nichi noniaen

:
O
©,
p
oc
LLl
—
-
0.
=
O
O

PRESS REPRINT

The Computer Society of the IEEE
1730 Massachusetts Avenue NW
Washington, DC 20036-1903

&

Washington e Los Alamitos e Brussels

'E“OMPUJER
THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC. g g_l_c;EST A

IEEE

CONCURRENT PROGRAM SYNTHESIS
WITH REUSABLE COMPONENTS USING TEMPORAL LOGIC

Naoshi Uchihira, Toshiaki Kasuya, Kazunori Matsumoto, and Shinichi Honiden

Systems & Software Engineering Lab.
TOSHIBA Corporation
Yanagicho 70-banchi, Saiwai-ku, Kawasaki, Kanagawa 210, JAPAN

ABSTRACT

A concurrent programming model is
provided, which 1is oriented to data
stream, software reuse, and prototyping.

Based on this programming model, a program

This

synthesis method is described.

synthesis method consists of two parts:
(1) retrieving and interconnecting
components from I/0 data specifications
and (2) synthesizing a synchronization
supervisor from a propositional temporal
logic specification. MENDEL/87, which is
a Prolog-based concurrent object-oriented
language, is used as the programming
language in this model. This synthesis

method has been implemented by PROLOG on a
PROLOG machine.

I. INTRODUCTION

The two major purposes of program
synthesis and automatic programming are to
generate a program that is assured of
being correct, and to increase software
productivity. Our main goal is the latter,
especially for concurrent programs.

Recently, software reuse is expected
to greatly increase software productivity.

In fact, many attempts have been made on
research and practical levels, and in
various ways. Because of these many
efforts, sofware reuse 1is Jjust getting
under way. Accordingly, much research on
software components interconnection and
software-resuse-based program synthesis
has been presented. However most of them
are only for sequential programs, not for

concurrent programs.

For concurrent programs, verification
has been investigated for a long time.
Some efforts involve verification using a
linear time propositional temporal logic
(PTL). In this case, PTL is a
specification language, and a PTL decision
procedure is able to verify whether the
specification is consistent or not. As PTL
is decidable and has various decision
procedure algorithms [1,2], verification
is accomplished automatically.

PTL for
theorem

[3,4] use
show a

Manna and Wolper
program synthesis. They

0730-3157/87/0000/0455$01.00 © 1987 IEEE

455

which
parts

synthesize
of a concurrent
extended temporal
method, a model

proving method
synchronization
program using PTL or
logic (ETL). 1In this
graph, which is generated in the decision
procedure, is considered as a state
transition diagram for processes. From
this state transition diagram, CSP program
codes which execute synchronization are
generated.

can

There are other works about synthesis
using temporal logic in addition to Manna
and Wolper's work. Clarke and Emerson [5]

propose a synthesis method for the
synchronization skeletons of a concurrent
program using branching time temporal
logic. Fujita, Tanaka, and Moto-oka [6]
show a synthesis method of state
transition diagrams using PTL for
specifying hardware. Katai and Iwai [7]
propose a method to generate scheduling
rules of concurrent system from PTL

specification and a Petri net.

We think the most practical approach

to automatic programming in large scale
applications is a program synthesis
utilizing theorem prover with reusable
components. Because theorem proving
approach can synthesize only small scale
programs and can not support large scale
applications. In Manna and Wolper's
synthesis method, a synchronization part
is generated automatically. However,
another part, say a functional part, must
be created by the programmer. This paper

proposes a new synthesis method which is a
combination of software reuse and Manna
and Wolper's method. This method consists
of two major parts: (1) retrieval and
interconnection of reusable components and

(2) synthesis of a synchronization
supervisor. This method generates a
MENDEL/87 program. MENDEL/87 is a Prolog-

based concurrent object-oriented language
[8]. Now we have been implementing a
concurrent program prototyping system
based on this synthesis method.
II. PROGRAMMING MODEL
This section
model for a
more or less

provides a
concurrent program,
restricted but very

programming
which is
simple

and intuitive. This model is based on the
following concepts:

(1) Data stream oriented programming

The program consists of a number of
processes which can run concurrently. A
process itself is a sequential program.
Processes communicate with and synchronize
each other only by the data stream through
communication pipes; so have no shared
variables. Communication pipes are
statically defined before execution in the
same way as Occam [9].

