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ABSTRACT

Given points p and q in the plane, we are interested in
separating them by two curves C; and C5 such that every
point of C; has equal distance to p and to C5, and every
point of C5 has equal distance to C; and to q. We show by
elementary geometric means that such C; and C»> exist and
are unique. Moreover, for p = (0,1) and q = (0, 1), C; is
the graph of a function f: R — R, C5 is the graph of — f, and
f is convex and analytic (i.e., given by a convergent power
series at a neighborhood of every point). We conjecture
that f is not expressible by elementary functions and, in
particular, not algebraic. We provide an algorithm that,
given z € R and £ > 0, computes an approximation to f(x)
with error at most € in time polynomial in log 1%"”'

The separation of two points by two “trisector” curves
considered here is a special (two-point) case of a new kind
of Voronoi diagram, which we call the Voronoi diagram with
neutral zone and which we investigate in a companion pa-
per.

1. INTRODUCTION

The two curves C1 and C> in Figure 1 have the following
property: Every point of C> has the same distance to the
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point g = (0,—1) and to Cy (as is indicated for one point
of C> in the drawing), and similarly, every point of C; has
equal distance to p = (0,1) and to Ci. Some preliminary
results about such curves have been reported in [2].

We call such Cy and C5 distance trisector curves of p
and q. This notion is motivated by a routing problem on
a printed circuit board layout raised by Dr. Hiroshi Mu-
rata from Kitakyusyu University (personal communication
to T. Asano, 2002): Given two points p and ¢ in the plane,
we want to draw k “equally spaced curves” C1,Cb,...,C}
separating them. A natural interpretation of this require-
ment is this: C; should be a bisector of C;_1 and Ci41,
where Co = {p} and Cry1 = {q}. That is, C; is the set of
points with equal distance to C;_; and Ci41,1=1,2,...,k.

For k = 1, C is the bisector of p and q, i.e., the line
perpendicular to the segment pq and going through its mid-
point. For k = 3, we can take the bisector of p and q for
Cs, and C; and C3 are parabolas (bisectors of a point and a
line). The cases k = 1 and k = 3 are the only ones where the
existence of such curves is obvious, and even in the k = 3
case, the uniqueness of the solution is not immediate.

Main results. In this paper we consider the case k = 2
(distance trisector curves). By elementary geometric argu-
ments we prove the following:

THEOREM 1 (EXISTENCE AND UNIQUENESS). There ez-
ists exactly one pair of curves (C1,C2) that are distance tri-
sector curves of the points p = (0,1) and q = (0,—1). They
are the graphs of f and —f, respectively, where f: R — R is
a conver continuous function.

Computational geometry usually works with lines, circles,
quadrics, or bounded-degree algebraic curves. These curves
are considered to be “known”: Operations such as locating
a query point with respect to them, say above/below, or
intersecting them with other such curves, are assumed to be
doable in constant time, and implementations are available
for the most common cases.

Only upon encountering the distance trisector curve did
we realize that it is not so clear what one means by “know-
ing” a curve. For example, it is one thing to be able to
plot the curve, and another thing to be able to decide a
point-location query. We suspect that the ezact point loca-
tion query for the trisector curve might be undecidable in
the Real RAM model, since we conjecture the curve to be



Figure 1: The distance trisector curves

highly transcendental. Yet it turns out that the curve can
be approximated efficiently; essentially, it can be evaluated
at any point to n digits in time polynomial in n.

THEOREM 2  (APPROXIMATE EVALUATION).

(i) The function f as in Theorem 1 is analytic. That is,
for every xo there is a neighborhood on which it can be
expressed by a convergent power series in T — .

(ii) For every x € R and every € > 0, the value of f(x)
can be computed with accuracy € in time polynomaial in
log %‘z‘ (We assume that x is accessed via an oracle
that returns the first n significant digits of = in time
polynomial in n.)

