Inserting Points Uniformly at Every Instance
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Abstract. A problem of arrangingn points as uniformly as possible, which is equivalent to that of packing

n equal and non-overlapping circles in a unit square, is frequently asked. In this paper we generalize this
problem in such a way that points be inserted one by one with uniformity preserved at every instance. Our
criteria on uniformity is to minimize the gap ratio (which is the maximum gap over the minimum gap) at every
point insertion. We present a linear time algorithm for finding an optimabint sequence with the maximum

gap ratio bounded byt?2//(L/21+1) jn the 1-dimensional case. We describe how hard the same problem is for

a point set in the plane and propose a local search heuristics for finding a good solution.

1 Introduction

Circle packing problem to placeequal and non-overlapping circles in a unit square is one of impor-
tant geometric optimization problems with a number of applications and has been intensively inves-
tigated [6, 12—-14]. It is well known that the circle packing problem is equivalent to that of placing
points in a unit square in such a way that the minimum pairwise distance is maximized. This problem
seems to be computationally hard. In fact, no optimal solution is known for relatively large vaiye of
sayn > 100.

A problem to be considered in this paper is a generalization of the point arranging problem. That is,
the point arranging problem requires arrangememt@dints in a unit square such that those points are
distributed as uniformly as possible. In our problem we want to imsgoints one by one in such a way
that uniformity is achieved at every insertion of a point. Since solutions to the point arranging problems
are diterent for diferent values off, it is impossible to derive a good point sequence from a set of those
optimal solutions even if optimal solutions are available. It should be noted that a subsequence of an
optimal point sequence is not optimal. In other words, there is no incremental algorithm for constructing
an optimal point sequence.

Another dificulty is how to define uniformity. We could measure uniformity by the minimum pair-
wise distance as before, but it is not appropriate for our problem because once we have a close point
pair it determines the quality of point distribution (uniformity) until a closer point pair is generated. An-
other possible measure is one based on discrepancy theory. In the measure we take a simple geometric
shapeR and count how many points are containedRimhile movingR all over the unit square. The
uniformity is measured by the fiierence between the largest and smallest counts for all possible sizes
of the shape. A serious disadvantage of the measure is computational hardness.

We define uniformity of point distribution using not only closest point pairs but also largest empty
circles. Our criterion is to minimize the gap ratio, which is the maximum gap (diameter of a largest
empty circle) over the minimum gap (the minimum pairwise distance). One advantage of this definition
is extendibility to higher dimensions since those gaps can be defined in any dimension.

A formal definition of our problem is as follows:

This problem is closely related to an industrial application on digital halftoning, which is a technique
to convert continuous-tone images into binary images for printing. One of most popular methods for
halftoning is Dithering which binarizes an images using a threshold matrix called dither matrix. The
quality of output images heavily depends on the matrix. A target there isxanmatrix containing



integers from 0 through? — 1 in such a way that elements upitare uniformly distributed for eadh=
1,2,...,n?/2. Such a matrix is similar to a dither matrix called blue-noise mask [11, 18]. Combinatorial
approaches are also found for the problem, see e.g., [1,2,4, 7, 17].

Problem Statement Let $¢ be the unit square in thé-dimensional spac&® andP = (py,..., pn)
be an-point sequence contained . We insertpy, ps,..., pn in order. For each subsequen@e=
(p1,...,P), i =1,2,...,n, we define the current point set&s.={ps,..., pi} U So, whereSy is the set of
the Z corner points oY, the maximum gapsG; := MaX,se Minges; 2d(p, q), the minimum gagas
gi := Minpges;, pzqd(p, 0), whered(:,-) is the Euclidean distance, amkei-th gap ratioasr; := Gj/g.
The maximum gap and the minimum gap imply the diameter of the largest empty ball and the minimum
pairwise distance, respectively.

For a point sequende, we definethe maximum gap ratiasRp := max r;. For a fixed integen, we
denoteR, the optimal gap ratio for ang-point sequence,

R, :=min { Rp | P is anyn-point sequence contained$f}.

Then, giverd andn, we want to find am-point sequenc® contained irs? such that® minimizes the
maximum gap ratio of itself. More formally, we formulate our problem as follows.

Problem 1:
Input: Integersd andn.
Ensured: Compute an optimal-point sequenc® in S¢ that achieve&p = R,.

Our contribution We start with a simple greedy algorithm calléttremental Voronoi insertiom

Section 2. The Voronoi insertion generates a point sequeémgeh Rp < 2. According to this algorithm,

one can extend this result into any higher-dimension and increase the size of point sequence without
limit.