(2) Software reuse
Assume that a large enough number of

processes have already been created and
stored in a library. In principle, a goal
program can be synthesized by
interconnecting some of the processes in a
library. In this case, a process is a
reusable component, which cannot be
modified when reusing it. Sometimes it is
called a "black box" reusable component.

Each process looks like an IC. Just as an
electronic circuit is composed by
connecting a number of LSIs, a program can
be synthesized by interconnecting a number
of processes.

(3) Synchronization supervisor separated
from processes

When a programmer prepares reusable
processes, he does not know how these
processes will be interconnected. A
reusable process should be independent
from other processes, while

synchronization is regarded as interaction
between processes. It is difficult and
undesirable that the synchronization codes
be written in the internal part of each
reusable process. The synchronization
supervisor should be separated from
reusable processes, such as a path
expression [10,11]. Therefore, processes
are retrieved and interconnected first,
then the synchronization supervisor is
provided on these processes (Fig. 1).

Synchronization Supervisor

Reusable
Process

Reusable
Process

Reusable
Process

FIG.1 Synchronization supervisor separated from
reusable processes

(4) Prototyping
Interconnected processes are
executable with a synchronization
supervisor. This is a prototype. This
prototype can be examined to determine
whether or not it runs in the way the user

needs. If there is anything

456

unsatisfactory, the user can easily
transfer to any previous programming step
and modify it. If this prototype 1is
acceptable, the synchronization supervisor
will be transformed and embedded inside of
each process automatically; so the wuser
can get a new, truly concurrent program
without a synchronization supervisor.

III. MENDEL/87

a. Overview
We suggest a concurrent object-
oriented programming language with

something like Occam + OPS5 + PROLOG; call
this language MENDEL/87. MENDEL/87 program

consists of one main program and several
objects; the object consists of several
methods. The object can be regarded as a

process. FEach object has finite pipe caps
and can transmit messages only through the
pipe caps. The attribute is assigned to

each pipe cap and 1is wused to identify
input/output messages. The message 1is
transmitted between objects through the
transmission pipe connected with pipe
caps, as shown in Fig. 2. The pipe is a
one-to-one asynchronous one-way path.
Initial messages are applied through the
input nodes, and goal messages are
extracted from the output nodes. The gate

and the signal gate are used for message
stream control.

inpuyt node signal gate

gate

pipe cap
output node

Fig.2 Objects, Pipes, and messages in MENDEL/87

b. Object

A MENDEL/87
declaration part,
part.

object consists of a
a method part and a junk

{object name)>

{
dec { <declaration part> }
meth { <method part> }
junk { <junk part> }
¥
The declaration part includes

declarations of five items
1) Input pipe cap attributes
inpipe(<attribute>, ...

).

2) Output pipe cap attributes
outpipe(<attribute>, ...).
3) Input signal attributes
insignal(<attribute>, ... Yis
4) Output signal attributes
outsignal(<attribute>, ...).
5) Internal state variables
state(<attribute>!<initial valued>,...).
several

The method part includes

methods. The method is described as
follows
method (<attribute> ? <term>, ... ,

{attribute> ! <term>, ...)
<- <guard> | <Prolog goals>.

where, <attribute> means pipe cap
attribute, signal attribute, or internal
variable attribute; "?" means input and
and "!" means output, like CSP; "|" means
commitment operator like GHC; and only

Prolog predicates with no side effect can
be written in <guard>.

ex. method(hour ? H, minute ! M)
<- H> 0 | M is H*60, write(M), nl.

The method is selected when :
(1) Each of the terms after <attribute)?
can be unified with a received message
from the pipe, signal, or state variable
indicated by the attribute.
(2) All predicates in <guard> succeed.

When the method is selected, all
Prolog predicates in <Prolog goals> are
evaluated. Each term after <attribute)!,
which has been unified in <Prolog goals>,
is sent as a message into the pipe,
signal, or state variable indicated by the
attribute. If <Prolog goals)> fails, warn-
ing messages are given to the user and the
method terminates without sending output
messages.

This method selection mechanism is

a production rule in a production system,
such as OPSS5.

