運動制御における自律分散型 3 層システムの提案

非会員 金野 武司 （武蔵工業大学）
正員 藤川 英司 （武蔵工業大学）
正員 山田 新一 （武蔵工業大学）

A Proposal of Autonomous Distributed 3 Layers System for Motion Control

Konno Takeshi, Non-member, Fujikawa Hideji, Member, Yamada Sin-ichi, Member (Musashi Institute of Technology)

In this paper, we propose a new control system that has three layers for a complicated robot. The first layer calls a Paraneuron Reinforcement Algorithm (PRA). This algorithm simulates a simple neural coupling of creature. The PRA has a self-organizing function to input signals. The second layer memorizes a state of PRA System using the Neural Network with 3 layers Back Propagation law. The third layer make a halfway target that advances to possibility of following the last target.

By using the method (3 Layers System) to motion control, a flexible control of complicated plant was made possible. But the problem is that PRA can’t realize a highly precise performance.

キーワード：自己組織化，自律分散，人工ニューラルネットワーク，運動制御

1. 序 論

近年，モーションコントロールという技術用語の示す分野が盛況を極めている。このモーションコントロールは、運動を制御の観点から総合的に扱う理論及び技術（1）として広く扱われるサーボ技術の適用分野である。この概念を立ったとき、我が国を含む統合的な運動制御システムは、生物の持つ多様性や柔軟性を表現するものである。しかし、その最先端をいく 2 足步行型ヒューマノイドロボット（2）も、生物の持つ多様性や柔軟性を完全に達成しているわけではないのが現状である。

そこで、本研究では新たな方向性を持った 1 つの可能性として、より生物に近い多様性や柔軟性の達成を目指し、以下に示す 3 つの層（3）よりなる制御システムの構築を提案する。

- 下位層：環境への自律的なシステムの同定機能
- 中間層：システム状態空間の保存機能
- 上位層：中間目標値の生成機能

運動制御は、運動をイメージするプランニングの機能と、そのイメージされた目標への追従制御の機能とに分けられる。この両者は、それぞれ独自の問題を抱えているが、何よりまず解決しなければならないのは、目標への追従機能であると考える。なぜなら、現在最も多く実用化されたロボットに適用される制御理論の中では、運動方程式によるプラントのモデル化が前提とされており、その運動方程式に近似という根本的な問題を抱えているからである。

2. 制御問題の解決

多様な環境変化のモデルを運動方程式により一元的に求めることは非常に困難であるため、システムに自律的な自己のシステム状態の修正機能を持たせるものとして、下位層となる擬似単位神経組織アルゴリズム (Paraneuron Reinforcement Algorithm; PRA) (4)を提案する。この PRA は、生物が持つ 1 对 1 の神経結合を擬似的に模倣するところから導いたものである。そこで、多入力多出力系への拡張においては、自己のシステム状態の修正機能を維持するために、個々を完全に独立させる制御対象への自律分散適用を行う方法を選択している。そして、多入力多出力系においての個々の自己組織化モデルの協調には、発現現象 (5)を利用する。

このようなにして辿り着いた目標においての追従制御における新たな可能性としてのモデル化のアプローチが、自己組織化モデルの自律分散適用である。

3. 3 層システムの構築

（3-1）下位層における制御システムの構築

Fig1 の特性を持つ回転機の速度情報によって、その位置制御を自

電学論 D, 119巻 2 号, 平成 11 年 1
己組織の自分制御アルゴリズムとして，(2) ～ (6) 式を用いる。

動力関数信号：$Ac(\text{Actuator})$

最大動力トルク：$T_\text{max}(\text{Maximum - Torque})$

最大動力トルク：$T_\text{max} \tan b(\text{Ac}/\tau) \ [N m] \ldots (1)$

差分要求角速度：$DDS(\text{Different Demand Speed})$

実角度速度：$ReS(\text{Real Speed})$

重み修正率：α

$DDS = \text{DeS} - \text{ReS} \ [\text{rad/sec}] \ldots (2)$

$(\text{if} DDS > 0) \quad Ac = W_L \cdot DDS \ldots (3)$

$(\text{if} DDS < 0) \quad Ac = W_R \cdot DDS \ldots (4)$

そして，この (3)，(4) 式における重みの変動アルゴリズムを次式で表す。ただし $W_L, W_R > 0$ である。

$(\text{if} ReS > 0)$

$W_L[n] = W_L[n-1] + \alpha \cdot DDS \ldots (5)$

$(\text{if} ReS < 0)$

$W_R[n] = W_R[n-1] - \alpha \cdot DDS \ldots (6)$

また，このアルゴリズムにおいて保持動作を行なう場合には，(2) 式に示すような差分要求角速度（DDS）の算出では，実時間が目標時間に到達したときに，実角度が目標角度に到達していないならば，そのときの要求角速度（DeS）が際限なく増加することになってしまうため，(2) 式に次のような変更を加える。