Discussion.  We consider the definition of the distance
trisector curve very natural, and we were surprised to find
no traces of it in the literature (so far; we will be very
grateful for any pointers or tips). Before starting this re-
search, we had a vague general feeling that all “natural”
curves had been discovered and thoroughly investigated, if
not by Newton, Euler, or the Bernoullis, then in the 19th
century at the latest. However, curves commonly mentioned
in the literature (see, for example, the “Famous Curves In-
dex” [4]) have a (simple) algebraic equation, or at least they
can be expressed using exponential and trigonometric func-
tions. Moreover, geometrically they are usually defined in
terms of other, previously defined objects (as caustic curves,
evolutes, involutes, pedal curves, inverse curves, etc.). If the
initial objects are curves with equations expressible by ele-
mentary functions, then the listed constructions do not leave
the realm of such curves either.

In contrast, the definition of the distance trisector curve
is self-referential; the curve can be regarded as a fixed point
of a certain operator acting globally on curves. Moreover,
the definition involves distances of points to the curve being
defined, and so, expressed formally, it is not a first-order
predicate (roughly speaking, it is not sufficient to talk about
finitely many points at a time in the definition).

We conjecture that the distance trisector curve is not al-
gebraic, and actually, that it cannot be expressed by ele-
mentary functions. Such a result would resemble the fa-
mous results, going back to Liouville, on the impossibility

of expressing certain primitive functions, such as fe’”2dx,
in terms of elementary functions (see, e.g., [6]). However,
the techniques used there do not seem immediately applica-
ble to our problem, and probably one should begin with the
more modest goal of proving the curve to be transcendental.

Voronoi diagrams with neutral zones. Another di-
rection of generalizing the distance trisector curve, besides
the problem of k equidistant curves, is an apparently new
and interesting variation on the classical notion of Voronoi
diagram. There are several generalizations and variations of
Voronoi diagrams, and their geometric properties and com-
putational complexities are widely studied; see, e.g., [3, 7].
A common feature of these variations is that they define par-
titions of space into regions (Voronoi cells), each of which
is the dominating region of an input point or object. The
Voronoi diagram with neutral zone, which we investigate in
the companion paper [1], can be regarded as a model of a
growth process where the growth from each site terminates
before the boundaries meet, and the termination is due to
some long-distance action.

A Voronoi diagram with neutral zone for 5 points (marked
by crosses) is shown in Fig. 2. The region of a site p consists
of points that are closer to p than to the union of the regions
of the remaining sites.

If there are only two sites p and q, the borders of the re-
gions are exactly the distance trisector curves of p and q. In
this respect, the distance trisector curves play a role some-
what analogous to the role of perpendicular bisectors (lines)
in ordinary Voronoi diagrams. However, while all regions
in an ordinary Voronoi diagram are bounded by segments
of the bisectors (line segments), the regions in the Voronoi
diagram with neutral zone are in general not bounded by
segments of the distance trisector curves. Still, it is clear
that understanding the distance trisector curves is a neces-
sary prerequisite for studying Voronoi diagrams with neutral
zone.

2. EXISTENCE AND UNIQUENESS

In this section we sketch the proof of Theorem 1. We
begin with preliminaries, we formally define the bisector of a
point and a set and the closely related concept of dominance
region, and we prove some simple properties.
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Figure 2: A Voronoi diagram with neutral zones

For a function f: R — R we let C(f) = {(z, f(z)) : z € Proof. Easy and omitted. O
R} C R? denote the graph of f.The inequality f < g between

functions means f(z) < g(z) for all z € R. Outline of the proof of Theorem 1. We define two in-

finite sequences (fi, f2, f3,...) and (g1, g2, g3, - . .) of convex

Dominance region and bisector. For a point a and a functions R — R as follows:
set X C R? we define the dominance region of a with respect
to X as (1) f1=0,
dom(a, X) = {z € R” : d(z,a) < d(z, X)}, (2) C(g:) = bisect(p, C(—fi)), wherep = (0,1),i =1,2,...
d
where d(-,-) denotes the Euclidean distance and d(z, X) = an
infxex d(z,x). The bisector of a and X is (3) C(fi4+1) = bisect(p,C(—gi)),i=1,2,....
bisect(a, X) = {z € R” : d(z,a) = d(z, X)}. By Lemma 3 the functions f; and g; are well-defined,

convex, differentiable, and nonnegative. Antimonotonicity
yields fi < fo < f3 < --- < g3 < g2 < g1. The sequence
(i) dom(a, X) is a closed convex set for every a and every (f1, f2,-..) is nondecreasing and bounded from above (by

