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Abstract. A problem of arrangingn points as uniformly as possible, which is equivalent to that of packing
n equal and non-overlapping circles in a unit square, is frequently asked. In this paper we generalize this
problem in such a way that points be inserted one by one with uniformity preserved at every instance. Our
criteria on uniformity is to minimize the gap ratio (which is the maximum gap over the minimum gap) at every
point insertion. We present a linear time algorithm for finding an optimaln-point sequence with the maximum
gap ratio bounded by 2bn/2c/(bn/2c+1) in the 1-dimensional case. We describe how hard the same problem is for
a point set in the plane and propose a local search heuristics for finding a good solution.

1 Introduction

Circle packing problem to placen equal and non-overlapping circles in a unit square is one of impor-
tant geometric optimization problems with a number of applications and has been intensively inves-
tigated [6, 12–14]. It is well known that the circle packing problem is equivalent to that of placingn
points in a unit square in such a way that the minimum pairwise distance is maximized. This problem
seems to be computationally hard. In fact, no optimal solution is known for relatively large value ofn,
sayn> 100.

A problem to be considered in this paper is a generalization of the point arranging problem. That is,
the point arranging problem requires arrangement ofn points in a unit square such that those points are
distributed as uniformly as possible. In our problem we want to insertn points one by one in such a way
that uniformity is achieved at every insertion of a point. Since solutions to the point arranging problems
are different for different values ofn, it is impossible to derive a good point sequence from a set of those
optimal solutions even if optimal solutions are available. It should be noted that a subsequence of an
optimal point sequence is not optimal. In other words, there is no incremental algorithm for constructing
an optimal point sequence.

Another difficulty is how to define uniformity. We could measure uniformity by the minimum pair-
wise distance as before, but it is not appropriate for our problem because once we have a close point
pair it determines the quality of point distribution (uniformity) until a closer point pair is generated. An-
other possible measure is one based on discrepancy theory. In the measure we take a simple geometric
shapeR and count how many points are contained inR while movingR all over the unit square. The
uniformity is measured by the difference between the largest and smallest counts for all possible sizes
of the shape. A serious disadvantage of the measure is computational hardness.

We define uniformity of point distribution using not only closest point pairs but also largest empty
circles. Our criterion is to minimize the gap ratio, which is the maximum gap (diameter of a largest
empty circle) over the minimum gap (the minimum pairwise distance). One advantage of this definition
is extendibility to higher dimensions since those gaps can be defined in any dimension.

A formal definition of our problem is as follows:
This problem is closely related to an industrial application on digital halftoning, which is a technique

to convert continuous-tone images into binary images for printing. One of most popular methods for
halftoning is Dithering which binarizes an images using a threshold matrix called dither matrix. The
quality of output images heavily depends on the matrix. A target there is ann× n matrix containing



integers from 0 throughn2−1 in such a way that elements up toi are uniformly distributed for eachi =

1,2, . . . ,n2/2. Such a matrix is similar to a dither matrix called blue-noise mask [11, 18]. Combinatorial
approaches are also found for the problem, see e.g., [1, 2, 4, 7, 17].

Problem Statement Let Sd be the unit square in thed-dimensional spaceRd and P = (p1, . . . , pn)
be an-point sequence contained inSd. We insertp1, p2, . . . , pn in order. For each subsequencePi =

(p1, . . . , pi), i = 1,2, . . . ,n, we define the current point set asSi := {p1, . . . , pi}∪S0, whereS0 is the set of
the 2d corner points ofSd, the maximum gapasGi := maxp∈Sd minq∈Si 2d(p, q), the minimum gapas
gi := minp,q∈Si , p,qd(p, q), whered(·, ·) is the Euclidean distance, andthe i-th gap ratioasr i := Gi/gi .
The maximum gap and the minimum gap imply the diameter of the largest empty ball and the minimum
pairwise distance, respectively.

For a point sequenceP, we definethe maximum gap ratioasRP := maxi r i . For a fixed integern, we
denoteRn the optimal gap ratio for anyn-point sequence,

Rn := min { RP | P is anyn-point sequence contained inSd}.

Then, givend andn, we want to find ann-point sequenceP contained inSd such thatP minimizes the
maximum gap ratio of itself. More formally, we formulate our problem as follows.

Problem 1:
Input: Integersd andn.
Ensured: Compute an optimaln-point sequenceP in Sd that achievesRP = Rn.

Our contribution We start with a simple greedy algorithm calledincremental Voronoi insertionin
Section 2. The Voronoi insertion generates a point sequenceP with RP ≤ 2. According to this algorithm,
one can extend this result into any higher-dimension and increase the size of point sequence without
limit.

In Section 3, we present a preliminary result for Problem 1, that is, we give a linear time algo-
rithm for finding an-point sequence with the maximum gap ratio bounded by 2bn/2c/(bn/2c+1) in the
1-dimensional unit squareS1. We also show that the bound is optimal, hence, our algorithm concludes
in the 1-dimensional case.