$$DDS = \frac{\text{目標角度} - \text{実角度}}{\text{Time Limit}} - ReS \ldots (7)$$

このアルゴリズムは，構造的には速度フィードバックのゲイン制御と何ら変わるものではない。ただし，(5)，(6) 式によって，ダイナミックにゲインを修正することで，自律的なシステム変化の修正を行う。また，ここでの重み修正率 ($\alpha = 0.001$) は，入力信号の変化量に対して，システムの適応速度をどの程度まで達成するかを決定する重要なパラメータである。しかし，この α の値を決定する明確な根拠は得られていないのが現状である（4.1 節に詳述）。

3.1.1 3 リリックマニピュレータへの PRA の適用

二次元平面で表現する Fig.2 のマニピュレータの個々の動力への PRA を適用する。

ここで，各節の目標角度と目標時間を，計算機の乱数関数を使用して $-\pi \sim \pi \ [\text{rad}], 2 \sim 8 \ [\text{sec}]$ の制約の下で 1000 個作成する。そして，その個々の目標に追従させた結果として得られる重みの変動特性を Fig.3 に示し，目標定数と目標変位差特性を Fig.4 に示す。ただし，差分重み値は，1 つの目標値への追従シミュレーション終了時での各目標の目標位置までの距離の細和と定義するものである。また，シミュレーションの総回数は初期の未学習状態の改善を示すため，1000 個の目標値を 2 周で計 2000 回とする。

3.1.2 9 リリンク 1 分岐マニピュレータへの PRA の適用

Fig.4 の距離変位差特性より，3 リリンクマニピュレータの複雑化であれば，PRA の自律分散適用のみで十分に対応できることが分かる。そこで，より複雑な制御対象として，Fig.5 に示す 9 リリンク 1 分岐マニピュレータへの PRA の適用を行なう。そして，先ほどと同様に 1000 個の乱数目標に対して 2 周分となる 2000 回の追従を行ない，その結果得られる距離変位差の特性を 3 リリンクマニピュレータの場合と比較する。ただし，Fig.6 には，1 間節あたりの距離変位平均誤差を回数分布とし，初期の未学習状態

マニピュレータの計算機における環境変数およびその環境構築法を末節の付録に示す。
態を避けるため、乱数目標値の 2 周目 1000 回の追従結果を比較したものを示す。
（3・2） 中間層における制御システムの構築 Fig.6 の
総距離平均誤差の回数分布特性の悪化から、プラントの複
雑化によって発生する重み変動特性の多様化要求に、下位
層での自己組織化アルゴリズムのみでの対応ができないな
いことが指摘できる。これは、多様化する目標への重みの
追従が環境の変化に即応できないことによって発生する
現象であり、その解決には、重みの示す制御状態空間
の離散的な移行が必要であると考えられる。よって、本
研究ではその解決に中間層の機能として、ニューラルネッ
トワーク（以下 NN）を用いた記憶空間の構築を提案する。
この記憶空間の構築に使用する NN は、3 層バックプロ
パゲーション（以下 BP）を用いる NN であり、各ユニッ
トには式（8）のシグモイド関数を使用する。

\[y = \frac{1}{1 + \exp(x)} \] (8)

この NN による記憶空間に、下位層での評価値である総
距離誤差と PRA 重みの 2 つを用い、教師信号となる蓄
積データに対応した記憶空間の構築を行う。ただし、PRA
重みは次の条件を満たすものを優先して学習データへの蓄
積を行う。

条件: 初期位置、目標位置、目標時間を入力データに対
する下位層での評価値が、
a) 記憶空間を参照した評価値よりも低い場合
b) 基準評価値（0.1）よりも低い場合

この場合、優先してそのときの PRA 重みのデータを NN
の教師信号として蓄積し、そうでなければ、記憶空間より
参照した重みをそのまま蓄積する。

Fig.7 に示す総距離誤差の回数分布は、NN 用意する
蓄積データの上限を 100 個として 2 つの記憶空間の再構
築（NN の再学習）を行いないつ、先ほどと同様の 1000
の乱数目標値に対して 2 周分となる 2000 回の追従シミュ
レーションを行なったときの、後半 1000 回の総距離誤差
を 1 間隔当たりの総距離平均誤差特性として示したもので
ある。

（3・3） 上位層における制御システムの構築 Fig.7 の
総距離平均誤差の回数分布特性では、1 間隔当たり 0.05 [m]
の位置誤差を境に、依然として全体の 7% 程度の追従失敗
を指摘できる。これは、目標位置によっては重力を影響方向
の変化などによって、必要とされる重みの状態空間が移動
途中で大きく変動するのに対して、PRA による追従の際

