) defined above is denoted by p(X,Y").

2.4 Scan order o(X,Y)

Let o be a scanning order over the pixels in R}J}’EV - It is a mapping from Rﬁ, "
to a set of integers {0,1,...,WH —1}, that is, 0(X,Y) = ¢ means that the pixel
(X,Y) is scanned in the i-th order. If o is a row-major raster scan, o(X,Y) =
X+Y xW where X =0,..., W —-1and Y =0,...,H — 1. A column-major
raster order is symmetrically characterized by o(X,Y) =Y + X x H.

2.5 Window Ng4(z,y) for interpolation

Following the scan order o, we take pixels in the rotated image and for each pixel
(X,Y) we compute an intensity value at (X,Y") by interpolation using intensity
values of pixels in the neighborhood of the corresponding point (z,y) = p(X,Y).
There are a number of algorithms for interpolation. The simplest one called
the nearest neighbor algorithm copies an intensity level from the nearest pixel.
Linear interpolation performs interpolation by linear combination of intensity
values at the four immediate neighbors. An algorithm using cubic polynomials for
interpolation is called a cubic interpolation. Window used for the interpolation is
denoted by Ny(x,y), where d is a parameter to determine the size of the window.
The value of d is 1 for linear interpolation and 2 for cubic interpolation. The
window size of the nearest neighbor algorithm is at most 1, but only one point
is used for interpolation. The window Ny(z,y) is defined by

Nd(mv y) = {(ml> yl) € Gﬁh|x, = LmJ _d+1) ey LmJ +d7 y, = |_yJ _d+17 reey |_yJ +d}
The set Ny(z,y) consists of at most 4d? elements. We do not describe how linear
or cubic interpolation is calculated.

2.6 Basic interpolation algorithm and its problem

The following is a basic algorithm for interpolation with a scan order ¢ and
location function s().

Basic interpolation algorithm
(1) Scanning

In-Place Algorithm for Image Rotation 5

for each (X,Y) € Rﬁ,H in the scan order ¢ do
- Calculate the location p(X,Y) = (z,y) in the xy-coordinate system.
- Execute interpolation at (z,y) using intensity levelsin the window Ny (z,y).
- Store the interpolation value at a pixel s(X,Y") € foh specified by the
location function.
(2) Clear the margin
for each (z,y) € G¥, do
if no interpolation value is stored at (z,y)
then the intensity level at (z,y) is set to white.

The basic algoritm above is simple and efficient. Unfortunately, it may lead
to incorrect interpolations since to calculate an interpolation value at some pixel
it may reuse intensity levels resulting from past interpolations. More precise
description follows:

We say interpolation at (X,Y) € R}J}’EVH is reliable if and only if none of the
pixels in the window N4(z,y) keeps interpolation value. Otherwise, the inter-
polation is unreliable. ”Unreliable” does not mean that the interpolation value
at the point is incorrect. Consider an image of the same intensity level. Then,
interpolation does not cause any change in the intensity value anywhere. Other-
wise, if we use interpolated value for interpolation, the resulting value is different
from the true interpolation value. We use the terminology ”unreliable” in this
sense. A pixel (X,Y) is called reliable if interpolation at (X,Y") is reliable and
unreliable otherwise.

Figure 2 shows how frequently and where unreliable interpolations occur.
In these figures those internal images are rotated counterclockwisely by degrees
5 without any left or bottom margins. When we scan the images by a usual
row-major raster order with d = 1 (window size), those unreliable interpolations
occur consecutively near the left boundary. If we use a column-major raster order
instead, then we have mush less unreliable pixels as shown in (b) in the figure. If
we make the window size d larger then the more unreliable pixels we have. The
figure in (c) shows the case for d = 2.

3 Lazy Interpolation and Local Reliability Test

An idea to avoid such incorrect interpolation is to find all unreliable pixels and
keep their interpolation values somewhere in a region which is not used for output
image. In the following algorithm we use a queue to keep such interpolation
values.

[Lazy Interpolation]
Q: a queue to keep interpolation values at unreliable pixels.
for each pixel (X,Y) € R#VH in the order o do
if (X,Y) is unreliable
then push the interpolation value at (X,Y) into the queue Q.
for each pixel (X,Y) € Rﬁ, y in the order o do

6 T. Asano et al.

(a)

Fig. 2. Distribution of unreliable pixels colored red (dark, if no color is available):
image size = 234 x 170, rotation angle = 5 degrees counterclockwisely. (a) Row-major
raster with d = 1, (b) column-major raster with d = 1, and (c) row-major raster with
d=2.