In Section 3, we present a preliminary result for Problem 1, that is, we give a linear time algo-
rithm for finding an-point sequence with the maximum gap ratio bounded B{#/AL"/21+1) in the
1-dimensional unit squai®'. We also show that the bound is optimal, hence, our algorithm concludes
in the 1-dimensional case.

In Section 4, we consider the planar case, and show a few properties for the optimal point sequence.
It may be dificult to solve analytically, hence, we design simple two heuristic algorithms to find a
point sequence whose the maximum gap ratio is smaller than that of the point sequence generated
by incremental Voronoi insertion. Since Voronoi insertion gives an upper bound, our next goal is the
following:

Problem 2:
Input: Integersd andn.
Output: Whether there exists arpoint sequenc® contained irs? such thaRp < 2.

We describe implementation of our heuristic algorithm and show our experimental results on a point
sequence with maximum gap ratio strictly less than that of Voronoi insertion.

2 Simple Greedy Algorithm

We present a simple greedy algorithm for inserting points uniformly called incremental Voronoi inser-
tion. In this algorithm, we maintain a set of vertices which are either Voronoi vertices of a Voronoi
diagram for a set of points already inserted or intersections between Voronoi edges and cube surfaces.
We evaluate each such vertex by the distance to the nearest point (site) and choose the one of the largest
such distance as the next point to be inserted.



Define a point setSid ={(X1, X2,...,Xq) | exactlyi coordinates are either 0 or 1 and the remaining
coordinates are/R} for i < d. For example, we have

SS=1{(1/2,1/2,1/2)},
S3 = {(x,1/2,1/2),(1/2,%,1/2),(1/2,1/2,%)},
S3 = {(+,%,1/2), (%, 1/2,%),(1/2, %, %)},

where= indicates 0 or 1, that isx(1/2,1/2) represents (Q/2,1/2),(1,1/2,1/2).

The first point to be inserted must be the unique elemeﬁigof.e., (/2,1/2,...,1/2). Then, we
insert points in the seb¢ one by one, and continue to points $§,S3,...,S4 ;. Suppose we have
inserted all the points i8g,S9,...,SY_, and we are now inserting the first poisit= (0,0....,0,1/2) in
the selsg'_l. The pointp; is the mid-point of a cube edge by the definition. Thus, the minimum pairwise
distance is 12, that is, the minimum gap is/2. Since this is the first point located on a cube edge, the
empty ball centered at the next point@Q..,0,1,1/2) that passes through the two points(0..,0,0)
and (Q0,...,0,1) remains empty. In fact, this ball is the largest empty ball. Its diameter is obviously 1.
Therefore, the ratio is exactly 2 after the point.

We can also show that the maximum ratio before inserting this point is less than 2 and the maximum
ratio after inserting the point until the very last point&ﬂ‘_l is at most 2. When we have inserted all the
points inSY,S9Y,...,SY ,, we can continue the same process again f@ub-cubes in a recursive fash-
ion. Thus, we can conclude that the above-mentioned approximation algorithm achieves the maximum
ratio 2.

3 1-dimensional problem

Our domain here is a unit interval,[0]. The two extremal points O and 1 are assumed to be inserted
in advance. We present a simple linear time strategy better than the incremental Voronoi insertion.
Moreover, we show that the strategy is in fact optimal.

3.1 Lower bound onR,

We first estimate the lower bound &% for an n-point sequence. Le® = (p1, p2,..., pn) be a finite
sequence ohf points in the unit interval [L] such thatp; # p; whenever # j. Fori =0,...,n, the
pointspy...., pi partition the unit interval intd+ 1 intervals of lengthsn), ..., m_,. Without loss of
generality we may assume tha'} > m'j+1 foralli,0<i<nandj,1< j<i. Then, the maximum and

minimum gaps are given byfl andm§+l, respectively. Hence, the ratitp for the sequencP is
mil
Rp := max —— (1)
1<i<n rrLrl

Put Mi = {_nfl,...,mgﬂ} and regard it as a multi-set (i.e., it may contain elements more than once).
Clearly, M'*! is obtained fromM' by replacing one element from' by two which add up to the first
one. The following lemma states thaRf < 2, then this replaced element is always the largest.

Lemma 1. If Rp <2 then for eachi = 0,...,n—1 there area,b € [0,1] such thatnf'l =a+b and
ML= {ml,...,m_,,a b} (as multi-set) and one @fandb is a smallest element o'+1.

