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In this paper, we examine “program adjustment”, a
formal and practical approach to developing correct
concurrent programs, by automatically adjusting an
imperfect program to satisfy given constraints. A con-
current program is modeled by a finite state process,
and program adjustment to satisfy temporal logic con-
straints is formalized as the synthesis of an arbiter
process which partially serializes target (i.e., imper-
fect) processes to remove harmful nondeterministic
behaviors. Compositional adjustment is also proposed
for large-scale compound target processes, using pro-
cess equivalence theory. We have developed a com-
puter-aided programming environment on the parallel
computer Multi-PSl, called MENDELS ZONE, that
adopts this compositional adjustment. Adjusted pro-
grams can be compiled into the kernel language (KL1)
and executed on Multi-PSI.

1. INTRODUCTION

1.1 Motivation

The difficulty of concurrent programming is mainly
due to its nondeterministic behaviors. We classify
nondeterminism into the following three types.

¢ Intended nondeterminism: Nondeterministic be-
haviors which the programmer intends to imple-
ment.

e Harmful nondeterminism: Nondeterministic be-
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haviors which the programmer does not intend to
implement and does not expect.

o Persistent nondeterminism: Nondeterministic be-
haviors which have no effect on the results.

For example, Figure 1 shows a simple Ada-like
concurrent program ‘“Seat Booking”, where two pro-
cesses read/write a shared memory “seat” to re-
serve one seat. This program has the three types of
nondeterministic behaviors.

Intended nondeterminism. The following nonde-
terministic behaviors 6, and 6, derive different
results: P, can book the seat (status, = OK) in 6,
but cannot (status, = NG) in 6,. However, both are
correct (intended behaviors).

O =lioho>Lol >l >m > m;om
Result: status, = OK, seat = OCCUPIED,
status, = NG.

e 0=m >my,omsomyo>mg—1l >,
Result: status, = NG, seat = OCCUPIED,
status, = OK.

Harmful nondeterminism. The following nonde-
terministic behavior 6, derives an incorrect result
(double booking). So, this program has harmful non-
determinism.

e Oy=l,->m->L-om-ol;->m-1l, ->m,
- 15 - mg
Result: status, = OK, seat = OCCUPIED,
status, = OK.

Persistent nondeterminism. The following two
nondeterministic behaviors have the same result be-
cause I, (write in status;) and m, (write in status,)
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11: statusl := NG ; @30 [ 11 status2 := NG ;
12: if seat.read = FREE then m2: if seat.read = FREEt.hen
13: seat.write(OCCUPIED) ; m3: seat.write(OCCUPIED) ;
14: statusl := OK; m4: status2 := OK;

end if end if ;
15: terminate mb: terminate ;
statusl .. seat
(Initially, seat := FREE)

status2

Figure 1. An example of a concurrent program.

are actions independent of each other. We call such
a situation persistent.

cby=l-om >l >l >m—>m
Result: status, = OK, seat = OCCUPIED, status,
= NG.

e O0s=m, -1, >, >l -l > >m,—>m
Result: status, = OK, seat = OCCUPIED, status,
= NG.

In our observation of concurrent program devel-
opment, a programmer first tries to design and im-
plement processes so as to maximize concurrency,
which may include the three types of nondetermin-
ism. He then tries to detect harmful nondeterminis-
tic behaviors in testing and debugs them by partially
serializing the critical sections which interfere with
each other using synchronization mechanisms (e.g.,
rendezvous). Bugs—due to harmful nondeterminis-
tic behaviors—often account for a considerable part
of all timing bugs.

We will show that this debugging process for
harmful nondeterministic behaviors can be mechani-
cally supported using the formal method (program
synthesis techniques).

1.2 Overview of Main Results

We propose “program adjustment” which automati-
cally adjusts (debugs) an imperfect program to sat-
isfy given constraints. Here, we consider only timing
constraints for concurrent programs that can be
specified by temporal logic. In this context, “an
imperfect program” is regarded as a program which
is functionally correct (i.e., its functional parts such
as data transformation are correct) but may be im-
perfect in its timing (i.e., its synchronization parts
have harmful nondeterministic behaviors). We call
such a program a Functionally-Correct Temporally-
Imperfect program (FCTI program).