Calculate the interpolation value at (X,Y") and store the value at the pixel
s(X,Y) € G¥,.
for each pixel (X,Y) € R#VH in the order o do
if (X,Y) is unreliable then
pop a value up from the queue @ and store the value at the pixel s(X,Y).

Here are two problems. One is how to implement the queue. The other is
how to check unreliability of a pixel. It should be remarked that both of them
must be done without using any extra working storage.

Suppose we scan pixels in a rotated subimage R#VH according to a scan
order o and interpolation using a window of size d around each point (X,Y)
is calculated and stored at an array element s(X,Y") specified by the location
function. Now we can define another sequence 7 to determine an order of all
pixels in Gﬁh to receive interpolated values. That is, the function 7 is defined
so that

7(s(X,Y)) = o(X,Y)

holds for any (X,Y) € R#V - Since rotated subimage is smaller than the original
image, some pixels in the original image are not used for output image. That
is, there are pixels (z,y) in Gﬁh such that there is no (X,Y) in R#VH with
(z,y) = s(X,Y). For such pixels (z,y) we define 7(x,y) = W H. More precisely,
7 is a mapping from th to {0,1,...,WH?} such that

7(x,y) =i < WH if i-th computed interpolation value is stored at (z,y) in Gﬁh,
7(x,y) = WH if no interpolation value is stored at (x,y).

In-Place Algorithm for Image Rotation 7

Then, interpolation at (X,Y") is reliable in the sense defined in the previous
section if none of the pixels in the window does not keep interpolated value, that
is,

T(2,y) =2 o(X,Y) for each (z,y) € Na(p(X,Y)).

This condition referred to as the reliability condition.

AY
vip
!
s
H—|1
h—1 RWH Gwh
X,Y) € Rt :
(X.v) ¢ Gy () WH g
e t— ol
Yo |-P---- Q' 3 .
A Zo w—1 \B z

Fig. 3. Two rectangles G, and Rwx.

Figure 3 illustrates two rectangles, ABC'D for G, and PQRS for Ry g.

3.1 Row-major raster scan for counterclockwise rotation

Consider a simple case where o is a row-major raster scan. Let (z,y) = p(X,Y),
that is,
r=x9+ Xcosh —Ysinh, y =yo+ Xsinf + Y cosb.

If we order those pixels in the interpolation window of size d around (z,y) in the
order of receiving interpolation values, then the first point is (|z] —d+1, |y| —d—
1) because interpolation values are also filled in Gz’fh in the same row-major raster
order (restricted to the part 0 <z < W and 0 <y < H). If the first part has not
received any interpolation value, that is, if 7(|z] —d+1, |y| —d—1) > o(X,Y),
then the pixel (X,Y") is reliable. Otherwise, it is unreliable. By the definition of
o and 7, we have a simpler expression of the condition.

8 T. Asano et al.

Lemma 1. [Local Reliability Condition] Assuming a row-magjor raster or-
der for o and T, pizel (X,Y) € R}J}’EVH is unreliable if and only if

(1) zog+ X cosf —Ysind —d+1< X andyo+ Xsinf+Ycosf —d<Y, or
(2) zo + X cos —Ysin0 —d+1<W and yo+ Xsinf + Y cosf —d+1<Y.

Proof By the condition stated above, a pixel (X,Y") is unreliable if and only if
(1) lzo+X cosf@—Y sinf| —d+1 < X—1and |[yo+Xsinf+Y cosf|—d+1<Y,
or
(2) [xo+ X cosf—Ysinf| —d+1<W —1and |yo+ Xsinf+Y cosf| —d+1<
Y -1

Let a and b be two arbitrary positive real numbers. Then, |a| > |b] holds if
and only if a > [b]. Also, |a| < |b] holds if and only if a < |b] + 1. Using these
inequalities, the above condition can be restated as in the lemma. O

An importance of Lemma 1 is that it suggests a way of testing reliability of
interpolation at each pixel without using any working array. That is, it suffices
to check the two conditions in the lemma.

By Lemma 1, a pixel (X,Y) is unreliable if and only if

()Y > —L=eoslx 4 zo—dbl gpg y > sinlox g wod o

sin 0 sin 0 1—cos 0 1—cos
cos 0 _ W—ao+d—1 sin 0 Yyo—d+1
(2) Y > sin9X sin 0 and Y > lfcos0X + 1—cosf *

By Ly, Lo, L3 and Ly we denote the four lines above:

‘L1 . Y — _1—c050X + xo—d+1 L2 . Y — sin 0 X + yo—d

sin 0 sinf ? 1—cos 0 1—cos 0’
R _ cosf _ W—wo+d—-1 R ___sinf yo—d+1
L3 Y = sin0X sin 6 ’ L4 Y= lfcos9X + 1—cosf *

Then, a pixel (X,Y") is unreliable if and only if the point (X,Y") is above the
two lines L; and Lo or above the two lines Lz and Lj.