Proof. Assume thaM+1 = M! \{nfj}u{a, b} for somej,1< j <i+1 such tha‘mij <m, anda+b= mij.
W.l.o.g., letb<a. Thenb< %m‘j < 2m| and henc&Rp > mi*1/b=m /b> 2. If botha andb are greater
thanm_,, then agairRp > m,/m , = (a+b)/m  >2m /m =2 O

Note, however, that a priori we do not know that batandb are not larger thanﬂﬂ.



Lemma 2. Given an integen > 1, the lower bound oR, is 2L"/2//(/21+1),

Proof. Assume thaRp < 2 for ann-point sequence. Let firstbe even. Lef,1< j < 5 +1 be such that
m?/z € M. Such aj exists, since at most/2 of the elements itM"? are replaced in the sequel from
M™2 to M". We have

n/2 n/2

m
1 1

— < —— < Rp.
n/2 — n/2 -

m; My241

Also, for eacm/2 <i <n-1, we haveRp > mt/m*1 > m'+1/ml by Lemma 1. Smc«anJ eM",

n/2 n/2 n-1 r.nl n-1 r-nl /rni+1 (2 )n/2
> .

Rp>—>—L_ = | | | | 1
n/2 m m|+l +1
+2 Re

i 1 i=n/2 i=n/2 +2

We concludeRp > 2(W2/(V2+1) Forn odd, letP’ = (py,..., pn-1). Then,Rp > Rp by definition and
Rp > 2l0/21/(0/21+1) by the above. SR, < 2V2/(W21+1) This completes the proof of Lemma 2. O

So, we have obtained the lower boundRpffor n-point sequences. Now, what remains is for the
1-dimensional case is to give an algorithm for computing an optimal point seq&énce
First consider the following algorithm suggested in the lower bound proof.

Algorithm 1: A naive strategy

Calculater = 2ln/2l/(Ln/2}+1).
pr=1/(1+r);
fori= 1to n72d_o
Letm, andm, be the current longest and second longest intervals, respectively;
Put a pointp;1 into rn'l to partition it into two subintervala andb so thatm'z/ min{a,b} =r;

Put the last poinpy SO as to partition the current longest interval into two intervals of the same lengths;

This strategy always puts a poipt so that the gap ratio is equal t8"2/("2+1) for eachi. If it
is possible then the sequence obtained is optimal since its bound coincides with the lower bound. The
strategy implicitly assumes that the smaller one of the new subintervals has the minimum length among
current intervals. Unfortunately, it is impossible to keep the ratio. The reason is as foIIovm.dmi
bI (a > bj) be new subintervals generated after it insertion. ThenM* = {ay,b;} = r+1’ r+l} and

= {b1, 82, by} = {77, 7, gy )- We insertps into M2, Note that the maximum interval length in?
-1

depends on the number of points to be insertet; i ay, (the case of < & ‘/—) thenbs = a2 =13
andag = r+1 —bs= r2(r+ . Sinceag < bz forr > V2,r3 = ay/az = r(r?—1) > R,. This suggests that if

is large enough, say> 3, the assumption of above strategy does not hold. On the other hand, &
(the case of > 1+2‘/§), thenr, = 2 =r?-1, and 2< R - 1 for n> 8. Therefore, we cannot obtain an
optimal point sequendeé* by the above strategy.

Observation 1. Gap ratios for the firsih— 1 points should be strictly less thaaiV/2/(n/21+1) gand
moreover, these ratios are never determined until the last interval is fixed.

This Observation 1 suggests that an optimal point sequence of lersfitbuld be determined in a
bottom-up fashion, that is, from the last interval to the first one.

3.2 An optimal point insertion strategy

A rough sketch of our strategy is as follows. Let(po,..., pn) be a point sequence to be inserted in
the unit intervalx; = [0,1]. We maintain all intervals generated duringnsertions, and we denote by



Xj the interval induced by, 2;. Hereafter, we denote theth interval byx;, and unifyx; and its length
[Xjl. Each pointp;,i = 1,...,n, is inserted into the current largest intervalto split it into two new
subintervals; andXzi1 With Xo + X2i+1 = X. An important observation here is that we can determine
the pointp; so that it results in a sorted sequenggi Xi+2,. .., X, X2i+1) Of intervals in the decreasing
order of their lengths. The process is terminated when the last pgistinserted to have a sequence
(Xn+1> Xn425 - -+ » Xons1)-