In Section 4, we consider the planar case, and show a few properties for the optimal point sequence.
It may be difficult to solve analytically, hence, we design simple two heuristic algorithms to find a
point sequence whose the maximum gap ratio is smaller than that of the point sequence generated
by incremental Voronoi insertion. Since Voronoi insertion gives an upper bound, our next goal is the
following:

Problem 2:
Input: Integersd andn.
Output: Whether there exists ann-point sequenceP contained inSd such thatRP < 2.

We describe implementation of our heuristic algorithm and show our experimental results on a point
sequence with maximum gap ratio strictly less than that of Voronoi insertion.

2 Simple Greedy Algorithm

We present a simple greedy algorithm for inserting points uniformly called incremental Voronoi inser-
tion. In this algorithm, we maintain a set of vertices which are either Voronoi vertices of a Voronoi
diagram for a set of points already inserted or intersections between Voronoi edges and cube surfaces.
We evaluate each such vertex by the distance to the nearest point (site) and choose the one of the largest
such distance as the next point to be inserted.



Define a point setSd
i = {(x1, x2, . . . , xd) | exactlyi coordinates are either 0 or 1 and the remaining

coordinates are 1/2} for i < d. For example, we have

S3
0 = {(1/2,1/2,1/2)},

S3
1 = {(∗,1/2,1/2), (1/2,∗,1/2), (1/2,1/2,∗)},

S3
2 = {(∗,∗,1/2), (∗,1/2,∗), (1/2,∗,∗)},

where∗ indicates 0 or 1, that is, (∗,1/2,1/2) represents (0,1/2,1/2), (1,1/2,1/2).
The first point to be inserted must be the unique element ofSd

0, i.e., (1/2,1/2, . . . ,1/2). Then, we
insert points in the setSd

1 one by one, and continue to points inSd
2,S

d
3, . . . ,S

d
d−1. Suppose we have

inserted all the points inSd
0,S

d
1, . . . ,S

d
d−2 and we are now inserting the first pointp j = (0,0, . . . ,0,1/2) in

the setSd
d−1. The pointp j is the mid-point of a cube edge by the definition. Thus, the minimum pairwise

distance is 1/2, that is, the minimum gap is 1/2. Since this is the first point located on a cube edge, the
empty ball centered at the next point (0,0, . . . ,0,1,1/2) that passes through the two points (0,0, . . . ,0,0)
and (0,0, . . . ,0,1) remains empty. In fact, this ball is the largest empty ball. Its diameter is obviously 1.
Therefore, the ratio is exactly 2 after the point.

We can also show that the maximum ratio before inserting this point is less than 2 and the maximum
ratio after inserting the point until the very last point ofSd

d−1 is at most 2. When we have inserted all the
points inSd

0,S
d
1, . . . ,S

d
d−1, we can continue the same process again for 2d sub-cubes in a recursive fash-

ion. Thus, we can conclude that the above-mentioned approximation algorithm achieves the maximum
ratio 2.

3 1-dimensional problem

Our domain here is a unit interval [0,1]. The two extremal points 0 and 1 are assumed to be inserted
in advance. We present a simple linear time strategy better than the incremental Voronoi insertion.
Moreover, we show that the strategy is in fact optimal.

3.1 Lower bound onRn

We first estimate the lower bound ofRn for an n-point sequence. LetP = (p1, p2, . . . , pn) be a finite
sequence ofn points in the unit interval [0,1] such thatpi , p j wheneveri , j. For i = 0, . . . ,n, the
pointsp1, . . . , pi partition the unit interval intoi +1 intervals of lengthsmi

1,m
i
2, . . . ,m

i
i+1. Without loss of

generality we may assume thatmi
j ≥mi

j+1 for all i, 0≤ i ≤ n and j,1 ≤ j ≤ i. Then, the maximum and

minimum gaps are given bymi
1 andmi

i+1, respectively. Hence, the ratioRP for the sequenceP is

RP := max
1≤i≤n

mi
1

mi
i+1

(1)

Put Mi = {mi
1, . . . ,m

i
i+1} and regard it as a multi-set (i.e., it may contain elements more than once).

Clearly,Mi+1 is obtained fromMi by replacing one element fromMi by two which add up to the first
one. The following lemma states that ifRP ≤ 2, then this replaced element is always the largest.

Lemma 1. If RP ≤ 2, then for eachi = 0, . . . ,n− 1 there area,b ∈ [0,1] such thatmi
1 = a+ b and

Mi+1 = {mi
2, . . . ,m

i
i+1,a,b} (as multi-set) and one ofa andb is a smallest element ofMi+1.

Proof. Assume thatMi+1 = Mi \ {mi
j}∪ {a,b} for somej,1≤ j ≤ i + 1 such thatmi

j <mi
1 anda+b = mi

j .

W.l.o.g., letb≤ a. Then,b≤ 1
2mi

j <
1
2mi

1 and henceRP ≥mi+1
1 /b = mi

1/b> 2. If botha andb are greater

thanmi
i+1, then againRP ≥mi

1/m
i
i+1 = (a+b)/mi

i+1 > 2mi
i+1/m

i
i+1 = 2. ut

Note, however, that a priori we do not know that botha andb are not larger thanmi
i+1.