The junk part includes some Prolog
clauses, which may be called by methods or
other Prolog clauses. One example of
MENDEL/87 object is shown in Fig. 3.

c. Main program

A MENDEL/87 program has one main

program which interconnects several
objects with pipes, and then activates
them, sends initial messages to input
nodes, and receives goal messages from

output nodes. The main program seems like
an extended module call and takes the
following form:

communicate][
<object name>(
<attribute>!<term or pipe>, ...
<attributed>?<term or pipe>, ...),
<object name>(
<attribute>!<term or piped>, ...
<attribute>?<term or pipe>, ...),

]

All objects in the communicate
construction run in AND-parallel and are
interconnected explicitly with <pipe>. The
<term)> after <attributed>! is a 1list of
initial messages and the <term)> after
Cattribute>? is a variable waiting for a
list of goal messages.

In the prototyping system described
later, this main program is generated by
system behind the scenes. The user need
not know this syntax.

d. Gate and Gate controller

In MENDEL/87, a simple synchronization
mechanism is given by a method selection
mechanism. The object is suspended until

similar to a Dijkstra's guarded command, it can receive all required messages.
Occam's alternative construct, and GHC. However, it is so simple that a
Moreover, the method can be considered as complicated synchronization requires
KeyCheck
{
dec :{
inpipe (keyword.word) .
outpipe (ckeck-data) .
state (keywordlist![1). Petri Net
) (<]
meth :{ [5)
% receive a keyword and store it in the keywordlist.
method (keyword ?KW, keywordlist ?KWL.keywordlist! [KW.KWL1) . stone
% receive a word and if it is a keyword., send it to check_data. place transition place
method (word?W,keywordlist?KWL.check_data!W) <-
menber (W.KWL) : true. message
% receive a word and if it isn’'t a keyword. do nothing.
method (word?W) . MENDEL/87
}
Junk: {
member (_.[1) :- I.fail. Object
member (X, (Xi_1).
member(X.[_!Y]):- |.,member(X.Y). attribute Gate Object

Fig.3 MENDEL/87 Object Example (KeyCheck)

Fig.4. Petri Net and MENDEL/87

complicated pipe interconnection (many of
them are only for control stream, not for
data stream), so an additional synchroni-
zation mechanism using the gate and the
gate controller is introduced. Every pipe
has only one gate which controls the
message stream. The gate opens, lets only
one message pass through and then shuts.
This is an atomic action of the gate. With
no message in the gate, the gate cannot be
opened. The gate is similar to the
transition of a Petri Net (Fig. 4). The
gate controller controls all gates, that
is the synchronization supervisor.

e. Signal gate and end_of_gate

The signal gate itself is regarded as
a kind of gate. When the input signal gate
opens, 1t generates one signal message
which has no value and 1is sent to an
object only for the method selection, like
a binary semaphor. When the output signal
gate opens, it consumes one signal message
which is sent from an object.

The end_of_gate is a system output
signal gate. When detecting that there are
no more messages passing through the gate
g in the future, the system (interpreter)
sends one signal message to output signal

gate eog(g) (end of gate g). The
end_of_gate fills the role of a terminal
symbol, such as end_of_ file and
end_of_string in C language. As a
terminal symbol itself is not a data, but

a control signal, it should not be treated

in the same way as other messages. In
MENDEL/87, the signal message and the
signal gate are distinguished from the

ordinary message and gate.

IV. OBJECT RETRIEVAL AND INTERCONNECTION
MENDEL/87 objects can be retrieved
and interconnected in two main ways;
manually and automatically.
a. Manual
Write a MENDEL/87 main program. To be
more precise, select an object from an
object library and interconnect these
objects with pipes.
b. Automatic

Give program specifications as a set
of input/output attributes. That is a kind
of I/0 data type. Objects are then
selected from an object library and
interconnected automatically, according to
the given I/O attributes. Automatic
retrieval and interconnection are carried
out, according to the following
principles:

(1) A pair of pipe caps having the same
attributes can be interconnected.

(2) All required output attributes must be
reachable from given input attributes
through connected objects and pipes.

458

For example, if the following
attributes are gven, object B, C, and D
are retrieved and interconnected as shown
in Fig. 5.