. g1, say), and so it converges to a (pointwise) limit f, which

(ii) (Antimonotonicity) The operator dom(., ) is antimono- is ﬁmt.e anq convex, and therefore cgntlnuous (the convef—
’ gence is uniform on every bounded interval, but we don’t

tone with respect to the second argument; that is, if . . i .
X C X' then d ) O d 5 need this). Similarly, the g; converge to a convex continu-
C X', then dom(a, X) 2 dom(a, X'). ous function g, and we have f < g. It is easily seen that
(i3i) If a doesn’t lie in the closure of X, then the bisector C(f) = bisect(p, C(—g)) and C(g) = bisect(p, C(—f)).
bisect(a, X) equals the boundary of dom(a, X). The following proposition is the technical core of the proof.

LEMMA 3 (PROPERTIES OF BISECTORS).

(iv) Let p = (0,1) and suppose that X is contained in the PropOSITION 4. f =g.
lower halfplane L = {(z,y) : y < 0} and contains the
point q = (0,—1). Then bisect(p, X) s contained in
the upper halfplane and it intersects every vertical line
ezactly once; thus, it is the graph of a convex function

Once we prove this, we get C(f) = bisect(p, C(—f)), and
thus C(f) is a distance trisector curve. Moreover, suppos-
ing that another function h: R — [0, c0) satisfies C(h) =

FiR [0, 00). bisect(p, C(—h)), we start with the inequality fi < h, and

o _ by repeatedly applying bisect(p, .) to both sides we get f; <

(v) If p, X, and f are as in (iv) and, moreover, X is a h < g; for all . Therefore, f = h = g, and the uniqueness
closed conver set, then the derivative f'(x) exists for follows.!

all z € R. The proof of Proposition 4 relies on the following lemma.

(vi) Ifp and X are as in (v), and z is a point of bisect(p, X), ! Another very natural proof idea is to define a suitable

then there ezists a unique point z' € X nearest to z, metric on a suitable space of convex curves such that the

the segment z'z is an outer normal of X at z' (that operator C(f) — bisect(p.,C(—f.)) is a contraction. Then

e . : . Banach’s theorem would immediately yield existence and
18, it is perpendicular to some supporting line of X at . . L . :

’ . . ; uniqueness of a fixed point (which is a distance trisector
z'), and the (umqu.e) tangent of bls.ect(p, X) af z 18 curve), and we would get some other consequences, such as
the perpendicular bisector of the points p and z'; see bounding the convergence of g; — fi to 0 by a geometric se-
Fig. 3. ries. It turned out, though, that some natural metrics do



Figure 3: Illustration to Lemma 3(v).

LEMMA 5. The difference g—f is nondecreasing on [0, 00).

Sketch of proof. It suffices to prove f; < g; on [0, c0) for
all i. We proceed by induction: from f/_; < gi_; we derive
fl < gi_1, and from this we further derive f; < g.. We omit
the proof in this extended abstract.

Proof of Proposition 4. First let us choose zg > 0
with g(xzo) < 1. We show that f(zo) = g(xo); since g —
f is nondecreasing, we then have f = g on [0,zo]. For
contradiction, let us assume that a = (zo, f(z0)) and b =
(zo, g(wo)) are different points; see Fig. 4left.

Let b" = (z, —f(x)) be the point of C(—f) nearest to
b. The segment b’b has a positive slope, and thus z{ < xo.
We have d(p, b) = d(b,b’), and since f(zo) < g(zo) < 1, we
get d(p,a) > d(p,b). Now we consider a point a such that
b'aab is a parallelogram. Since g — f is nondecreasing, the
segment aa intersects the curve C(—g). Thus d(a,C(—g)) <
d(a,a) = d(b,b’) = d(p,b) < d(p,a), contradicting to a
lying on C(f) = bisect(p, C(—g)).