Lemma 2. Given an integern≥ 1, the lower bound ofRn is 2bn/2c/(bn/2c+1).

Proof. Assume thatRP ≤ 2 for ann-point sequence. Let firstn be even. Letj,1≤ j ≤ n
2 +1 be such that

mn/2
j ∈ Mn. Such aj exists, since at mostn/2 of the elements inMn/2 are replaced in the sequel from

Mn/2 to Mn. We have
mn/2

1

mn/2
j

≤ mn/2
1

mn/2
n/2+1

≤ RP.

Also, for eachn/2≤ i ≤ n−1, we haveRP ≥mi+1
1 /mi+1

i+2 ≥mi+1
1 /mi

j/2 by Lemma 1. Sincemn/2
j ∈ Mn,

RP ≥
mn/2

1

mn/2
j

≥ mn/2
1

mn
1

=

n−1∏

i=n/2

mi
1

mi+1
1

=

n−1∏

i=n/2

mi
1

mi+1
i+2

/
mi+1

1

mi+1
i+2

≥
(

2
RP

)n/2

.

We concludeRP ≥ 2(n/2)/(n/2+1). For n odd, letP′ = (p1, . . . , pn−1). Then,RP ≥ RP′ by definition and
RP′ ≥ 2bn/2c/(bn/2c+1) by the above. So,Rn ≤ 2bn/2c/(bn/2c+1). This completes the proof of Lemma 2. ut

So, we have obtained the lower bound ofRn for n-point sequences. Now, what remains is for the
1-dimensional case is to give an algorithm for computing an optimal point sequenceP∗.

First consider the following algorithm suggested in the lower bound proof.

Algorithm 1 : A naive strategy

Calculater = 2bn/2c/(bn/2c+1);
p1 = 1/(1+ r);
for i = 1 to n−2 do

Let mi
1 andmi

2 be the current longest and second longest intervals, respectively;
Put a pointpi+1 into mi

1 to partition it into two subintervalsa andb so thatmi
2/min{a,b} = r;

Put the last pointpn so as to partition the current longest interval into two intervals of the same lengths;

This strategy always puts a pointpi so that the gap ratio is equal to 2bn/2c/(bn/2c+1) for eachi. If it
is possible then the sequence obtained is optimal since its bound coincides with the lower bound. The
strategy implicitly assumes that the smaller one of the new subintervals has the minimum length among
current intervals. Unfortunately, it is impossible to keep the ratio. The reason is as follows. Letai and
bi (ai > bi) be new subintervals generated after thei-th insertion. Then,M1 = {a1,b1} = { r

r+1,
1

r+1} and
M2 = {b1,a2,b2} = { 1

r+1,
r−1

r , 1
r(r+1)}. We insertp3 into M2. Note that the maximum interval length inM2

depends on the number of points to be inserted. Ifb1 ≥ a2, (the case ofr ≤ 1+
√

5
2 ), thenb3 = a2

r = r−1
r2

anda3 = 1
r+1 −b3 = 1

r2(r+1). Sincea3 < b3 for r >
√

2, r3 = a2/a3 = r(r2−1)>Rn. This suggests that ifn
is large enough, sayn> 3, the assumption of above strategy does not hold. On the other hand, ifb1 < a2

(the case ofr > 1+
√

5
2 ), thenr2 =

a2
b2

= r2−1, and 2< R2
n−1 for n≥ 8. Therefore, we cannot obtain an

optimal point sequenceP∗ by the above strategy.

Observation 1. Gap ratios for the firstn− 1 points should be strictly less than2bn/2c/(bn/2c+1), and
moreover, these ratios are never determined until the last interval is fixed.

This Observation 1 suggests that an optimal point sequence of lengthn should be determined in a
bottom-up fashion, that is, from the last interval to the first one.

3.2 An optimal point insertion strategy

A rough sketch of our strategy is as follows. Let (p1, p2, . . . , pn) be a point sequence to be inserted in
the unit intervalx1 = [0,1]. We maintain all intervals generated duringn insertions, and we denote by



x j the interval induced bypbn/2c. Hereafter, we denote thej-th interval byx j , and unifyx j and its length
|x j |. Each pointpi , i = 1, . . . ,n, is inserted into the current largest intervalxi to split it into two new
subintervalsx2i andx2i+1 with x2i + x2i+1 = xi . An important observation here is that we can determine
the pointpi so that it results in a sorted sequence (xi+1, xi+2, . . . , x2i , x2i+1) of intervals in the decreasing
order of their lengths. The process is terminated when the last pointpn is inserted to have a sequence
(xn+1, xn+2, . . . , x2n+1).