Now, let us describe how to determine the point sequence. It is divided into two subsequences at
k =|n/2]. For the first half p1,..., px), the current longest interval is unevenly partitioned into the
new two subintervalgy andxyi.1, SO thatxy > Xoi+1 andx = Xo + Xoi11. Since we are trying to achieve
a ratio strictly less than 2, the ratkg,1/Xsi+1 must be strictly less than 2. For the remaining points
(Pk+1,---» Pn), the current longest intervad is partitioned evenly into two new subintervals; and
X2j+1 SO thatXyj = X2j+1 = Xj/2 andXj.1/X2j+1 is strictly less than 2, or equal ®,. This is because
the intervalsxy andxgiy1,i = k+1,...n, will never be subdivided during the remaining insertion. Since
minimum gaps are maximized by evenly partitioning, it minimizes the maximum gap ratios.

More concretely, we first compute the target rdio= 2/ wherek = |n/2], and a magic number

y1=(2k+23K2 ?”i—j)‘l, wherel = [n/2]. Then, we fix the lasti+ 2 interval;

X2 = X141 = Y1 if nis Odd,
X241 = Y1 if nis even,
Rn
X2(1+1) = X2(1+1)+1 = ?YL

Rn 2
X2(+2) = X2(1+2)+1 = (7) Y1,

Rn k
X2(+K) = X2(+K)+1 = (7) y1.

The remaining intervals can be determined so ¥hatxy; + Xsi+1, i =k k—1,...,2,1. This strategy can
be summarized in the following pseudo code.

Algorithm 2 : An optimal strategy

input : An integern> 0.
output: An optimal point sequence, i.e.,Rp = Ry.
1 R, = 2m2l/(n/2)+1).

y1= (2“1/27—[“/% + ZZ_Ln/22J+1 R, )—l.
1= 3

for i =|n/2] downto 1 do X = Xoj + X2i+1;
Compute a point sequen&from the interval sequence;(1, Xj+2,. .., X2i, X2i+1);

2 2\—1
3 if nis oddthen Xprn21 = Xorn/21+1 = Y1,
4 else Xgmy21+1 = Y1, '
. I
5 fori=1to[n/2] do Xp(n/21+1) = X2(n/21+1)+1 = (%) Y1
6
7

3.3 Configuration tree

Before showing the optimality and correctness of our strategy, we introduce a notation, in order to
simplify the arguments for proof. For any point sequeRgeveryi-th insertion can be represented by a
rooted tree structure with sizé21, where the root is the unit segmeat Fori-th insertion, each node
corresponds to an interval generateddy.. ., p;, and an interval sequencrg (i, ..., Xsi+1) is obtained



form the leaves in old order. The two nodes are connected by an edge, if one node is induced from the
other node by inserting a point. More formally, there are two edges start for the ngde=of, ..., LgJ,

to the nodes oky and xyi,1, respectively. This implies that every inner node is already subdivided.
Figure 1 shows an example of the configuration treenfer4. The grey nodes are leaf nodes. We can

see that the intervals corresponding to leaf nodes subdivide the unit segment.

Tl

"p4 P2 P1 P3

Fig. 1. Configuration tree for a point sequenee- (pz1, P2, P3, P4)-

Therefore, the above strategy constructs eventual configuration tree, and then obtains the rough
partition of the unit segment. So, each interval length corresponding a leaf is calculated using the magic
numbery;. Since each inner node has exactly two children and both interval are known, every interval
length is also determined in the direction from leaves toward root.

3.4 Optimality and correctness

Finally, we show that the maximum gap rafp of the point sequenc computed by our strategy is
equal toR,. The magic numbey; plays very important roles to optimiZ®, and so it is made neatly.
How to determing/; and the optimality requires Lemma 3. And Lemma 4 shows the correctness of the
strategy.

Lemma 3. If any set of interval$xi.1,..., X212, Xoi+3} are sorted in non-increasing order with respect
to their lengths, then the above strategy achieves the maximum gaiRgati@."/2!/(n/21+1),

Proof. Lety; denote the length ofy(.iy+1 fori=0,1,...,k, wherek = |n/2] andl = [n/2]. Note that the
nodex has intervaly; as one of the children in the tree configuration. Now, we assume the gap ratio
ri is defined byﬁ = % for (I +i)-th insertion. By Lemma 4, this definition for does not induce an
inconsistency. From this fact, the minimum intervajjignd the maximum interval iy + X2g+iy+1 =