We have shown f = g on [0,z0]. Let us now put s =
sup{z > 0: f(z) = g(z)} > xo. Assuming s < co, we derive
a contradiction. Let us choose a point b = (z1,g(z1)) on
C(g) such that z1 > s but the point b’ = (z7,—f(z})) of
C(—f) nearest to b satisfies #] < s; see Fig. 4 right. This is
possible by a continuity argument, since the outer normal of
C(—f) at z = (s, —f(s)) either intersects C(g) right of the
vertical line ¢ = s, or it misses C(g) altogether, and as we
move z left along C(—f), after some time the outer normal
intersects C(g) at (s, g(s)).

Having b and b’ as above, we let a be the intersection of
the segment bb’ with C'(f). We have a # b since f(z1) <
g(z1). But since b’ € C(—f) and b’a is normal to C(—f),
b’ should be the point of C(—f) nearest to a. We should
have both d(p,b) = d(b’,b) and d(p,a) = d(b’,a), but
this is impossible, because the ray b’b contains only one
point equidistant to b’ and p. This concludes the proof of
Proposition 4, as well as of Theorem 1. O

More properties. We note that the above proof also im-
plies the following result: For every a > 0, the distance tri-
sector curves of p and q on the vertical strip Vo = (—a,a) xR
are uniquely determined; that is, there exists exactly one

not work. After the proof presented in this section was fin-
ished, and after some experimentation, the second author
has found a metric that does yield a proof via Banach’s the-
orem, but formally verifying that we indeed obtain a con-
traction looks quite complicated at present. So for now we
decided to stick to the original proof.

function f: (—a,a) — [0, 00) with C(f) = VaNbisect(p, C(—f))
(where C(f) = {(z, /() : © € (—a,a)} ).

We also know that for every z € R there exists a unique
point of C(—f) nearest to (z, f(z)). Let t(xz) denote the
z-coordinate of this point. For z > 0 we have 0 < t(z) < =z,
and t(—z) = —t(z) since f is even. In particular, ¢(0) = 0,
and from this we can also see that f(0) = £.

Since C(f) = bisect(p, C(—f)), Lemma 3(v) shows that
f'(z) exists for every = € R.

The proof of the following proposition is omitted:

PROPOSITION 6. The function t is injective (distinct points
have distinct images), and it maps [0,00) onto the interval
[0, tmax), where tmax = sup{t(z): z € R} < oo.

Remark. Numerical computations, using the methods of
Section 4, show that tmax ~ 5.648708769021159 and
lim, oo f'(z) ~ 1.083629958775032.

3. POWER SERIES EXPANSIONS

LEMMA 7. The following equations are satisfied for every
r ER:

(t(x)=2)*+(f(t(x)+ ()’ ~2"~(f(2)=1)* = 0, and (1)

t(x) -z + (f(z) + f(t(2))f (t(z)) =0, ()
where f'(t(x)) is the derivative of f evaluated at t(x).

Proof. The first equation just says that the point (z, — f(z))
equal distances to p and to (¢t(z), f(t(x)).

For a fixed z, the point (¢t(z), —f(¢t(r))) minimizes the
squared distance of (z, f(x)) to (¢, — f(t)) among all . Hence

% <(t — )+ (f(t) + f(x))2>

t=t(z)

and this yields (2). a

It is easy to check that (1) and (2) determine f and ¢
uniquely. More precisely, if f and { are defined on (—x0, zo),
—xo < t(z) < z0 for all x € (—z0,20), and f is convex and
differentiable, then f =fandt=ton (—zo,z0).

LEMMA 8. There ezxists xo > 0 such that on (—zo, o), f
and t can be represented as sums of convergent power series
m .



Figure 4: Proving f =g.

Sketch of proof. We use the following ingenious param-
eterization, which was suggested to us by Christian Blatter
and which, in a different context, goes back at least to an
1884 paper of Kcenigs (see, e.g., [5], Theorem 8.2). We intro-
duce a new variable z (time) and we look for a real number
A € (0,1) and functions X(z) and Y (z) on some interval
[0, z0) such that for all z € [0, z0), if

= X(2),

f(z) =Y (2), t(x) = X(A2), and f(t(z)) = Y (Az).