3.2 Column-major raster scan for counterclockwise rotation

How about a column-major raster order instead of row-major order? By similar
arguments we have a similar observation.

Lemma 2. Assuming a column-major raster order for o and 7, a pizel (X,Y) €
R#VH is unreliable if and only if

(1°) 2o + X cos —Ysinf@ —d < X and yo+ Xsinf + Y cosf —d+1<Y, or
(2°) xo+Xcosf—Y sinf—d+1< X and H > yo+Xsinf+Y cosf—d+1>Y.

By Lemma 2, a pixel (X,Y) is unreliable if and only if

/ __1—cos#@ xo—d sin @ yo—d+1
(1) Y > sin 0 X + sin 0 and Y > 1—c059X + 1—cos 0 or

' _1-—cosf zo—d+1 __sinf H—yo+d—1
(2) Y > sin 0 X + sin 0 and Y < CDSQX + cos 0 :

By Li, L, L and L} we denote the four lines above:

Li: Yy = —l=cosf x| wo—d Ly: Y = sind X 4 Yo—dtl

sin 0 sin @ ? 1—cos 0 1—cosf?

LI3 Y = _1—c059X+ zog—d+1 Lil .Y = _sinQX + H*QO#’d*l-

sin 0 sin@ cos 0 cos 0

In-Place Algorithm for Image Rotation 9

Figures 4 (a) and (b) depict the four lines and the region of unreliable pixels
bounded by them for each of row-major and column-major raster orders.

Y Y Ry
Ry '/
— | 4\[/3
_ @ I R? -1,
R Ly
a
L4 L2 L3 LZ
I] X I X
(a) (b)

Fig. 4. Regions of unreliable pixels, (a) for row-major raster order, and (b) for column-
major raster order.

3.3 Lazy interpolation for d = 1

Now we know how to detect possibility of unreliable pixel each in constant time.
If each pixel is reliable, we just perform interpolation. Actually, if the bottom
margin yp is large enough, then the location s(X,Y) to keep interpolation value
is far from a point (X,Y") and thus it does not affect interpolation around the
point. Of course, if the window size d is large, then interpolations become more
frequently unreliable.

Here we present an in-place algorithm for correcting rotation. For the time
being we shall concentrate ourselves in the simpler case d = 1. A key to our
algorithm is the local test on reliability. In our algorithm we scan R#V p three
times. In the first scan, we check whether (X,Y") is a reliable pixel or not each
in constant time. If it is not reliable, we calculate interpolation value and store
it somewhere in Gﬁh using pixels outside the rectangle determining the output
image. Such a region is called a refuge.

In-place algorithm for correcting rotation

Phase 1: For each (X,Y) € R#VH check whether a pixel (X,Y") is reliable or
not. If it is not, then calculate interpolation there and store the value in the
refuge F.

Phase 2: For each (X,Y) € R#V g calculate interpolation there and store the
value at (X,Y) € foh.

10 T. Asano et al.

Phase 3: For each (X,Y) € Rﬁ,H check whether interpolation at (X,Y) is

reliable or not. If it is not, then update the value at (X,Y) € Gﬁh by the
interpolation value stored in the refuge F.

The algorithm above works correctly when d = 1. The most important is
that the total area of refuge available is always greater than the total number of
unreliable pixels.

Theorem 1. The algorithm above correctly computes interpolations for row-

major and column-major raster scans with the location function s(X,Y) =
(X,Y).

Proof We do not prove correctness of the algorithm due to space limit. We only
prove that we can always find a refuge F' sufficiently large. Because of similarity
we only prove the theorem for the row-major raster scan.

As described earlier, the region of unreliable pixels is divided into two regions,
one bounded by the two lines L; and Ly, and the other by L, and the left
boundary of Ry g. The two regions are denoted by R; and Ry in this order, as
shown in Figure 4.

We have two rectangles G5, corresponding to an input image and Ry g to
a rotated subimage. With the location function s(X,Y) = (X,Y), the output
image is determined by rotating Rw g clockwisely by the angle § and translating
it so that the lower left corner coincides with the lower left corner of Gp.
Drawing the horizontal line through the upper right corner and vertical line
through the lower right corner of Ry g, we have two regions Fr, and Fga, as
shown in Figure 3, which can be used as refuge. In other words, we can store
any values there without affecting correct interpolations to be output.