2yi+1, for (I +i)-th insertion (1< i < k). For the last insertion, the minimum intervalyig.1 and the

maximum interval is/1. Therefore, the gap ratiosfori =1,1+1,...,1+k, are described as follow,

X4l Xag2t+Xou3  2Y2

X2l +1 X2l +1 y1’
oy = X2 _ Xolwa+Xass  2Y3
+1 — = = —,
X21+3 X21+3 Y2
X1k Xo(+k) + X204K)+1 Ykl
M-1="l4k-1= = = )
X2(+k-1)+1 X2(1+k-1)+1 Yk
X+k+1 Y1
h=rk=c—""=—""

Xo(+k)+1  Ykel



X: +X; X:
Sincexsizz > Xgig2 fori<l-1,ri = 2.:11 = m < Xi:f =ry,1. ThisimpliesR, = maxr,ri1,...,M} =

maxri,ro,...,rM-1}. Thus,R, is minimized when

1
Ry=(r-rep---- Ml4k) F1

(2y2 2y3 2%+1 Y1 )k+l _ 2kl+(_1 _ ZLEJ/(L%]J"']')'

yi Y2 Yk o Yk+1

Since every; = R,, we have

= F§1 i+1
fori=1,...,k, and
Yk+1=%-

Moreover, since
2 .
y1 = (ﬁ)l_l Vil

fori=2,...,k+1, if y; can be determined then evegyis also determined. Whemis odd, we have

1
Yi=———71
k+l(Ro)I 7t
2%143(%)
since
2n+1 k+1 k+1 Rn j-1
1= ) %= 2Zy,_22( )
i=n+1
Similarly, whenn is even, we have
1
y1=
1+2zk+1(%)
since
2n+1 k+1
1= Z X = Y1+22y1
i=n+1

Observation 2. y1 > Y2 > -+ > Vs 1.

The observation follows from the facts ttyat: Vit1 and is greater than 1.

In order to show the correctness of this strategy and the optimality, we have to prove that the interval
sequenceX,1,..., X2, X2i+1) generated byp; is sorted in non-increasing order with respect to their

length for every ki <n.

Lemma 4. Whenever our strategy partitions the intervalfor everyl <i < n, the resulting interval
sequencéXi.1, Xi+2, - .., X2i,) IS sorted in non-increasing order, that is, inequalities; > X2 > --- >
Xoi > Xoi41 are satisfied.



~ level og(2n+1)0)

m level dog(2n+1)C>1
~

o Qr§

level 1

level O

leaves

Fig. 2. The levels of tree corresponding the behavior of our strategy.

Proof. It can be proved by induction on level of the tree configuration with sire 2 The level of a
nodev is defined aglog(2n+ 1)]- the height ofv. So, all leaf nodes may be in the level 0 or 1, and the
level of rootx; is [log(2n+ 1)], (see Figure 2).

When 2' = n+ 1, whereh = |log(2n+ 1)), all leaf nodes are in level 0. In this case, from Observa-
tion 2, the statement,,1 > ... > Xons1 is hold. Whemn + 1 # 20, the intervalsx, andx,.1 are in same
level 1. Then,

Rn k Rh+1 2|<

Xn = 2Yk+1 = 2(7) Y1

= R, 21 yi= R, 2k 1 y1= % Y1> Y1 = Xns1.
On the remaining nodes in level 1, the both children of a node are the intervals which has a same length
SO as 2,-_. For the consequence two intervalsandxnl! X 2 Xis1 by Observation 2.
Letl'=(Z,.. .,22i) be the intervals in leve| wherez, andzZi are the leftmost and rightmost intervals
in leveli, respectively. Now, we assume that the statement is hold up td J¢hatis,Z > Z,>--- > z'2i >
.-+ > Xons1. By this induction hypothesiz';}l = z"zi_1 + izi > 71+ 2 = 7. For the othersz‘j‘l >7z1

.. . = T+
are hold by similar arguments in the base step. O

Thus, we have a conclusion on 1-dimensional dispersion problem.

Theorem 1. Given an integen, our strategy gives an optimal solution with the maximum gap ratio
being2i2+1 on 1-dimensional dispersion problem @&(n) time.