Input attribute
Output attribute e

D

Fig.5. Automatic Obect Retrieval and Interconnection

c. More Flexible Automatic Binding

This automatic retrieval and
interconnection, which we call "automatic
binding", seems to be not enough
powerfull. The binding mechanism depends
on the simple pattern matching between
output and input attribute names. In some

cases, it might find no candidate to fit
the given I/0 attributes, or a lot of
candidates in other cases. More

information must be needed to select the
most adequite candidate.

To overcome this problem, we adopt a

kind of semantic network (called
"Attribute Network" [12]) which represents
the attribute structure and define a
metric to order the candidates on the
semantic network.
Attribute network

We define simple attribute as an
attribute which has no structure (ex.
heart, human, animal, and real). The

simple attribute is also called class. We
can introduce several interrelations among
these simple attributes. In this paper,
especially we consider 'IS_A' (a relation

between superclass and subclass) and
'"HAS_A' (a relation between class and its
properties).
ex. human IS_A animal.
human HAS_A heart

The attribute network is defined as a
semantic network where simple attribute is
assigned to node and two relations ('IS_A'
and 'HAS_A') are assigned to links
respectively.

Example
An attribute 'heart' has the weight,

the weight has a integer and the 'heart'
is the lower concept of the 'pump'. Also,
'human's heart' is the constrained concept
of the 'heart'. These relations about
'heart' can be expressed by the attribute
network shown in Fig.6.

In the attribute network, there exists
'Object' which is the superclass of every
class. Each class inherits properties of
its superclass based on single inheritance
rule. This network has the same class
structure as Smalltalk-80.

— IS_A
\\\\\\\\\\‘ =) HAS_A
CORCORC S COXC)

Fig.6. Attribute Network Example

Attribute definition
We define a new attribute syntax on
the attribute network.

attribute> ::=
{simple attribute)> ‘<c0mplex attribute)>.
{complex attribute> ::=
<attribute)> of <simple attributed.
{simple attribute> ::= <class>.
{class> ::= <Prolog atom)>.

The 'of' expresses the 'HAS A' relation,
and in the example shown in Fig.6,
'integer of weight of heart of human'
means the weight integer value of human's
heart.

Binding Mechanism
The new binding mechanism will be

defined. This mechanism makes it possible
semantic matching of attributes by using a
semantic net. For the given output
attribute, the most similar input

attribute is uniquely found automatically.
Note that the binding direction is from
the output to the input.

For given output attribute, we define
the bindable input attribute which can be
bound to the output attribute. An input
attribute can be bindable to the output
attribute iff the input attribute
semantically includes the concept of the
output one. For example, we consider
following case.

1) integer of weight of heart of human

2) integer of weight of heart of animal
In this case, as 'human' is the a subclass
of 'animal', attribute 1) is able to be
bound to attribute 2), but attribute 2) is
not able to be bound to attribute 1)

459

because 1) is a more constrained concept
than 2). We define it strictly.

DEFINITION 1. (Bindable Set)
Let A (= a, of a, of

1 2
output attribute. U(A) is a bindable input

am) be an

attribute set from A iff U(A) = { B (= b1

of b, of bn)| B is an input attribute,

2

m>=n, and bi is a superclass or same class

.0} 3

We introduce an ordering of similarity
of attributes. As this ordering construct
total ordering, it can be used to get the
most similar attribute.

of a, for all i € { 1,2,..

DEFINITION 2. (Ordering of similarity)

Let A (= a, of a, of

1 2
output attribute, and U(A) be a bindable

al) be an

input attribute set from A. dA(B) < dA(C)
means B is more similar to A than C, where
B (= b1 of b2 of bm) G; U(A) and C (
=y of c, of ... cn) & U(a).

More precisely, define
(L) er (2).
(1) there exists i E; {1,2,...,min(m,n)}

such that b.=e.; b.=c s b, ,=E. and
1 71 i

2 727 ¢ il -1’

cy is a superclass of bi'

d,(B) < d,(C) iff

(2) m>n, and b.=c. for all i € {1,2,...,n}

THEOREM

This ordering defined above 1is total
ordering.
(proof) It is clear from the definitions.

For example, let

A = 'integer of weight of heart of human',
B = 'integer of weight of heart',

C= 'integer of weight of heart of animal',
and

D = 'integer of weight of pump of human'.