To ease the proof we assume that there is no margin between the two rect-
angles G, and Ry g, that is, the four corners of Ry g all lie on the boundary
of Gp. In this case we have xg = (H — 1) sin€ and yo = 0. Since d = 1, the line
L, passes through (0, H — 1) and L4 does (0,0). The angle « between the line
L4 and the vertical line is smaller than 6 because

1 —cos@
tan(a) = - < tané.

Thus, the area of the region (R; in Figure 4 (a)) bounded by L4 and the left
boundary is smaller than the refuge Fr bounded by the line RQ) and the right
boundary of G, (see Figure 3).

By the same reason we can also prove that the area of the region Rs bounded
by Ly and L is smaller than that of the region Fy above the line SR in Figure 3.
This completes the proof. |

3.4 Lazy interpolation for d = 2

With a larger window of size d > 2 the algorithm above does not work due to
insufficient area of the refuge. Fortunately, if the lower margin, yq, is at least

In-Place Algorithm for Image Rotation 11

d — 1, then the lazy interpolation for the column-major raster works correctly.
When yo = d—1 and d > 2, the unreliable region is the union of the two regions
R, above L} and L} and Ry above L} and below L/. The line L} passes through
the origin, we can use the right refuge Fr as before for R;.

What about the region R bounded by Lj and L}? The line L} is parallel
to the horizontal side of the rectangle G, and the line L; has smaller slope
than the upper side of the rotated rectangle. Hence, the angle between L and
L} is smaller than 6. This implies that the region R bounded by L} and L) has
smaller area than the upper refuge F4. See Figure 5 for illustration.

[
.’EO\ Gwh W—lw—l
2

Fig. 5. The region of unreliable pixels and right and top refuges Fr and Fa.

Unfortunately we cannot use the algorithm above for a larger window, d = 2
since we have so many unreliable pixels even in the case. The idea here is to
use a queue to store interpolation values at unreliable pixels and pop them up
whenever storing them does not cause any harm for interpolations. The region
outside the rotated image and the output image, shown in Figure 5, can be used
for the purpose.

Assume a row-major raster order. Suppose we are going to calculate interpo-
lation at pixels in a row Y. Then, the pixel values below the row |yo+Y cosf]|—d
(including the row) are never used for interpolations. Let us call the row the high
limit for Y. If it is greater than the previous high limit, i.e., |yo+(Y —1) cos 8] —d,
then we can safely store interpolation values at the row. This observation leads
to the following algorithm.

In-place algorithm 2 for correcting rotation

() = a queue containing interpolated values, using the region in the refuge.
for each row Y =0to H — 1 do
foreach X =0to W —1
if (X,Y) is unreliable

12 T. Asano et al.

then push the interpolation value at (X,Y") into the queue Q.
if [yo +Y cosf] —2 > [yo + (Y —1)cosf] —2
then Y’ = |yo + Y cosfl| — 2.
foreach X =0to W —1
if (X,Y) is unreliable
then store the value popped from @ at s(X,Y).
else calculate interpolation value at (X,Y") and store it at s(X,Y).

Unfortunately, no formal proof has not been obtained for correctness of the
algorithm above. However, it has caused no problem for practical applications.

4 Concluding Remarks and Future Works

In this paper we have presented in-place algorithms for correcting rotation of
a subimage contained in an image using interpolation. We have shown that as
long as interpolation is implemented by linear interpolation algorithm we can
always correct any rotation without using any extra working array. Correctness
proof for a larger window used for cubic interpolation has been left as an open
problem.

In this paper we considered two scan orders, row-major and column-major
raster orders. Many other scan orders are possible. In addition to row- and
column major raster scans we could scan an image at any angle. One of promising
scans is the following: First, find a rotation angle #. Then, round it to an anlge
#" defined by two pixels in a rotated subimage. Using this approximate angle, we
can scan all of pixels in the rotated subimage without any extra working storage.

It is interesting to evaluate and compare those scan orders by the number of
unreliable pixels. The best scan order may depend on margins. In our experience,
if the bottom margin is greater than the left margin then the row-major raster is
better than the column-major one. If the left margin is larger than the bottom
margin, the column-major raster outperforms row-major raster. But there is no
formal proof.

References

1. T. Asano and N. Katoh: ” Variants for Hough Transform for Line Detection,” Com-
putational Geometry: Theory and Applications, vol. 6, pp.231-252, 1996.

2. Duda, R. O. and P. E. Hart, ”Use of the Hough Transformation to Detect Lines
and Curves in Pictures,” Comm. ACM, Vol. 15, pp. 11-15, 1972.

3. D. Kermisch, "Rotation of digital images,” United States Patent, 4545069, 1985.

4. F.A. Micco and M.E. Banton, "Method and apparatus for image rotation with
reduced memory using JPEG compression,” United States Patent, 5751865, 1998.