4 2-dimensional problem

4.1 Notations and analytical results

Lets; = (0,0), s, = (1,0), ss = (1, 1), andss = (0,1) be the four corner points 62. For each point set

S; after inserting points inP, we define two empty circleS; andc;: The diameter o€; is G; and the
centerp of C; satisfies mig-s, d(s, p) = G;j/2. The diameter of; is g; and its center is the midpoint of

the closest pair of points. Note that the two empty circles are not unique, since the maximum gap and
the minimum one may be defined by some of the triples or pairs. We break ties arbitrarily to €hoose
andc;. For any three dierent points, p2, andps, not on a line, leC(p1, p2, p3) be the circle passing
through the three points. The interior of a cir€les denoted by in€C and the diameter @ is denoted

by diam(C). The gap ratia; is defined byr; = Gj/g; = diam(C;)/diam(c;).

Lemmab. Fori=12,...,n-1,if maxcj<rj < 2, thenpi,1 must be inserted in ir@;, to keegj,1 < 2.

Proof. If pi;1 does not lie in inC;, thenG;,1 = G;. On the other handji;1 < G;j/2, since there is no
empty circle whose diameter is greater than that of the largest empty circle. Henee?. O



Fact 1. For two acute trianglea ABCandADEF, if ZABC< /DEF and/BCA> /EFD, then

IABl _ IDE|
ICA ~ IFDI’

We have equality fABC= /DEF and/BCA= /EFD. See Fig. 3 for an example. |

AB : DE = AC : DF AB : DE > AC : DF

Fig. 3. lllustration for Fact 1

Lemma 6. The last poinfp, must lie at the center @,_1 to minimize the maximum gap ratio.

Proof. By Lemma 5, we assume thgj is inserted into the interior of,,-1. If there exists an empty
circle with diameter equal t&,,_1, then this lemma immediately holds, since it must maximize the
minimum gapgp.

We assume thaE,_1 passes through three poirgtd andc in the counter-clockwise order. L&Y
be the other empty circle (n@t,) passing througla andb.

We movep, along the perpendicular bisector @fandb so as to decreasgp,. Note that we may
also have to consider motions betwdeandc, and betweer anda. But similar arguments can be
appropriately applied.

In this situation, a pair of points definimg is never changed, i.eg, = d(pn, @) = d(pn, b). However,

a triple (or pair) of points definin, may change. There are two kinds of meaningful circles which
may defineGp,; the first one i€’ defined above and the second one is the empty di¢léhat passes
througha and pn. The other circles may lead tq > 2, or may not lead to a bettef than that ofC’ or

C”. Note thatp, has to be inserted at the center@f ; to maximizeg,, whenC, = C’. On the other
hand, wherC,, # C’, py lies in intC’.

Now, we assum€,, = C”. Let o be the center o€,._1, 01 be the center o€’ ando, be the center
of C”. Consider two trianglea = A(a,02, pn) and A2 = A(a,01,0). Sincep, is in C’, it can be seen
that zao, py < £a20,0 and Zzap,02 > £a00; by simple calculations. Hence, we had, 0,)/d(a, pn) >
d(a, 01)/d(a,0) from Fact 1. This concludes the proof. O

By Lemma 6, we can find an optimal 2-point sequence. Fig.4 shows the notations for an instance of
n= 2. In this case, there are three circles, but the meaningful circles a® jagtiC”” from Lemma 6.
Hence,p; is put at the center of;.

We can assume tha lies on the liney = % to maximizeg;. Since we can specifg, onceps is
determined, we only examine arcoordinate of1. The maximum gap ratiBp is minimized wherg; =
g2, and then an optimal point pair satiaf'@% = 201G, by simple observations. Hence, for example,



Fig. 4. Notations of Lemma 6 for an instance & 2.

these gap&i, g1 andG, are given by

4x2 - 8x +5
YT T Ay

/ 1
O1= X§+Z,
1

1 4
Gz=2 Z+(X]_—§).

Solving this simultaneous equations, we obtain the coordinates of optimal points;

p; = (0.2737040.5),
p5 = (0.8089580.5).

Next, we consider the cases &= 3 and largem. They are more complicated and may not be
solvable in an analytical sense.

Lemma 7. If n> 3 and the first poinp; lies on the liney = % or the linex= % then the maximum gap
ratio is greater than or equal t@.

Proof. We assume that the first poipt lies on the liney = % When p; is inserted into inC1 N
int C(p1, S1,S2), p3 should be inserted at the center@(ips, S5, 4) from Lemma 6, and the@3 is de-
fined byC(p2, s1,%). Sincediam(C3) < 1 anddiam(C(p1, S3, %)) = 1,r3 > 2. So,p2 has to be inserted
anywhere in inCy \ int C(py, s1, 2) N S2. Hence C; is defined as the circle passing throyghs; and
s,. By Lemma 5,p3 is inserted into the interior &f,. Therefore, the third gap ratig is at least 2, since
diam(Cy) = diam(Cz) anddiam(c;) < %dian(Cz).