Now, let us describe how to determine the point sequence. It is divided into two subsequences at
k = bn/2c. For the first half (p1, . . . , pk), the current longest intervalxi is unevenly partitioned into the
new two subintervalsx2i andx2i+1, so thatx2i > x2i+1 andxi = x2i + x2i+1. Since we are trying to achieve
a ratio strictly less than 2, the ratioxi+1/x2i+1 must be strictly less than 2. For the remaining points
(pk+1, . . . , pn), the current longest intervalxi is partitioned evenly into two new subintervalsx2 j and
x2 j+1 so thatx2 j = x2 j+1 = x j/2 andx j+1/x2 j+1 is strictly less than 2, or equal toRn. This is because
the intervalsx2i andx2i+1, i = k+1, . . .n, will never be subdivided during the remaining insertion. Since
minimum gaps are maximized by evenly partitioning, it minimizes the maximum gap ratios.

More concretely, we first compute the target ratioRn = 2k/(k+1) wherek = bn/2c, and a magic number

y1 = (2l−k +2
∑k+1

i=2
Ri−1

n
2i−1 )−1, wherel = dn/2e. Then, we fix the last 2k+2 interval;

x2l = x2l+1 = y1 if n is odd,

x2l+1 = y1 if n is even,

x2(l+1) = x2(l+1)+1 =
Rn

2
y1,

x2(l+2) = x2(l+2)+1 =

(Rn

2

)2

y1,

...

x2(l+k) = x2(l+k)+1 =

(Rn

2

)k

y1.

The remaining intervals can be determined so thatxi = x2i + x2i+1, i = k,k−1, . . . ,2,1. This strategy can
be summarized in the following pseudo code.

Algorithm 2 : An optimal strategy

input : An integern> 0.
output: An optimal point sequenceP, i.e.,RP = Rn.
Rn = 2bn/2c/(bn/2c+1);1

y1 =

(
2dn/2e−bn/2c +2

∑bn/2c+1
i=2

Rn
i−1

2i−1

)−1
;2

if n is oddthen x2dn/2e = x2dn/2e+1 = y1;3
else x2dn/2e+1 = y1;4

for i = 1 to bn/2c do x2(dn/2e+1) = x2(dn/2e+1)+1 =
(

Rn
2

)i ·y1;5

for i = bn/2c downto 1 do xi = x2i + x2i+1;6
Compute a point sequenceP from the interval sequence (xi+1, xi+2, . . . , x2i , x2i+1);7

3.3 Configuration tree

Before showing the optimality and correctness of our strategy, we introduce a notation, in order to
simplify the arguments for proof. For any point sequenceP, everyi-th insertion can be represented by a
rooted tree structure with size 2i +1, where the root is the unit segmentx1. For i-th insertion, each node
corresponds to an interval generated byp1, . . . , pi , and an interval sequence (xi+1, . . . , x2i+1) is obtained



form the leaves in old order. The two nodes are connected by an edge, if one node is induced from the
other node by inserting a point. More formally, there are two edges start for the node ofxi , i = 1, . . . ,bn2c,
to the nodes ofx2i and x2i+1, respectively. This implies that every inner node is already subdivided.
Figure 1 shows an example of the configuration tree forn = 4. The grey nodes are leaf nodes. We can
see that the intervals corresponding to leaf nodes subdivide the unit segment.

x1

x2 x3

p1

x4 x3

p2 p1

x5 x4 x6

p2 p1

x5 x7

p3

x8 x6

p2 p1

x5 x7

p3

x9

p4

x1

x9

x2 x3

x4 x5 x6 x7

x8

Fig. 1. Configuration tree for a point sequenceP = (p1, p2, p3, p4).

Therefore, the above strategy constructs eventual configuration tree, and then obtains the rough
partition of the unit segment. So, each interval length corresponding a leaf is calculated using the magic
numbery1. Since each inner node has exactly two children and both interval are known, every interval
length is also determined in the direction from leaves toward root.

3.4 Optimality and correctness

Finally, we show that the maximum gap ratioRP of the point sequenceP computed by our strategy is
equal toRn. The magic numbery1 plays very important roles to optimizeRP, and so it is made neatly.
How to determiney1 and the optimality requires Lemma 3. And Lemma 4 shows the correctness of the
strategy.

Lemma 3. If any set of intervals{xi+1, . . . , x2i+2, x2i+3} are sorted in non-increasing order with respect
to their lengths, then the above strategy achieves the maximum gap ratioRP = 2bn/2c/(bn/2c+1).

Proof. Let yi denote the length ofx2(l+i)+1 for i = 0,1, . . . ,k, wherek = bn/2c andl = dn/2e. Note that the
nodexl has intervaly1 as one of the children in the tree configuration. Now, we assume the gap ratio
r i is defined byxi+1

x2i+1
=

xi+1
yi

for (l + i)-th insertion. By Lemma 4, this definition forr i does not induce an
inconsistency. From this fact, the minimum interval isyi and the maximum interval isx2(l+i) + x2(l+i)+1 =

2yi+1, for (l + i)-th insertion (1≤ i < k). For the last insertion, the minimum interval isyk+1 and the
maximum interval isy1. Therefore, the gap ratiosr i for i = l, l +1, . . . , l +k, are described as follow,

r l =
xl+1

x2l+1
=

x2l+2 + x2l+3

x2l+1
=

2y2

y1
,

r l+1 =
xl+2

x2l+3
=

x2l+4 + x2l+5

x2l+3
=

2y3

y2
,

...

rn−1 = r l+k−1 =
xl+k

x2(l+k−1)+1
=

x2(l+k) + x2(l+k)+1

x2(l+k−1)+1
=

2yk+1

yk
,

rn = r l+k =
xl+k+1

x2(l+k)+1
=

y1

yk+1
.