図 3 重み変動特性
Fig.3. Fluctuation of the PRA weight

図 4 総距離誤差特性
Fig.4. Total error of the distance

図 5 9 リンク 1 分岐マニピュレータ
Fig.5. 9 link 1 junction manipulator plant

図 6 総距離平均誤差の回数分布特性の比較
Fig.6. Average error of the distance
応性が十分でないことが原因だと考えられる。
そこで本研究では、初期位置と目標位置との角度差を目標値分割率により分割し、各目標値を生成する機能を提案する。そしてさらに、この目標値分割率の記憶空間を NN によって構成し、目標値が求まる際の変動性を経験情報として蓄積することで、作り出す中間目標値の妥当性の確保を求める。また、退屈の成功を示す分割率を経験情報として保存する記憶空間を構築するために、NN に対する入力信号とその教師信号のデータセットは、退屈評価である総距離誤差を基準評価値（0.1）よりも小さい場合のみを蓄積することとし、その蓄積データ数を限界値を超えたときに NN の再学習を行う。

Fig.7 に示す回数分布は、NN に用意する蓄積データの上限を 100 個として 3 つの記憶空間の再構築を行い、先ほどと同様の 1000 個の乱数目標値に対して退屈シミュレーションを行なった結果として得られた特性である。

4. 3 層システムの評価

結果的に Fig.9 に示す構造を持つと有効である制御システムに期待することは、複雑なブロックの多様化する目標への追従とその目標への追従精度の確保である。そこで、この 3 層システムの評価として、その 2 点についての可能性を以下に検討する。

(4-1) 下位層 下位層においては、PRA の重み修正率（α）が目標変動への追従の度合いを決定する。しかし、このパラメータは増加する域（変動発生する特性を持つ）。これにより、追従精度が低下する現象が起こるため、値を大きくすることによってシステムに要求される変動変動の即応性を確保することが非常に困難である。よって、下位層のみの目標の多様化への対応は、Fig.6 にも見られるように困難であると言うわざわざ得られない。ただしこの 1 つの目標に対する PRA 重みの特殊化は十分に可能であることから、改善策としては、1 つの変動が受け持つ動作範囲を限定し、求められる動作信号の変動幅を小さくすることが考えられる。具体的には、以下の解決策を選択することが可能であると考える。

(1) ハード面からの構造的なアプローチとして、筋肉のどのような多様性配置を行う方法。
(2) ソフト面からのアプローチとして、1 つの変動に適用する重みのものを変形する方法。

(4-2) 中間層 複雑化する制御対象に対して、重みの離散的な移行を NN によって達成する中間層は、多様化する目標への追従を可能にする。また、これを可能とする原因の一つとして、下位層における自己システム状態の自律的な修正機能が挙げられる。なぜなら、この機能が NN
運動制御における自律分散型 3 層システムの提案

一般的に、自律分散型システムの構築において、記憶空間を効率的に使用するためには、各分室（モジュール）間でのデータ交換が重要である。記憶空間の制限下で、各モジュールが独自にデータを処理し、必要な情報のみを他のモジュールに提供することで、効率的なシステム構築が可能である。以下に、各モジュール間のデータ交換について説明する。

(4-3) 上位層 移動途中での重みの急激な変動要求があるものに対して、その追従の効率を高めるために、其の大小目標値の設定は、Fig.8 を観る限りではその効果は見られない。この理由は、目標値分布で記憶情報が、追従に失敗したときの状態を正確に再現できないことにあると考えられる。つまり、予想外の状況に対して、その内間目標値は再設定されるという観点から、より明確な目標を持つ Plannerの機能を構築する必要がある。そうした場合、各モジュール間で共有データの提供が容易に推進できる。

また、NN によって生成する内間目標値は、その妥当性を評価することが必要であるが、この目標値の明確性及び精度の確保は、最終的に中間層として構築する記憶空間の分布・識別能が求められる。なお、下位層の PRA は、1つの目標に対する自律的な高度度追従状態の探索を重視修正率（α）の低下により実現されるが、それによって表現される微小な重みの違いを NN が認識・識別できなければ、その高度度追従性能を達成することは不可能である。また、追従への失敗を記憶することによってその状況が再現されないような内間目標値を作り出す上位層の機能においても、その失敗の状況が NN によって正確に記憶されなければ、Fig.8 のように失敗率の低下を見ることがほとんどできないからである。

(4-4) 3 層システム 以上、3 層システムにおける追従の多様性とその精度の確保を検討したが、ここまでのことを踏まえれば、その追従の多様性及び精度の確保は、最終的には中間層として構築する記憶空間の分布・識別能が要求される。これを満たすためには、より明確な目標を持つ Plannerの機能を構築する必要がある。各モジュール間で共有データの提供が容易に推進できる。また、各モジュール間で共有データの提供が容易に推進できる。