In this case the ordering is d,(C) < d,(B)
A A
< dA(D).

By the way, the main topics of this
paper are the how to synthsize the
synchronization supervisor from PTL

specification and how to utilize the
supervisor in the concurrent program
prototyping sytem. Therefore, in the
following sessions, we UusS€ only simple
attributes for clear understanding of main
topics.

V. SYNCHRONIZATION SUPERVISOR SYNTHESIS
a. Specification language for synchro-
nization
(1) PTL

PTL is a linear time propositional
temporal logic which has the following
temporal operators in addition to wusual
logical symbols ('&' -- AND, "#' -- OR, '-
1 e NOT, "=p! -- IMPLY)

[1f (read always £) ¢
f is true for all future states
¢>f (read eventually f)
f is true for some future state
@f (read next f)
f is true for the next state
f1 ¢ £2 (read fl until £2)
f£1 is true until £2 becomes true

(2) Model
An atomic proposition in PTL
corresponds to an atomic action of the

gate (includes signal gate) in MENDEL/87.

That is, "g is true for the state'" means
"gate g opens, lets only one message pass
through, and then shuts at the state". In

the same way, "<>g is true" means "gate g
will open at some future state", and "[lg
is true" means "gate g is always open".
Moreover, it is assumed that only one gate
can open at the same state (this
assumption called single-event condition).

The single event condition means that only

one atomic proposition is true for each
state. For example, a specification that
"gates gl and g2 open by turns in Fig. 7"
18 expressed Dby the following PTL
formulas:

[1C gl => @g2)

[1(g2 => @gl)

b. Scheduling rule synthesis for the gate
controller

In MENDEL/87, the synchronization
supervisor synthesis means synthesis of
scheduling rules, by which the gate

gl
g2

Fig.7 An example of gates

gl

controller selects a gate to be opened.
While the gate controller selects a gate
according to the rules synthesized from a
specification, the order of selected gates
satisfies the specification. This
synthesis method 1is based on Manna and
Wolper's tableau-like PTL decision
procedure [3]. A brief summary of the
synthesis method is as follows:

PTL formulas are

formulas, which
operator, and future
formulas by the decomposition procedure.
Future formulas are also decomposed into
current and future formulas from the next
state point of view. After every kind (a
finite number) of future formulas has been
repeatedly decomposed, a graph is derived.
Each edge of that graph corresponds to
current formulas for each decomposition.
This graph is an incomplete model
satisfying specifications other than
eventuality formulas, such as OF, -[1F
and -(-F1 $ F2).

(Stepl) First initial
decomposed 1into current
include no temporal

(Step2) Edges with
eventuality formula are
graph by the elimination
graph remaining after
procedure 1is a complete
initial PTL specification.

unsatisfiable
deleted from the
procedure. The
the elimination
model of the

(Step3) This model graph
as a state transition diagram. Scheduling
rules are translated from this model
graph. Each rule corresponds to a
transition on the model graph. These
scheduling rules are completed by adding
the following fairness strategy:

can be regarded

Fairness Strategy: If there are several
possible transitions/rules, one which has
never been selected or for which the most

time has elapsed from the last selection
should be selected.
The state transition diagram and

scheduling rules for
are shown in Fig. 8.

the previous example

VI. CONCURRENT PROGRAM PROTOTYPING SYSTEM.
OVERVIEW
This system consists of four steps.
START
g2 srule(n(1), n(2), g1).

srule(n(1),
srule(n(2),
srule(n(3),

n(3), g2).
n(3), g2).
n(2), g1).

g2

Fig. 8 State transition diagram and scheduling rules

460

synthesized from PTL

(Stepl) Make MENDEL/87 objects and store
in a library. (Step2) Retrieve and
interconnect objects. (Step3) Synthesize
scheduling rules for the gate controller.
(Step4) Set input data and Execute.

Since this system supports software
prototyping, it is possible to go back to
an arbitrary previous step (Fig.9). The
system provides six windows as the user
interface: (1) Command window, (2) Object
window which displays MENDEL reusable
objects in an object library, (3) 1I/0
window which shows I/0 specification of a
goal program, (4) PTL window which shows a
synchronization specification written by

PTL, (5) Diagram window which illustrates
objects and interconnections between
their attributes, and (6) System message
window, as shown in Fig. 10.