Sincex2i+3> x4i+2 for i ≤ l−1, r i =
xi+1
x2i+1

=
x2i+2+x2i+3
x4i+2+x4i+3

≤ x2i+2
x4i+3

= r2i+1. This impliesRn = max{r l , r l+1, . . . , rn} ≥
max{r1, r2, . . . , r l−1}. Thus,Rn is minimized when

Rn = (r l · r l+1 · · · · · r l+k)
1

k+1

=

(
2y2

y1
· 2y3

y2
· · · · · 2yk+1

yk
· y1

yk+1

) 1
k+1

= 2
k

k+1 = 2b
n
2c/(b n

2c+1).

ut

Since everyr i = Rn, we have

yi =
2
Rn

yi+1

for i = 1, . . . ,k, and

yk+1 =
y1

Rn
.

Moreover, since

y1 = (
2
Rn

)i−1 yi+1

for i = 2, . . . ,k+ 1, if y1 can be determined then everyyi is also determined. Whenn is odd, we have

y1 =
1

2
∑k+1

j=1

(
Rn
2

) j−1

since

1 =

2n+1∑

i=n+1

xi = 2
k+1∑

j=1

y j = 2
k+1∑

j=1

(Rn

2

) j−1

.

Similarly, whenn is even, we have

y1 =
1

1+2
∑k+1

j=2

(
Rn
2

) j−1

since

1 =

2n+1∑

i=n+1

xi = y1 +2
k+1∑

j=2

y j .

Observation 2. y1 ≥ y2 ≥ · · · ≥ yk+1.

The observation follows from the facts thatyi = 2
Rn

yi+1 and 2
Rn

is greater than 1.
In order to show the correctness of this strategy and the optimality, we have to prove that the interval

sequence (xi+1, . . . , x2i , x2i+1) generated bypi is sorted in non-increasing order with respect to their
length for every 1≤ i ≤ n.

Lemma 4. Whenever our strategy partitions the intervalxi for every1 ≤ i ≤ n, the resulting interval
sequence(xi+1, xi+2, . . . , x2i1) is sorted in non-increasing order, that is, inequalitiesxi+1 ≥ xi+2 ≥ · · · ≥
x2i ≥ x2i+1 are satisfied.



leaves

leaves

xn
xn+1

level 0

level 1

level   log(2n+1)

level   log(2n+1)  - 1  

Fig. 2. The levels of tree corresponding the behavior of our strategy.

Proof. It can be proved by induction on level of the tree configuration with size 2n+ 1. The level of a
nodev is defined asdlog(2n+1)e− the height ofv. So, all leaf nodes may be in the level 0 or 1, and the
level of rootx1 is blog(2n+1)c, (see Figure 2).

When 2h = n+ 1, whereh = blog(2n+ 1)c, all leaf nodes are in level 0. In this case, from Observa-
tion 2, the statementxn+1 ≥ . . . ≥ x2n+1 is hold. Whenn+ 1, 2h, the intervalsxn andxn+1 are in same
level 1. Then,

xn = 2yk+1 = 2
(Rn

2

)k

y1 =
Rk+1

n

Rn 2k−1
y1 =

2k

Rn 2k−1
y1 =

2
Rn

y1 > y1 = xn+1.

On the remaining nodes in level 1, the both children of a node are the intervals which has a same length
so as 2y j . For the consequence two intervalsxi andxi+1, xi ≥ xi+1 by Observation 2.

Let I i = (zi
1, . . . ,z

i
2i ) be the intervals in leveli, wherezi

1 andzi
2i are the leftmost and rightmost intervals

in level i, respectively. Now, we assume that the statement is hold up to leveli, that is,zi
1≥ zi

2≥ · · · ≥ zi
2i ≥

· · · ≥ x2n+1. By this induction hypothesis,zi−1
2i−1 = zi

2i−1
+ zi

2i ≥ zi+1
1 + zi+1

2 = z1. For the others,zi−1
j ≥ zi−1

j+1
are hold by similar arguments in the base step. ut

Thus, we have a conclusion on 1-dimensional dispersion problem.

Theorem 1. Given an integern, our strategy gives an optimal solution with the maximum gap ratio

being2
bn/2c
bn/2c+1 on1-dimensional dispersion problem inO(n) time.

