I118 Graphs and Automata

Takako Nemoto
http://www.jaist.ac.jp/~t-nemoto/teaching/2012-1-1.html

May 17
0. 目次

1. 先週の復習

2. ϵ-遷移
 (a) 非決定性オートマトンと ϵ-遷移
 (b) ϵ-遷移と受理言語

3. 準同型
 (a) 準同型と正規集合

4. 正規集合のクラスについてまとめ

5. 正規表現
 (a) 正規表現の性質
 (b) 正規表現と有限オートマトン
 (c) 反復補題
2. \(\epsilon\)-遷移

\(\epsilon\)-遷移つきのオートマトン (NFA\(_\epsilon\))：NFA で、空列 \(\epsilon\) に対しても遷移できるもの

例：\(b, bb, bbb\) を受理するもの

\[
\begin{align*}
&
\begin{array}{c}
\text{q0} \\
\text{q1} \\
\text{q2} \\
\text{q3} \\
\text{q4} \\
\text{q5}
\end{array}
\end{align*}
\]

\[q_0 \xrightarrow{\epsilon} q_1 \xrightarrow{\epsilon} q_2 \xrightarrow{b} q_3 \xrightarrow{\epsilon} q_4 \xrightarrow{\epsilon} q_5 \]

正確には、\(\epsilon \notin \Sigma\) を使った NFA \(M = (Q, \Sigma \cup \{\epsilon\}, \Delta, S, F)\) として定義できる。
2a. 非決定性オートマトンと ϵ-遷移

記法 $x \in (\Sigma \cup \{\epsilon\})^*$ から記号 ϵ を除いた列を \bar{x} とする。

定理 NFA$_{\epsilon}$ M に対して, $A = \{\bar{x} \in \Sigma^* : x$ は M に受理される \}$ を受理言語とする NFA がある。

証明：$M = (Q, \Sigma \cup \{\epsilon\}, \Delta, S, F)$ とする。
$X \subset Q$ に対して $C_{\epsilon}(X) = \bigcup_{x \in \{\epsilon\}^*} \hat{\Delta}(X, x)$ とする。
このとき, 新しい NFA M' を $(Q, \Sigma, \Delta', S', F)$ とする。ただし

$$S' = C_{\epsilon}(S) \quad \Delta'(q, a) = C_{\epsilon}(\Delta(q, a))$$

補題 $\bigcup_{m_0, \ldots, m_n \in \mathbb{N}} \hat{\Delta}(q, \epsilon^{m_0}a_0\epsilon^{m_1} \cdots \epsilon^{m_{n-1}}a_n\epsilon^{m_n}) = \hat{\Delta}'(a_0 \cdots a_n)$

補題 $L(M') = A$.

練習 次の NFA$_{\epsilon}$ の受理言語を受理する NFA を作れ。
復習 ある有限オートマトンで受理される $A \subset \Sigma^*$ を正規集合 (正則集合・regular set) という。

- $A \subset \Sigma^*$ が正規集合なら, A^c も正規集合。
- $A, B \subset \Sigma^*$ が正規集合なら, $A \cap B$ も正規集合。
- $A, B \subset \Sigma^*$ が正規集合なら, $A \cup B$ も正規集合。

定理 $A, B \subset \Sigma^*$ が正規集合なら, AB を受理する ϵ-遷移つきのオートマトンがある。

定理 $A \subset \Sigma^*$ が正規集合なら, A^n を受理する NFA$_\epsilon$ がある。

定理 $A \subset \Sigma^*$ が正規集合なら, A^* を受理する NFA$_\epsilon$ がある。

系 A, B が正規集合なら, AB, A^n, A^* も正規集合。
3. 準同型

定義 Σ_1, Σ_2 をアルファベットとする。次の２つの条件を満たす $h : \Sigma_1^* \rightarrow \Sigma_2^*$ を準同型 (homomorphism) という。

$$h(\epsilon) = \epsilon \quad \text{任意の } x, y \in \Sigma_1^* \text{ に対して } h(xy) = h(x)h(y)$$

例

1. $\Sigma_1 = \{\epsilon, 0, 1\}, \Sigma_2 = \{0, 1\}$ のとき次の h は準同型。

 $$h(0^{k_0}\epsilon^{l_0}1^{m_0} \cdots 0^{k_i}\epsilon^{l_i}1^{m_i}) = 0^{k_0}1^{m_0} \cdots 0^{k_i}1^{2m_i}$$

2. $\Sigma_1 = \Sigma_2 = \{0, 1\}$ のとき次の h は準同型。

 $$h(0^{k_0}1^{l_0} \cdots 0^{k_i}1^{l_i}) = 0^{2k_0}1^{l_0} \cdots 0^{2k_i}1^{l_i}$$

3. $\Sigma_1 = \Sigma_2 = \{0, 1\}$ のとき次の h は準同型ではない。

 $$h(x) = x^2$$
3a. 準同型と正規集合

復習 DFA $M = (Q, \Sigma, \delta, s, F)$ に対して

$$\hat{\delta}(q, \epsilon) = q, \quad \hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)$$