By the symmetry, the similar argument can be applied whelires on the linex = % |

Lemma 8. Whenn = 3, the second poinp, should be inserted at the center®jf.

Proof. LetC] andCY’ be the second and third largest empty circleSpfConsider a case in which there
exist exactly two circlesC, andC’, with their diameters greater than 1, at the end of the first insertion.
Then,p; must be ininC; N{pe S|d(ps,p) > %} N{peS|d(s,p)> %}, wheres is the nearest corner



point of S, sinceC, passed,, diam(C,) > 1 andg, = maxd(p1, p2),d(s, p2)} < % If such intersection
does not exist, then we can deg> 2. Letx andx’ be the centers a; andC/, respectively. Sincg,
is inserted in that intersectio@, = C(po, S, Sj), wheres; is the second nearest corner pointéffrom
p2. Let X7 be the center o€,. Now, consider two trianglesys X’ p, andAasx' x. From Fact 1p; is
inserted at the center @f;, to minimizer».

Next, consider the next case that there are three empty ci(Cie@ﬁ, and Ccl, with diameters
greater than 1, at the end of the first insertion. This case occurrs pihisncontained in exactly one
circle C(o, s, sj), whereo is the center, % %) ands ands; are corner points ob. We assume that,
is inserted in iNC; N{p e S| d(ps, p) > 5diamCy)}n{pe S|d(s,p) > %dian(C’l’)}, wheres is the
nearest corner point @& from p,, the maximum gap ratio may be less than 2. If the intersection does
not exist, therRp > 2. However, the same argument as above applies. Thergfosbpould be inserted
at the center o€, if n= 3. O

Lemma 9. Whenn = 3, all largest empty circleC1,C, andCs, pass througtp;.

Proof. It is obvious thatC; and Cz pass througlp; from Lemmas 7 and 8. I, lies on the line
y= then ps lies on the linex = and vice versa. We can assume thatnd ps are contained on
the boundary of the square, %] X [0, 2] from Lemmas 4 and 8. Therpl lies in the (open) square
(2,1)>< (2,1) HenceCs passes throughy, since the half space> 5 L containsp; but notp, or ps. O

Since p; and ps are inserted atentefC;) andcentefCy), respectively, we obtaig, = §G1 and
g3 = %Gz. In order to minimizeRp, we take geometric average amang, andrs;
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Hence, if we can show? < 2, thenR,, < 2 is obtained when = 3. However, it seems to befficult to
specify an optimal posmon gb, satisfying the above condition, and then solving analytically the exact
positions in an optimal point sequence is too complicated even in the case3fThen, we propose a
heuristic algorithm for finding a good point sequence.

4.2 Heuristic Algorithms

We present a simple heuristic algorithm based on local search. First, we describe a procedure to compute
the maximum gap ratio, for givenrapoint sequenc®. Then, we show a main procedure which treats
n-point sequencep, ..., Pn) as a point X, Y1, X2, Yo, ..., Xn, Yn) in the r-dimensional spack?" to find

a best point by examining its neighborhoodRA". This technique is similar to the lifting technique
common in computational geometry.

Algorithm 3: ComputeMaxGapRati&)

input : A point sequenc® = (p1, p2,. .., Pn)
output: The maximum gap rati®p

Let Sg be the corner points &f;

S« Sp; r«Q0;

fori=1,..., ndo

L S« Su{pik

Compute the maximum gap; and the minimum gap;;
if r <Gj/g then r < Gj/gi;

return r;

~N O OB WN B

Algorithm 3 computes the maximum gap ratio for a givepoint sequence. It runs B(n?) time.
In particular, we maintain a planar subdivision by Delaunay triangulation [15] for 8acfhe planar



subdivision by Delaunay triangulation is a planar graph, and then each face contributes to an empty
circle and each edge represents the neighborhood relation between two connecting vertices (see [16]).
Hence, we obtain the gafig andg; in linear time, since the reconstruction of the subdivision is the
crucial part.

Algorithm 4 is a main procedure of our heuristics. Given three paramgteandk, the algorithm
iterates local searck times starting from randomly generated point sequences. In each iteration we
compute a local optima ofpoint sequence. The parameteis used to specify a termination condition
to guarantee the accuracy of solutions obtained.