Here is an outline of the proof. We do not claim at this
moment that X, Y, and A as above necessarily exist; the ex-
istence becomes clear only at the end of the proof. We first
investigate what X, Y, A would have to look like if they ex-
isted. More precisely, we reformulate equations (1) and (2)
in terms of X Y, A, and assuming that X and Y are given
by power series, we arrive at recurrences for the coefficients
of these power series. Next, we verify that these recurrences
force A = v/3 — 1 and that they determine all coefficients
uniquely. Simple estimates of the coefficients show that the
resulting power series converge in some neighborhood of 0.
Then the analytic functions X and Y defined by them de-
termine functions f and £ on some interval (—wzo,zo) that
satisfy (1) and (2), and hence they equal f and ¢, respec-
tively. We omit further details. m|

We have shown that f(z) and t(x) are given by power
series on some neighborhood of 0. Now we are going to
extend this neighborhood iteratively.

The next lemma provides functional equations for f and
t.

LEMMA 9. For every x € R we have
@ (t(x), t(t(2)), F(E(x)), f(E(t()))) and
@) = w(t@),tt@)), F(t(@), f(tE@)),

8
Il

where ® and ¥ are the following rational functions:

z2 (21 + (1 +y1)?)
2Q(x1,22,y1,y2)
2zizoyr + (L +y2)(1 + z? — yf)

W =
($1,$2,y1,y2) 2Q($1,$2,y1,y2) )

O(x1,22,y1,Yy2) = x1+

with Q(z1,T2,y1,92) = (L +y1)(1 + y2) — z122.

Thus if, for some a, we know t(a), f(a), and f(t(a)),
we can easily calculate b = ¢~ !(a) and f(b), provided that
t~(a) exists (which is equivalent to |a| < tmax). This will
be one of the main ingredients of the algorithm for eval-
uating f. The lemma also shows that the inverse func-
tion ¢! can be expressed using t and f; namely, t~'(y) =
®(y,t(y), f(y), f(t(y))). This will be used in the proof of
Theorem 2(i).

The proof of the lemma is a simple calculation based on
(1) and (2) which we omit.

LEMMA 10. There exists a constant 8 < 1 such that for
every > 0 we have t(z) < Bz.

The proof is simple and is omitted.

Proof of Theorem 2(i). Suppose that we have already
proved that f and ¢ are analytic on [0,a) for some a > 0,
and let zo € [a,a/B), where 3 < 1 is as in Lemma 10. On
a neighborhood of 2o we have x = F(t(z)), where F(y) :=
®(y,t(y), f(y), f(t(y))). By the assumption and by Lemma 10,
t and f are analytic on a neighborhood of yo = ¢(z0), as well
as on a neighborhood of ¢(y0), and ® is a rational function,
and hence F' is analytic on a neighborhood of yo. (One
might worry that F(y) might become the indeterminate ex-
pression ¢ for some y, but the numerator @2 (z7 + (1 +y1)?)
in ®(z1,z2,y1,y2) is obviously nonzero whenever z2 > 0.)
Hence, on a neighborhood of zg, ¢ is the inverse func-
tion to F, and thus analytic. Then f(z) = G(¢(z)), with

Gly) = Y(y,t(y), f(y), f(t(y))), is analytic there as well.
This proves Theorem 2(i). m|



4. EVALUTAION ALGORITHM

Given z € R, which for notational convenience we always
assume to be positive, and € > 0, we want to compute f(z)
with error at most € (compared to the statement of Theo-
rem 2, we have renamed x to z, so that we can use = as a
variable). The idea is as follows.

We choose a sufficiently small § = 6(z,&). For z < 20
we can evaluate t(z) and f(x) with high precision using the
power series expansions

k k
_ ot k+1 — ’ i k41 )
flx) = ;:0 aixz’ + O (x ) , t(z) ;:()b z +0 (x )

Here k is a suitable constant chosen once and for all. The
required a; and b; can be computed in polynomial time to
any desired precision using the approach of Lemma 8.

Let us suppose, for the moment, that we can evaluate ¢
and f ezactly on [0, 24).

What do we do if z > 267 The idea is to start with a
suitable s € [§,2d), compute f(s), t(s), and f(¢(s)), and
“step up” all the way to z using the functional equations
from Lemma 9, which, as we recall, allow us to calculate
t~'(x) and f(t"'(z)) from the knowledge of f(z), t(x), and
f(t(z)), and both = and #(x) are smaller than ¢ !(z) (at
least by a constant factor 3 < 1).