4 2-dimensional problem

4.1 Notations and analytical results

Let s1 = (0,0), s2 = (1,0), s3 = (1,1), ands4 = (0,1) be the four corner points ofS2. For each point set
Si after insertingi points inP, we define two empty circlesCi andci : The diameter ofCi is Gi and the
centerp of Ci satisfies mins∈Si d(s, p) = Gi/2. The diameter ofci is gi and its center is the midpoint of
the closest pair of points. Note that the two empty circles are not unique, since the maximum gap and
the minimum one may be defined by some of the triples or pairs. We break ties arbitrarily to chooseCi

andci . For any three different pointsp1, p2, andp3, not on a line, letC(p1, p2, p3) be the circle passing
through the three points. The interior of a circleC is denoted by intC and the diameter ofC is denoted
by diam(C). The gap ratior i is defined byr i = Gi/gi = diam(Ci)/diam(ci).

Lemma 5. For i = 1,2, . . . ,n−1, if max1≤ j≤i r j < 2, thenpi+1 must be inserted in intCi , to keepr i+1 < 2.

Proof. If pi+1 does not lie in intCi , thenGi+1 = Gi . On the other hand,gi+1 ≤Gi/2, since there is no
empty circle whose diameter is greater than that of the largest empty circle. Hencer i+1 ≥ 2. ut



Fact 1. For two acute triangles4ABCand4DEF, if ∠ABC≤ ∠DEF and∠BCA≥ ∠EFD, then

|AB|
|CA| ≥

|DE|
|FD| .

We have equality if∠ABC= ∠DEF and∠BCA= ∠EFD. See Fig. 3 for an example. ut

A

B C

D

E F

AB : DE = AC : DF

A

B C

D

E F

AB : DE ≥ AC : DF

Fig. 3. Illustration for Fact 1

Lemma 6. The last pointpn must lie at the center ofCn−1 to minimize the maximum gap ratio.

Proof. By Lemma 5, we assume thatpn is inserted into the interior ofCn−1. If there exists an empty
circle with diameter equal toGn−1, then this lemma immediately holds, since it must maximize the
minimum gapgn.

We assume thatCn−1 passes through three pointsa,b andc in the counter-clockwise order. LetC′

be the other empty circle (notCn) passing througha andb.

We movepn along the perpendicular bisector ofa andb so as to decreasegn. Note that we may
also have to consider motions betweenb andc, and betweenc anda. But similar arguments can be
appropriately applied.

In this situation, a pair of points defininggn is never changed, i.e.,gn = d(pn,a) = d(pn,b). However,
a triple (or pair) of points definingGn may change. There are two kinds of meaningful circles which
may defineGn; the first one isC′ defined above and the second one is the empty circleC′′ that passes
througha andpn. The other circles may lead torn ≥ 2, or may not lead to a betterrn than that ofC′ or
C′′. Note thatpn has to be inserted at the center ofCn−1 to maximizegn, whenCn = C′. On the other
hand, whenCn ,C′, pn lies in intC′.

Now, we assumeCn = C′′. Let o be the center ofCn−1, o1 be the center ofC′ ando2 be the center
of C′′. Consider two triangles41 = 4(a,o2, pn) and42 = 4(a,o1,o). Sincepn is in C′, it can be seen
that ∠ao2pn < ∠ao1o and∠apno2 > ∠aoo1 by simple calculations. Hence, we haved(a,o2)/d(a, pn) >
d(a,o1)/d(a,o) from Fact 1. This concludes the proof. ut

By Lemma 6, we can find an optimal 2-point sequence. Fig.4 shows the notations for an instance of
n = 2. In this case, there are three circles, but the meaningful circles are justC′ andC′′ from Lemma 6.
Hence,p2 is put at the center ofC1.

We can assume thatp1 lies on the liney = 1
2, to maximizeg1. Since we can specifyp2 oncep1 is

determined, we only examine anx-coordinate ofp1. The maximum gap ratioRP is minimized wheng1 =

g2, and then an optimal point pair satiafiesG2
1 = 2g1G2, by simple observations. Hence, for example,



p1

s3s4

s1 s2

p′
1

θ3

θ2

θ1

p2
o

o1

o3

C ′

C ′′

C ′′′

o2

Fig. 4. Notations of Lemma 6 for an instance ofn = 2.

these gapsG1,g1 andG2 are given by

G1 =
4x2

1−8x1 +5

4−4x1
,

g1 =

√
x2

1 +
1
4
,

G2 = 2

√
1
4

+

(
x1− 1

2

)4

.

Solving this simultaneous equations, we obtain the coordinates of optimal points;

p∗1 = (0.273704,0.5),

p∗2 = (0.808958,0.5).

Next, we consider the cases ofn = 3 and largern. They are more complicated and may not be
solvable in an analytical sense.

Lemma 7. If n≥ 3 and the first pointp1 lies on the liney = 1
2 or the linex = 1

2, then the maximum gap
ratio is greater than or equal to2.