Algorithm 4 : A simple local searching heuristic algorithm
input : Integersn, m, andk.
output: A goodn-point sequence.

1 LetP,P’,P” andP* ben-point sequences iB2;
2 Lete; andey be the unit vectors;
3 ropt« oo; threshold « 2°™;
4 fori=1to kdo
5 Initialize P by a randomly generatedpoint sequence;
6 &« %;
7 I'min < ComputeMaxGapRati&);
8 repeat
9 foreach p) € {p1+ e€1, p1 £ e6} do
10 foreach p), € {p2+ g€, pp + e€} do
11 :
12 foreach py, € {pn = €€1, pnh €2} do
13 P’ — (P, P5s---5 PA);
14 r « ComputeMaxGapRati&);
15 if r <rminthen rmin<r; P« P;
16 if rmin IS updatedhen P” « P;
17 else & — 1¢;
18 until & < threshold;
19 if Topt> rmin then ropt < rmin;  P* < P”;

20 return P*;

4.3 Experimental Results

We have implemented Algorithm 4 to evaluate the accuracy of the solutions obtained by the heuristic
algorithm. Table 1 describes our environment of the experiment. We designed the algorithm using the
exact computation in LEDA[10] for the sake of accuracy and for robustness.

Table 1. The environment of experiment

Workstation CPU Main memory
Dell PowerEdge SC1425 Servef Intel ® Xeon™ 3.6GHz 8GB
oS Compiler External library
RedHat Enterprise Linux 3 g++-3.4.2 LEDA-5.0.1

Table 2 shows the beR, values obtained by Algorithm 4. For eanh- 2,3,4,5, we executed the
algorithm more than 1000 times with the threshold less thaf. For each oh = 6,7, 8, we executed
with 500, 100, and 20 trials with the same accuracy.



Table 2. The best solutions returned by Algorithm 4

n 2 3 4 5 6 7
Rp || 1.87804| 1.92716| 1.927164| 1.92716| 1.927203| 1.99312

As mentioned above, we have an exact valuBoénd a property foR;. The computed valuB,
shown in the table finds to be close enougliR{oThe 3-point sequence achieving the computed value
of Rz shown in the table satisfies the prope§§/< 2, and we conjecture that the point sequence is
optimal. In addition to this, the obtained point sequencesfor, 5,6 may also be optimal, since these
maximum gap ratios are roughly the same.

There is a gap between the resultsrics 6 andn = 7. We have obtained a better sequence than that
of Voronoi insertion. However, in the case & 8, we did not obtain a sequence with the maximum
gap ratio less than 2. In our environment of experiment, we gave up to apply the algorithm &r
since it is too slow. In fact, it took one day per one trial.

We could use those point sequences obtained above as seed point sequences and perform the incre-
mental Voronoi insertion.

Table 3. A good seed point sequence and the initial maximum gap ratio.

P1 P2 P3 P4
(0.7691460.501913) (0.2633980.508807) {(0.4999940.0637435)(0.4777180.891089
Ps Ps p7 Rp
(2.0687-05,0.317322)(8.21674—- 06,0.662797) (0.9999930.304037) 1.993124

We have implemented the above-stated strategy using the 7-point sequence shown in Table 3 as a
starting seed point sequence. The initial maximum gap ratid®&3124. Fig.5 indicates the resulting
point distribution. The maximum gap ratio of this point sequence is actually 1.99921.
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Fig. 5. A good 50-point sequence with the maximum gap ratio boundedd8921.

Furthermore, we consider the irregularity of the final point distribution for each of our results and
Voronoi insertion. In order to enhance théfdience between them, We use a Delaunay triangulations
shown in Fig. 6. Our distribution is pretty irregular, compared with that obtained by Voronoi insertion.

One of the notable remarks is that Voronoi insertion easily gives a uniform point sequence in our
criteria, but the final distribution is a totally unfair and locally regular distribution. Performing a per-
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Fig. 6. The Delaunay triangulations for the resulting point distribution for our 50-point sequence with the maximum gap ratio
bounded by 89921 and the incremental Voronoi insertion.

turbation to fix the badness, our criteria immediately is evaluated as the modified point sequence is not
uniform. Therefore, our approach is one of the solutions which overcome this dilemma.

5 Conclusions

In this paper we have presented a preliminary result on dispersion. One of the most important future
works is to extend the result to higher dimensions. We had some results on lower and upper bounds of
the maximum gap ratio for the planar case, but none in the higher dimensions.
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