付録

1. シミュレーションにおける環境設定

(1-1) マニピュレータの形状 マニピュレータの長さ、及び質量は以下のよう設定する。

- 長さ: L_{DA} = 0.25 [m]
- 質量: \text{Weight}_{A} = 1.5 \text{ [kg]}
- L_{AB} = 0.33 [m]
- \text{Weight}_{1} = 1.0 \text{ [kg]}
- L_{BC} = 0.08 [m]
- \text{Weight}_{2} = 0.5 \text{ [kg]}
- L_{CD} = 0.06 [m]
- \text{Weight}_{3} = 0.3 \text{ [kg]}
- L_{DE} = 0.03 [m]
- \text{Weight}_{4} = 0.2 \text{ [kg]}
- L_{EF} = 0.04 [m]
- \text{Weight}_{5} = 0.1 \text{ [kg]}
- L_{GH} = 0.06 [m]
- \text{Weight}_{6} = 0.3 \text{ [kg]}
- L_{HI} = 0.03 [m]
- \text{Weight}_{7} = 0.2 \text{ [kg]}

(1-2) 最大駆動トルク (1)式の T_{max} [Nm] を以下のよう設定する。

- T_{max,O} = 50 [Nm]
- T_{max,A} = 50 [Nm]
- T_{max,B} = 30 [Nm]
- T_{max,C} = 10 [Nm]
- T_{max,D} = 5 [Nm]
- T_{max,E} = 5 [Nm]
- T_{max,F} = 10 [Nm]
- T_{max,G} = 5 [Nm]
- T_{max,H} = 5 [Nm]

なお、関節 B には、C を駆動する T_{max,BC} と、G を駆動する T_{max,BG} を設定する。

(1-3) サンプリング時間

環境サンプリング時間: 0.1 [msec]
制御サンプリング時間: 1.0 [msec]

(1-4) PRA パラメータ

- ワープ力 : \text{W}_{L,R} = 1.0
- 軽量変位 : \alpha = 0.0001
- 構造定数 : \text{TimeLimit} = 0.1 \text{ [sec]}

(1-5) NN の各層におけるユニット数 記憶空間の構築に用いる NN 各層のユニット数は Table.1 のように設定する。

5. 結論

本論では、自己組織化モジュール群の自律分散型を基本概念とした制御システムを提案した。その中では、以下の点でその有効性を見ることができる。
可能にする上記の方法は、提案する 3 層システムの有効性を検証するに足る環境であると考える。

（平成 10 年 4 月 22 日受付、同 10 年 9 月 1 日再受付）

文献

（1）島田 男：モーションコントロールの次世代テクノロジー、電気学会論文誌、Vol.118-D, No.1, pp.8-9 (1998)
（2）山口 仁一、井上 貴敏、高橋 榮：2 足歩行型ヒューマノイドロボットの開発 - 2 足歩行型ヒューマノイドロボットにおける制御の問題 - 計測自動制御学会 第 36 期総合講演会予稿集、Vol.2, pp.756-766 (1997)
（4）金野 武司、藤川 英司、山田 新一：利用運動制御のためのシステム構築に関する一考察、産業問題制御研究会電気学会研究発表資料、IEC-98-13, pp.75-80 (1998)
（5）安田 昭延、長根 宏、高橋 裕樹：ニューラルプログラム、昭晃堂

金野 武司

（東京大学教授）1974 年生。1997 年 3 月武蔵工業大学工学部電気電子工学科卒業。同年同大学院電気工学専攻、計測自動制御学会学生会员、計測自動制御研究会学生部、工学博士。

藤川 英司

（正教授）1938 年生。1966 年武蔵工業大学工学部電気電子工学科卒業。同年同大学院電気大学院電気工学専攻、工学士。1991 年同大学工学部電気電子工学科教授。計測自動制御学会学生会、計測自動制御学会、計測自動制御学会、電気学会、計測自動制御学会、工学博士。

藤川 英司

（正教授）1938 年生。1966 年武蔵工業大学工学部電気電子工学科卒業。同年同大学院電気大学院電気工学専攻。1991 年同大学工学部電気電子工学科教授。計測自動制御学会学生会、計測自動制御学会、計測自動制御学会、日本ファジ学会学生会、工学博士。

山田 新一

（正教授）1930 年生。1953 年名古屋工業大学工学部電気工学科卒業。同年名古屋工業大学工学部電気工学科助手。1956 年（株）日立製作所電気工学科入所。1979 年武蔵工業大学工学部電気工学科教授。1983 年同大学工学部電気工学科教授。1997 年同大学電子情報工学科教授。現在に至る。計測自動制御学会、情報処理学会、日本ファジ学会、電子情報通信学会、電気通信学会、工学博士。