Thus, for a starting point s € [§,25) we define the se-
quences (zo,T1,T2,...) and (yo,y1,¥y>2,...), depending on s,

by
T = s, n = flx),
ro = t(z1), Yo = f(zo),
i = P(xi—1,Ti-2,Yi—1,Yi-2),
yi = U(Ti1,Tio2,Yi-1,Yi-2), 12>2.

By Lemma 9 and by induction we find that z; = ¢t~ "(2z;-1)
and y; = f(x;) provided that z; < tmax = sup,cpt(z) for
all j <¢—1.

If we are extremely lucky and pick the starting s so that
z appears as one of the terms z;, we have calculated f(z) =
f(z;) = y; in this way. But typically we do not hit z with
any of the z;. So we are going to adjust s using a binary
search strategy, so that eventually some z; approaches z
sufficiently closely. To describe the binary search, we first
introduce some notation.

Let fiast = t1ast(8) be the maximum 4 such that zo, z1,...
,Tic1 < tmax, and let Tiast = Tlast($) = T4y, -

Let us say that s reaches a point Z if there exists i < ¢jast
with z; = . We thus want to find a starting point s that
reaches some point very close to z.

We start the search by setting s := §, and we compute
which points this s reaches.

First, let us assume that there is ip < %1ast(0) With zi, (d) <
z < Zig+1(0). Then we initialize Siow = § and Shignh =
z2(8) = t71(8) < 26 (note that Tiy (Shigh) = Tig+1(Slow) >
z), and we repeatedly halve the current interval [Siow, Shigh)
to find an s with z — € < z;,(s) < z. The invariant in this
search is i, (Siow) < 2 < Tio (Shigh)-

It remains to deal with the case where Zi.s:(8) < 2. We
fix 40 = t1ast(d) and we again set Siow := 0 and Shigh =
z2(8) =t () and search by interval halving. This time the
invariant is Z.last (Slow) = iO; Tlast (Slow) S Z,y and ilast(shigh) <
to. In each halving step we set Smid = (Siow + Shigh)/2.
If Glast (Smia) < @0, then we set Shigh := Smia and continue
with the next halving. If 41as5t(Smia) = o and Tlast(Smid) <

z, then we set Siow = Smid, and we continue. Finally, if
tlast (Smia) = %0 and Tiast(Smid) > 2z, We set Shigh = Smid, and
we now have a situation as in the previous paragraph, with
Zig(Stow) < 2z < Tiy(Shigh), and we continue as described
there.

The computation of 71.st and Z).se involves comparisons
of x; with tmax. There is an elegant way of comparing a
given number with ¢max, even though we don’t know tmax
explicitly. Namely, we have © < tmax if and only if %(z) >
% (proof omitted).

So far we have assumed that f and ¢ can be computed ex-
actly on (—24,24), which is not the case. One needs to ana-
lyze the propagation of the errors in the algorithm, which in-
volves bounding some partial derivatives. This can be done
without much calculation; only some rather general prop-
erties of ® and ¥ are used. Similar reasoning also leads to
bounding the number of binary search steps by O(log HTM),

and the overall running time by O((log 1+T‘Zl)Q) We omit
this part here.

5. CONCLUSION

Here we outline possible directions for further work.

One obvious question is a generalization to k equidistant
curves separating two points; we haven’t touched it at all.

We have shown the existence and uniqueness of the dis-
tance trisector curve by elementary geometric arguments.
It would be nice to obtain a simpler and more conceptual
proof, say based on Banach’s theorem on fixed points of a
contractive map, or on existence theorems for differential
equations.

A possibly quite challenging problem is to find more about
the nature of the distance trisector curve. Is it algebraic, can
it be expressed by elementary functions, or as a solution to
an ordinary differential equation (or even PDE) with coeffi-
cients expressible by elementary functions?

As for the algorithm for evaluating f(z), can one eliminate

the binary search used in our approach? A related open
problem is to find an algorithm with running time linear or
near-linear in log %
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