For each prototyping step, details
will be described below.

(Stepl) Make objects and store in a
library.

Make MENDEL/87 objects in an
integrated editor and store them in an
object library. Synchronously, objects are
compiled into intermediate codes. Objects

in an object library are displayed in the
object window.

(Step2) Retrieve and interconnect objects.
The system retrieves and interconnects

objects manually and automatically as
described in section IV. It is also
possible to mix these two methods; objects

are retrieved and interconnected automati-
cally first and then modified manually.
I/0 specifications are entered using the
I/0 window, and the interconnection result
is displayed on the diagram window.

(Step3) Synthesize sheduling rules.

While looking at interconnected
objects and gates in the diagram window,
the user provides a synchronization
specification which define the order of
gate to be opened, using the PTL window.
The system then generates a state
transition diagram from the PTL
specification, and translates it into
scheduling rules.

(Step4) Set data and execute.
From stepl to step3, the system can

obtain the following.

* Compiled intermediate codes of objects
* Interconnection information

* Scheduling rules of the gate controller
The system generates executable codes by
appending new codes to <compiled inter-
mediate codes to perform interconnection.
The interpreter executes these —codes.
Execution is pseudo-concurrent on one CPU.
The gate is implemented as a mail box.
Therefore, the interpreter selects one of
the objects waiting at the mail box and

461

lets it receive a message according to the
scheduling rules derived in step 3. This
part of the interpreter that schedules a
waiting object queue at each mail box is

called the gate controller. A process of
execution 1is displayed on the diagram
window.

This system has been under
construction using the object oriented

Prolog (ESP [13]) on a PROLOG machine (PSI
[14]).

VII. SYNTHESIS EXAMPLE: KEYWORD COUNT
PROGRAM
We are going to synthesize the Key

Word Count Program. This program reads a
text (stream of characters) and a key word
list, and then checks occurrence of key
words in the text and reports its summary.

&

Retrieve and
Interconnection

——

Synthesizé
Scheduling Rules

|

Execute
MENDEL program

(_Stop)

Fig9. Prototyping Model in MENDEL/87

Urrent Program Synthests System V 8.1

Keyword T75 specification

stresn!
keyword!
sumwary?

170
Window

PIC_specilication

PTL

Diagram Window
Window
o ect iibrary - - Toreand window
wordcut heycheck sumrep iy -.n»ba’mmnd

Fig. 10 Concurrent Program Prototyping System
User Interface

(STEP1) It is assumed that there are many
objects, especially text processing
objects, in an object library.

(STEP2) In this example, the user selects

the automatic mode and provides I/0
attributes fcr a goal program using the
I/0 window,

goal program

Input attribute stream, keyword ;

Output attribute summary ;

and chooses the menu command "automatic".

The system then shows several objects in
the diagram window, which have been
retrieved and interconnected automatically
(Fig.11). Here, three objects are
selected:
WordCut
Input attribute stream ;
Output attribute word ;
KeyCheck
Input attribute keyword, word ;
Output attribute check_data ;
SumRep

Input attribute check_data ;

Output attribute summary ;

WordCut reads a character stream and
analyzes them to obtain words. KeyCheck
reads keywords and sequence of words,
checks for words that match one of
keywords, and returns the result of
checking. (This object was shown in Fig.

3.) SumRep sums up check data and makes a
summary report.

stream keyword
gl 93 check_data
keyword sl
stream
wordCut KeyCheck stant_rep
/§ g2 g4 SumRep
. summary
as
sumrary
Fig. 11 Key Word Count Program
(STEP3) While looking at a diagram in the
diagram window, the user dinputs a PTL

specification in the PTL window. The user
may require the following

(1) Both keyword and stream are finite.
(Messages going through gl, g3, and gh are
finite.)

(2) WordCut and KeyCheck can be processed
concurrently. But KeyCheck must not

462

receive words from WordCut and not start
checking wuntil all keywords have been
received. (Does not open g2 until there is
no more message through g3.)

(3) SumRep analyzes all check data after
KeyCheck has finished checking. (Does not
open sl until there are no more messages
through gé&.)