Proof. We assume that the first pointp1 lies on the liney = 1
2. When p2 is inserted into intC1 ∩

int C(p1, s1, s2), p3 should be inserted at the center ofC(p1, s3, s4) from Lemma 6, and thenC3 is de-
fined byC(p2, s1, s2). Sincediam(C3) ≤ 1 anddiam(C(p1, s3, s4)) ≥ 1, r3 ≥ 2. So,p2 has to be inserted
anywhere in intC1 \ int C(p1, s1, s2)∩S2. Hence,C2 is defined as the circle passing throughp1, s1 and
s2. By Lemma 5,p3 is inserted into the interior ofC2. Therefore, the third gap ratior3 is at least 2, since
diam(C2) = diam(C3) anddiam(c2) ≤ 1

2diam(C2).
By the symmetry, the similar argument can be applied whenp1 lies on the linex = 1

2. ut

Lemma 8. Whenn = 3, the second pointp2 should be inserted at the center ofC1.

Proof. LetC′1 andC′′1 be the second and third largest empty circles ofS1. Consider a case in which there
exist exactly two circles,C1 andC′1, with their diameters greater than 1, at the end of the first insertion.
Then,p2 must be in intC′1∩{p ∈ S | d(p1, p) > 1

2}∩ {p ∈ S | d(si , p) > 1
2}, wheresi is the nearest corner



point ofS, sinceC2 passesp2, diam(C2) > 1 andg2 = max{d(p1, p2),d(si , p2)} < 1
2. If such intersection

does not exist, then we can seeRP ≥ 2. Let x andx′ be the centers ofC1 andC′1, respectively. Sincep2

is inserted in that intersection,C2 = C(p2, si , sj), wheresj is the second nearest corner point ofS2 from
p2. Let x′′ be the center ofC2. Now, consider two triangles,4si x′′p2 and4si x′x. From Fact 1,p2 is
inserted at the center ofC1, to minimizer2.

Next, consider the next case that there are three empty circles,C1,C′1, and C′′1 , with diameters
greater than 1, at the end of the first insertion. This case occurrs whenp1 is contained in exactly one
circle C(o, si , sj), whereo is the center, (12,

1
2) andsi andsj are corner points ofS. We assume thatp2

is inserted in intC′1∩ {p ∈ S | d(p1, p) > 1
2diam(C′′1 )} ∩ {p ∈ S | d(si , p) > 1

2diam(C′′1 )}, wheresi is the
nearest corner point ofS from p2, the maximum gap ratio may be less than 2. If the intersection does
not exist, thenRP ≥ 2. However, the same argument as above applies. Therefore,p2 should be inserted
at the center ofC1, if n = 3. ut
Lemma 9. Whenn = 3, all largest empty circles,C1,C2 andC3, pass throughp1.

Proof. It is obvious thatC1 and C2 pass throughp1 from Lemmas 7 and 8. Ifp2 lies on the line
y = 1

2, thenp3 lies on the linex = 1
2, and vice versa. We can assume thatp2 and p3 are contained on

the boundary of the square [0, 1
2] × [0, 1

2] from Lemmas 4 and 8. Then,p1 lies in the (open) square
(1

2,1)× (1
2,1). Hence,C3 passes throughp1, since the half spacey> 1

2 containsp1 but notp2 or p3. ut
Sincep2 and p3 are inserted atcenter(C1) andcenter(C2), respectively, we obtaing2 = 1

2G1 and
g3 = 1

2G2. In order to minimizeRP, we take geometric average amongr1, r2 andr3;

RP = 3
√

r1 · r2 · r3 =
3

√
G1

g1

G2

g2

G3

g3
= 3

√
G1

g1

G2
1
2G1

G3
1
2G2

=
3

√
22G3

g1
.

Hence, if we can showG3
g1
< 2, thenRp < 2 is obtained whenn = 3. However, it seems to be difficult to

specify an optimal position ofp1 satisfying the above condition, and then solving analytically the exact
positions in an optimal point sequence is too complicated even in the case ofn = 3. Then, we propose a
heuristic algorithm for finding a good point sequence.

4.2 Heuristic Algorithms

We present a simple heuristic algorithm based on local search. First, we describe a procedure to compute
the maximum gap ratio, for given an-point sequenceP. Then, we show a main procedure which treats
n-point sequence (p1, . . . , pn) as a point (x1,y1, x2,y2, . . . , xn,yn) in the 2n-dimensional spaceR2n to find
a best point by examining its neighborhood inR2n. This technique is similar to the lifting technique
common in computational geometry.

Algorithm 3 : ComputeMaxGapRatio(P)

input : A point sequenceP = (p1, p2, . . . , pn)
output: The maximum gap ratioRP
Let S0 be the corner points ofS2;1
S← S0; r ← 0;2
for i = 1, . . . ,n do3

S← S∪{pi};4
Compute the maximum gapGi and the minimum gapgi ;5
if r <Gi/gi then r ←Gi/gi ;6

return r;7

Algorithm 3 computes the maximum gap ratio for a givenn-point sequence. It runs inO(n2) time.
In particular, we maintain a planar subdivision by Delaunay triangulation [15] for eachSi . The planar



subdivision by Delaunay triangulation is a planar graph, and then each face contributes to an empty
circle and each edge represents the neighborhood relation between two connecting vertices (see [16]).
Hence, we obtain the gapsGi andgi in linear time, since the reconstruction of the subdivision is the
crucial part.