A concurrent program is modeled with the finite
state process (Kanellakis and Smolka, 1990), which
can specify the finite state transition system with
liveness conditions. It cannot only represent the
transition systems in CCS (Milner, 1989), but also
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Biichi automata (Biichi, 1960). A target FCTI pro-
gram is compositionally constructed from several
finite state processes with the parallel composition
operator “[” (e.g., P = (Py,| P;))I(P,,| P,,) in Figure
2a).

Basic adjustment. Basic program adjustment
means to adjust an FCTI program to satisfy given
constraints by adding an arbiter precess which is
synchronized with and restricts the behavior of the
FCTI program (Figure 2b). The arbiter partially
serializes the FCTI program to remove harmful non-
deterministic alternatives which do not satisfy given
constraints. In the example of Figure 1, an arbiter
can partially serialize the program so that the dou-
ble booking is avoided (i.e., serialize it as [/, - [; —
m, or my, = my = 1,). A concrete arbiter descrip-
tion (Figure 18), written in Ada for this example, will
be explained in Section 6. We will show an algorithm
to synthesize an arbiter process C, automatically.

Input: An FCTI program P.
Input: Temporal logic constraints f.
Output: An arbiter C; such that P|C; satisfies f.

Compositional adjustment. When a target pro-
gram becomes large, the arbiter synthesis may cause
an explosion in computing cost. Therefore, we pro-
pose compositional adjustment, in which local ar-
biters are synthesized in each composition step. For
example, an adjusted program with local arbiters C,
C,, and C, is shown as follows (Figure 2c).

P’ = (Py| Pyl COI(Py| Pyl C)I C.

@)

P1
Process p .
Composition @ @

(b) = arbiter

/B\gjsl:gtment P P P2
L3

(c) A1 p2

Gz |20 Pa

Figure 2. Process Composition, Basic Adjustment, and
Compositional Adjustment.




Compositional Program Adjustment

In each composition step, the reduction of the finite
state process, based on process equivalence theory,
can ease the explosion in computing cost. We intro-
duce a new process equivalence relation (77w-bi-
simulation) to manipulate liveness properties be-
cause the traditional weak bisimulation equivalence
used in CCS cannot. wrw-bisimulation is used to
reduce a finite state process to a smaller and equiva-
lent one in the compositional adjustment.

MENDELS ZONE. In order to confirm the feasi-
bility of program adjustment, we have developed a
concurrent programming environment, MENDELS
ZONE, which adopts the compositional adjustment
in cooperation with the verification. In MENDELS
ZONE, the programmer first finds existing bugs by
the verification step, then adjusts the program to
remove the bugs by the adjustment step (Figure 3).

1.3 Significance of the Paper

1. Theoretical Aspect. The traditional CCS frame-
work (composition and equivalence) is not ade-
quate for finite state processes with the liveness
conditions (Biichi automata). Therefore, we intro-
duce a new composition and equivalence for fi-
nite state processes that can preserve liveness
properties. These techniques are essential to the
basic and compositional adjustment, in which
temporal logic constraints can be represented by
the one of processes with liveness conditions.

2. Practical Aspect. We introduce the new concept
of “compositional program adjustment” into con-
current programming, which is practical as com-
pared with the program synthesis method from
temporal logic specifications proposed in (Manna
and Wolper, 1984). We have implemented the
programming environment (MENDELS ZONE)
adopting the program adjustment to show its ef-
fectiveness.

_--- Programming
FCTI Program A (MENDEL net Construction)
ENDEL ne Vs |

RNy N satisfiablo

N Verification
Tomporal Logic ’{‘y"
Constraints AN unsatisfiable
{LPTL tormula) (.
it
Adjustment

’d
Synthesized d
Arbiters CSp D)

Figure 3. Verification and Adjustment in MENDELS
ZONE.
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1.4 Organization of the Article

The remainder of the article is organized as follows.
Section 2 defines Finite State Processes (FSP) and
their equivalence relation and composition operator.
Basic and compositional adjustment of FSP is de-
scribed in Section 3. An overview of MENDELS
ZONE is shown and its compositional adjustment is
explained in Section 4. Section 5 shows a simple and
nontrivial example and an experimental result of
compositional program adjustment. Section 6 takes
program adjustment in standard programming lan-
guages into consideration, and is followed by the
conclusion in Section 7.