(4) As an exception, g5 is
(i.e. out of synchronization).
(5) SumRep must make a summary
last.

always open

report at

These requests are represented by the
following PTL specification:
(1) FINITE(gl), FINITE(g3), FINITE(g4)
(2) - 82 $ eog(e3)
(3) - s1 $ eog(g4)
(4) g5 doesn't appear in PTL.

(5) <> sl, [1(sl => @halt), HALT
where FINITE and HALT are "macros'" of this
specification language. Each '"macro" is

expanded into the following PTL:

FINITE(g) -->
<>eog(g) & [1(eog(g)=>@([]1(-eog(g)&-g)))

The total number of messages passing
through gate g is finite, and after all
message have passed through the gate g,
the system signal gate eog(g) must be

opend only once.

HALT --> <>halt& [](halt=>@([]halt))
The program eventually terminates.

If
appear
open.

an atomic
in PTL,

proposition g dosen't
the gate g must be always

From these PTL formulas, the system

generates a state transition diagram (Fig.
translates

12) and
rules.

it into scheduling

Fig.12 State transition diagram for
Key Word Count Program

(STEP4) The user inputs two kind of data,

a list of keywords and a text stream. The
system then executes a synthesized
MENDEL/87 program and outputs a summary
report (Fig. 13).
Concurrent Progranm thesis Systen V8.7
Kegword ¢ Scheduling Rules 5% e soeeltientien
prudsinth R el bl
= -report? window

lsrule (n(1).n
lerule tn 1) o (sum(it,1) .sun(then.1) 1B

lsrulenc2) v
[srule(n(2).n
lsrule (n (2 n
| fsrulen@3).n
) bruletn3

srule (n(6).n
gsrule (n(6) .n
k‘ﬂruh(n(ﬂ)-

(- srule (n (16)]
adsrule (A A oo
Nsrule (A.A.g4)
[srule (A.A.e0g (g4)) 1))
fsr® leos (92) => (L1 (“eos (s2)

sunmary
_report
[]

[pecification

O
(e0g (g1) => (L] (“e0g (1)

92)))
(halt => 6(Llhalt)),
3 & eog(gl),

<395,
[1(g5 => Shalt)
)

Ooject Iibrary Wessage for you Tommand window
~~ Now We come back PIL File Yhywd-spc
Sordeut, WeishRek iemerul form state -- [maind>next
mmary strear! >strean_dat

(data).
keyword! >[if.then.owaril.

<<< Call D-Prolog >>> main>>next

Fig. 13 Concurrent Program Prototyping Systenm
Execution of Keyword Count Program

VIII. CONCLUSION

We have proposed a concurrent program
synthesis method and described the
software prototyping system based on this

method. This method consists of two major
parts: (1) Retrieving and interconnecting
components from I/0 data specifications
(2) Synthesizing the gate controller from
propositional temporal logic
specification. This method and its system
are also illustrated with one example.
Unique features of this method include:
(1) A combination of software reuse and

synchronization supervisor synthesis using
temporal logic. (2) A new synchronization

mechanism wusing gate, signal gate, and
end_of gate. We believe this method will
become practical enough to help
programming on a qualified domain, such as
parallel text processing and concurrent
business transactions.

At present, much remains to be
explored:

(1) More expressive specification language
than PTL should be investigated. It is
another practical way to execute temporal
logic specification directly as a program
[15] .

(2) We
interconnection
specification
the current
satisfactory.
(3) The PTL

think that
method based

has enough
method

the object
on the I/O
potential. But
is not fully

specification has nothing to

do with an internal program of each
object. It is desirable to associate PTL
specification with dinternal programs of
objects:

463

(4) A more efficient implementation of the
tableau-like PTL decision procedure should
be developed.

(5) The degree of concurrency is low
because of the limitation wherein the gate
controller can only open one gate at a
time. It seems possible to relax this
limitation for some independent gates.

(6) A transformation technique that
distributes synchronization supervisor
function into each object is necessary for
a distributed computing environment having
no supervisor.