Algorithm 4 is a main procedure of our heuristics. Given three parametern,m andk, the algorithm
iterates local searchk times starting from randomly generated point sequences. In each iteration we
compute a local optima ofn-point sequence. The parameterm is used to specify a termination condition
to guarantee the accuracy of solutions obtained.

Algorithm 4 : A simple local searching heuristic algorithm

input : Integersn, m, andk.
output: A goodn-point sequence.
Let P,P′,P′′ andP∗ ben-point sequences inS2;1
Let e1 ande2 be the unit vectors;2
ropt←∞; threshold← 2−m;3
for i = 1 to k do4

Initialize P by a randomly generatedn-point sequence;5

ε← 1
2 ;6

rmin← ComputeMaxGapRatio(P);7
repeat8

foreach p′1 ∈ {p1±εe1, p1±εe2} do9
foreach p′2 ∈ {p2±εe1, p2±εe2} do10

...11
foreach p′n ∈ {pn±εe1, pn±εe2} do12

P′← (p′1, p
′
2, . . . , p

′
n);13

r ← ComputeMaxGapRatio(P′);14
if r < rmin then rmin← r; P← P′;15

if rmin is updatedthen P′′← P;16

else ε← 1
2ε;17

until ε < threshold;18
if ropt > rmin then ropt← rmin; P∗← P′′;19

return P∗;20

4.3 Experimental Results

We have implemented Algorithm 4 to evaluate the accuracy of the solutions obtained by the heuristic
algorithm. Table 1 describes our environment of the experiment. We designed the algorithm using the
exact computation in LEDA[10] for the sake of accuracy and for robustness.

Table 1.The environment of experiment

Workstation CPU Main memory
Dell PowerEdge SC1425 Server Intelr XeonTM 3.6GHz 8GB

OS Compiler External library
RedHat Enterprise Linux 3 g++-3.4.2 LEDA-5.0.1

Table 2 shows the bestRp values obtained by Algorithm 4. For eachn = 2,3,4,5, we executed the
algorithm more than 1000 times with the threshold less than 10−8. For each ofn = 6,7,8, we executed
with 500, 100, and 20 trials with the same accuracy.



Table 2.The best solutions returned by Algorithm 4

n 2 3 4 5 6 7
Rp 1.87804 1.92716 1.927164 1.92716 1.927203 1.99312

As mentioned above, we have an exact value ofR2 and a property forR3. The computed valueR2

shown in the table finds to be close enough toR2. The 3-point sequence achieving the computed value
of R3 shown in the table satisfies the propertyG3

g1
< 2, and we conjecture that the point sequence is

optimal. In addition to this, the obtained point sequences forn = 4,5,6 may also be optimal, since these
maximum gap ratios are roughly the same.

There is a gap between the results forn = 6 andn = 7. We have obtained a better sequence than that
of Voronoi insertion. However, in the case ofn = 8, we did not obtain a sequence with the maximum
gap ratio less than 2. In our environment of experiment, we gave up to apply the algorithm forn ≥ 8,
since it is too slow. In fact, it took one day per one trial.

We could use those point sequences obtained above as seed point sequences and perform the incre-
mental Voronoi insertion.

Table 3.A good seed point sequence and the initial maximum gap ratio.

p1 p2 p3 p4

(0.769146,0.501913) (0.263398,0.508807) (0.499994,0.0637435)(0.477718,0.891089)

p5 p6 p7 RP

(2.0687e−05,0.317322)(8.21674e−06,0.662797) (0.999993,0.304037) 1.993124

We have implemented the above-stated strategy using the 7-point sequence shown in Table 3 as a
starting seed point sequence. The initial maximum gap ratio is 1.993124. Fig.5 indicates the resulting
point distribution. The maximum gap ratio of this point sequence is actually 1.99921.
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Fig. 5. A good 50-point sequence with the maximum gap ratio bounded by 1.99921.

Furthermore, we consider the irregularity of the final point distribution for each of our results and
Voronoi insertion. In order to enhance the difference between them, We use a Delaunay triangulations
shown in Fig. 6. Our distribution is pretty irregular, compared with that obtained by Voronoi insertion.

One of the notable remarks is that Voronoi insertion easily gives a uniform point sequence in our
criteria, but the final distribution is a totally unfair and locally regular distribution. Performing a per-
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Fig. 6.The Delaunay triangulations for the resulting point distribution for our 50-point sequence with the maximum gap ratio
bounded by 1.99921 and the incremental Voronoi insertion.

turbation to fix the badness, our criteria immediately is evaluated as the modified point sequence is not
uniform. Therefore, our approach is one of the solutions which overcome this dilemma.

5 Conclusions

In this paper we have presented a preliminary result on dispersion. One of the most important future
works is to extend the result to higher dimensions. We had some results on lower and upper bounds of
the maximum gap ratio for the planar case, but none in the higher dimensions.
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