2. FINITE STATE PROCESSES

The basic model for concurrent programs is the
finite state process (Kanellakis and Smolka, 1990),
which can specify the finite state transition system
with liveness conditions. First, we define a Finite
State Process (FSP) and an equivalence relation for
FSPs. Then, several operators (composition, relabel-
ing, and reduction) on FSPs are introduced, and
their properties are shown.

2.1 Finite State Processes

Definition 1. (Finite State Process) A Finite State
Process (FSP) is a seventuple P = (S, A, L, §, m, s,,
F), where
S is a finite set of states;

A is a finite set of actions;

L is a finite set of synchronization labels;

8:S XA > SU(L)is a deterministic transition
function (8(s,¢) = L means the action t € 4 is
disabled in the state s € S);

m: A — (L U{r)) is a labeling function, (7 is an
invisible internal action);

sy, € S is an initial state, and

F C § is a set of designated states. ]

Example 1. (Finite State Process) P =
(sg 515 82, 53}, {81, 85, t31,{a, b}, 8, 7, 50,{s3)) is a fi-
nite state process where 8(sy, £;) = s,, 8(sy, ;) = 55,
8(31,12) =83, 8(5‘2,!1) =53, 8(33,13) = 5o, 'n'(tl) =
a, w(t,) = b, w(t;) = 7. (Figure 4). [ |

To begin with, we introduce several notations. Let X
be a set. The set of all finite sequences over X,
including the empty sequence &, is denoted by X*.
If there is no empty sequence &, the set is denoted
by X*. The set of all infinite sequences over X is
denoted by X“; w means “infinitely many”. X~ is
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Figure 4. Finite state process.

defined by X* = X* U X“. For a sequence 0 € X™,
0[] means the i-th element in 9; #(k) means the
prefix subsequence 6[1]6[2]... 8[k] of 6, and | 6]
the length of 6. .

Let P=(S,A,L,8,w,sy F) be an FSP. A tran-
sition function can be extended such that §: § X 4*

- Su{L), ie, &G, 0a)d;f8(6(s, #), a). Note,
8(s, £€) = 5. Because a transition function is deter-
ministic, a current state can be uniquely determined
from an initial state and an action sequence. We call
an action sequence a behavior. Similarly, we can
extend a labeling function such that 7 : A* - (L U
{7, ie., w(8) = w(O[1)m(O[2])... w(6[l 61]. In
addition, 7#(6) is defined as the sequence gained by
deleting all occurrences of = from w(8). The set of
reachable states from a state s in P is defined as

R,,(s)d——gr{s' € S|30 € A*.s’ = &(s, 0)} and

R;(s)d——c—f{s’ € 5130 € A*.s" = 8(s, 6)}. Also, the set

of all possible action sequences of P is defined as
def
L(P)={0 € 4% 8(sy, 0) # L}. Because interest is

in the infinite behavior of an FSP, we introduce a set
of infinite action sequences L (P) C (4% U A*{A}*)
where A means deadlock,

L (P (0 € A“IVk = 1.5(s,, 0(k)) # L} U
{6 € A~{(A)’|3k.(1 < Vi < k.8(s4,0(i)) # L
and Va € A4.6(8(sy, 6(k)),a) = L
and 0[j] = A for Vj > k)}.

L (P) is an extension of L(P) into a set of
infinite action sequences where if 6 € L(P) is a
deadlock sequence (i.e., an inevitably finite se-
quence), then @ is represented as 0A“ € L (P).

- L{"(P) c L (P)is defined as Lﬁ""’(P)d=ef{0l g e
L(P) under the fairness condition} where the fair-
ness condition means whenever a behavior 6 in-
finitely often passes through some state s, every
action a enabled at s must appear infinitely often on
0 (i.e. if s = 8(sy, 6({)) for infinitely many i and
8(s,a) # L, then s = 8(sy, 8(j)) and 6[j + 1] =a
for infinitely many j).

Finally, L(P)/A’ is introduced by definition:

L(P)/A" € (0130 € L(P)Yil6'lil = & if 6li]l e
A’; otherwise, 6'[i] = 60[i])}. Intuitively, L(P)/A’
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consists of action sequences of P in which all ele-
ments of 4’ C A are deleted.

An FSP is a transition system with liveness condi-
tions. In an FSP, liveness conditions are represented
by designated states that indicate satisfiable behavior
of an FSP as follows.