ACKNOWLEDGMENT
This research has been supported by
the Japanese Fifth Generation Computer

Project and its organizing institute ICOT,
as a subproject of Intelligent Programming
System. We would 1like to thank Toshio
Yokoi and Hidenori Itoh of ICOT for their
encouragement and support. We are also
grateful to Seiichi Nishijima, Masahiko
Arai, Takeshi Kohno, and Hideo Nakamura of
Systems & Software Engineering Laboratory,
TOSHIBA Corporation, for providing
essential support, and Toshibumi Seki for
implementing the attribute network.

REFERENCES

[1] Plaisted, D. A., A Decision Procedure
for Combinations of Propositional
Temporal Logic and Other Specialized
Theories, Journal of Automated
Reasoning 2, pagesl71-190, 1986.

[2] Fusaoka, A. and Takahashi, K., On QFTL
and the refutation procedure on w-
graphs, ICOT Technical Report TR-132,
1985.

[3] Manna, Z. and Wolper, P., Synthesis of
communicating processes from temporal
logic specification, ACM Trans. on
Programming Languages and Systems,
Vol.6, No.l, pages 68-93, 1984.

[4] Wolper, P., Synthesis of communicating
processes from temporal logic
specification, STAN-CS-82-925,
Stanford University, 1982.

[5] Clarke, E. M. and Emerson, E. A.,
Design and synthesis of synchro-
nization skeletons using branching
time temporal logic, Logics of
programs (Proceedings 1981), Lecture
Notes in Computer Science 131,
Springer-Verlag, pages 52-71, 1982.

[6] Fujita, M., Tanaka, H.,and Moto-oka,
T., Specifying hardware 1in temporal
logic & efficient synthesis of state-
diagrams using Prolog, Procs of
FGCS'84, 1984.

[7] Katai, O. and Iwai, S., Construction
of Scheduling Rules for Asynchronous,
Concurrent Systems Based on Tense

Logic (in Japanese), Trans. of SICE [13] Taki, T. et al., Hardware Design and

(Japan) vol.18 no.12, 1982. Implementation of the Personal
[8] Honiden, S., Uchihira, N., and Kasuya, Sequential Inference Machine (PSI),
T., MENDEL: PROLOG BASED CONCURRENT Proc. of the international conference
OBJECT ORIENTED LANGUAGE, Proc. of on FGCS1984, 1984.
COMPCON'86, pages 230-234,1986. [14] Uchihira, N., Seki, T., Kasuya, T.,
[9] Occam Programming manual,INMOS Ltd., and Honiden, S., Program Synthesis in
1983. Prolog Based Concurrent Object
[10] Habermann, A. N., Introduction to Oriented Language MENDEL (in
Operating System Design, SRA, 1976. Japanese), WGSE Preprint SE-46-8,
[11] Andler, S., Predicate Path Expres- Information Processing Society of
sion, Proc. of ACM 6th POPL, 1979. Japan, 1986.
[12] Chikayama, T., Unique features of [15] Moszkowski, B., Executing temporal
ESP, Proc. of the international logic programs, Cambridge Univ. Press,
conference on FGCS1984, 1984. 1986.

Appendix

Keyword Count Program (WordCut. SumRep)

WordCut
{
dec :{
inpipe(stream).
outpipe (word).
state(inbuf! [1).
}
meth :{
method (stream?’ ',inbuf?l(1).
method (stream?’ ',inbuf?CList.,inbuf! [1,word!Word) <-
trueirev(CList,RCList2) .name (Word,RCList).
method (stream?C,inbuf?CList,inbuf! [CiCListl).
}
Junk:{
rev(L1,1L2) :-revzap(L1,[(1,L2).
revzap([lXiL]1.,12,.L3):-revzap(L, [X!11L21,L3).
revzap([ll,L,L).

SumRep
{
dec :{
inpipe(check_data).
outpipe (summary) .
insignal (start_rep).
state(sumlist! [1).
}
meth :{
method (check_data?W,sumlist?X,sumlist!Y) <-
trueicountup_sum_list(W,X,Y).
method (start_rep?_,sumlist?SL,summary!SL).
}
Junk :{

countup_sum_1list (W, [1, (sum(W,1)1).

countup_sum_list (W, [sum(W,N) SumListl, [sum(W.,M) |SumListl) :-
Mis N + 1.

countup_sum_list(W.[Sum:SumList1l, [Sum:SumList2]) :-
I,countup_sum_list(W,SumList1,SumList2).

464