補題 $\delta(\hat{\delta}(q, x), a) = \hat{\delta}(q, xa)$

定理 準同型 $h : \Sigma_1 \to \Sigma_2, A \subset \Sigma_1^*$ について

- A が正規集合なら $h(A)$ も正規集合.
- $h(A)$ が正規集合なら A も正規集合.
4. まとめ

次のオートマトンで受理できる言語のクラスは一致する

- 決定性有限オートマトン
- 非決定性有限オートマトン
- ϵ-遷移つきのオートマトン

正規集合 $A, b \subset \Sigma^*$ について、次も正規集合

- $A \cup B$
- $\sim A$
- $A \cap B$
- AB
- A^*
- A^n

準同型 $h: \Sigma_1 \rightarrow \Sigma_2, A \subset \Sigma_1^*$ について

- A が正規集合なら $h(A)$ も正規集合。
- $h(A)$ が正規集合なら A も正規集合。
5. 正規表現

定義 \(\Sigma \) 上の正規表現 (正則表現・regular expression) とは、次の \(\alpha \) である。

\[
\alpha ::= \emptyset \mid \epsilon \mid a \mid \alpha_1 \alpha_2 \mid \alpha_1 + \alpha_2 \mid \alpha_1^*
\]

ただし \(a \in \Sigma \) である。

定義 正規表現 \(\alpha \) が表す言語 \(L(\alpha) \) を次で定める。

- \(L(\emptyset) = \emptyset \)
- \(L(\epsilon) = \{ \epsilon \} \)
- \(L(a) = \{ a \} \)
- \(L(\alpha_1 \alpha_2) = L(\alpha_1) L(\alpha_2) \)
- \(L(\alpha_1 + \alpha_2) = L(\alpha_1) \cup L(\alpha_2) \)
- \(L(\alpha^*) = (L(\alpha))^* \)
5a. 正規表現の性質

定義 $L(\alpha) = L(\beta)$ のとき $\alpha \equiv \beta$。

補題 \equiv は同値関係

補題

$$\emptyset + \alpha \equiv \alpha \equiv \alpha + \emptyset$$
$$\emptyset \alpha \equiv \emptyset \equiv \alpha \emptyset$$
$$\alpha(\beta + \gamma) \equiv \alpha \beta + \alpha \gamma$$

$$\alpha + \alpha \equiv \alpha$$
$$\epsilon \alpha \equiv \alpha \epsilon$$
$$(\alpha + \beta) \gamma \equiv \alpha \gamma + \beta \gamma$$

$$\alpha + \beta \equiv \beta + \alpha$$
$$\alpha(\beta \gamma) \equiv (\alpha \beta) \gamma$$

$$\alpha + (\beta + \gamma) \equiv (\alpha + \beta) + \gamma$$

$$\alpha(\beta + \gamma) \equiv (\alpha \beta) \gamma$$

定理 正規表現が表す言語は正規集合である。
5b. 正規表現とオートマトン

定理 正規集合 \(A \subset \Sigma^* \) について \(L(\alpha) = A \) となる \(\Sigma \) 上の正規表現 \(\alpha \) がある。

- \(L(M) = A \) となる NFA を \(M = (Q, \Sigma, \delta, S, F) \), \(\Sigma = \{a_1, \ldots a_k\} \) とする。
- \(X \subset Q, p, q \in Q \) に正規表現 \(\alpha^X_{pq} \) を \(|X| \) に関する帰納法で定める。

\[
\alpha^\emptyset_{pq} = \begin{cases}
\sum_{v \in \Delta(u,a_i)} a_i & u \neq v \text{ のとき} \\
\sum_{v \in \Delta(u,a_i)} a_i + \epsilon & u = v \text{ のとき}
\end{cases}
\]

\[
\alpha^{\{r\} \cup X}_{pq} = \alpha^X_{pq} + \alpha^X_{pr}(\alpha^X_{rr})^* \alpha^X_{rq}
\]

- \(a_1 \ldots a_n \in L(\alpha^X_{pq}) \) は次の条件と同値：
 - \(p = q \) かつ \(n = 0 \), または
 - \(q_1, \ldots, q_{n-1} \in X \) が存在して \(M \) 上で \(p \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} q_{n-1} \xrightarrow{a_n} q \)

- \(L(\sum_{s \in S, f \in F} \alpha^Q_{sf}) = L(M) \).

練習 次のオートマトンに対して \(\alpha^X_{pq} \) は？

![Diagram](image)
5c. 反復補題

言語 $L \subseteq \Sigma^*$ が正則でないことの証明は？

反復補題 (Pumping Lemma)

正規集合 $A \subseteq \Sigma^*$ に対して 定数 n が存在し、$w > n$ を満たす任意の $w \in A$ に対して次の 4 条件を満たす $x, y, z \in \Sigma^*$ がある。

- $w = xyz$
- $|xy| \leq n$
- $y \neq \varepsilon$
- すべての $i \geq 0$ に対して $xy^iz \in L$

証明

- A を受理言語とする DFA を $M = (Q, \Sigma, \delta, s, F)$, $|Q| = m$ とする。
- $n \geq m$ が上の条件を満たすことを示す。
- このとき $|w| = l \geq n$ となる $w \in A$ について、$a_1 \cdots a_l$, $q_j = \hat{\delta}(q_0, a_1 \cdots a_j)$ とすると、q_j は M が a_j までを読み終えたときにとる状態である。$l \geq n$ だから $q_j = q_k$ となる $j < k \leq n$ が存在する。
- $x = a_1 \cdots a_j$, $y = a_{j+1} \cdots a_k$, $z = a_{k+1} \cdots a_m$ とすればよい。

例

$\{a^n b^n : n \in \mathbb{N}\}$ は正規集合ではない。