Definition 2. (Satisfiable Behavior) Let P =
(S,A4,L,8,m,sy, F) be an FSP. 8 € A“ is a satisfi-
able behavior, if 8(s,, 6(k)) € F for infinitely many
k=>1. L,(P)CA” is defined as a set of all satis-
fiable behaviors! on P. |

Definition 3. (Completeness of FSP) Let P =
(S,A,L,8,m,5y, F) be an FSP. P is complete if
Vs € Rp(sy).3s’ € Rj(s)and s’ € F. [ |

A state s € Rp(s,), having no path to designated
nodes from s, is called an unsatisfiable state. If P is
complete, P has no unsatisfiable states. A behavior
reaching an unsatisfiable state is called an inevitably
unsatisfiable behavior.

Lemma 1. If an FSP P is complete, then L/*"(P)
cL,,(P). |

sat

This lemma means that if P is complete, then a
random transition over P leads to a satisfiable be-
havior.

2.2 Equivalence of Finite State Processes

We now introduce the notion of #rrw-bisimulation
equivalence that is an extension of CCS’s weak
bisimulation equivalence (Milner, 1989). In this arti-
cle, it is used to reduce an FSP to a smaller and
equivalent FSP in compositional adjustment.

Definition 4. (rw-divergence) Let P = (S, A4, L,
8, m, sy, F) be an FSP. s € § is Tw-divergent (s 1) if
Vn>030A4*(0| =n, w(8)=¢ and 6(s, 8)
#1). a

Definition 5. (w7w-bisimulation Equivalence) Let
P, =(S,A,L, 8,m,sq, F) and P, =
(S,, A,, L,, 8,,m,,5y, F,) be FSPs. P, and P, are
wrw-bisimulation equivalent (P, =__, P,), if there is
a binary relation R C §, X S,, such that (sq,, 5¢;) €
R,and Vs, € §,.¥s, € 5, (5,5, ) ER =

o5, €F, iffs, €F,;
o5, T ifs, 71

'A satisfiable behavior corresponds to an accepting run of the
Biichi automaton.
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o Vi, €A Vs, € S,(if s|=
30 € A3.35, € S,.
(7Ar|(t]) = %2(0), 3’2 = 62(527 0)7
and (s}, s3) € R)),

o Vi, € 4,.V5, € S,.(if s, = 8,(s,,1,) then
30 € A7.3s| € §,.
(7‘\72([2) = %1(0), S'l =
and (s}, 5;) € R)).

8,(s;, ;) then

8,(s,, 0),
|

wrw-bisimulation is extended so that it can dis-
criminate designated states and divergence that can-
not be discriminated by weak bisimulation (the weak
bisimulation ignores divergences, i.e., 7-loops and
7-circles). The following lemma is derived from these
discrimination abilities.

Lemma 2. If P, is complete and P, =__, P,,
then P, is also complete. [ ]

Definition 6. (Reduction) For a given FSP P =
(S,A4,L,8,m,sy F), a reduction of P, red(P) =
(,,A,,L,8,m,s,4,F), is an FSP such that P
= red(P)and|S,| <|S|. [ ]

=1
where {f'

fi =0 otherwise,

fi=1

where { fi =0 otherwise,

fi=1

where { fi=0 otherwise,

8((3]9szyfl’f2))(alsa2))= and(f, =0Vf2=0),

’ —_ 1
where {f‘

i i 1
where {f2

and(f|=0Vf2=0),

=1
where {fz

\ L , otherwise,
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The smallest red(P) is constructed effectively by the
relational coarsest partitioning algorithm (Page and
Tarjan, 1987; Kanellakis and Smolka, 1990) such
that all states of P that are wrw-bisimilar to each
other are brought together into a single state of
red(P).

2.3 Operators on Finite State Processes

Concurrent programs are constructed as a composi-
tion of several FSPs that are synchronized with each
other. The composition and relabeling operators for
FSPs are introduced, and their important properties
(substitutivity and reflectivity) are shown.

Definition 7. (Composition Operator) For P, =
(S, A, Ly, 8,, 7y, 519, F1) and P, = (S,, A4,, L,,
8,, 7, Sy9, F,), a composition P = P,| P, is defined
as follows.

P=(8, X8, x{0,1)°,(A4, U {idle}) x (A4, L {idle}),
LyUL,,8,m,(s19,5%,0,0), F), where

e 5:(8, X8, X{0,1)}*) x (A4, U {idle})) x (4, U
{idle}) — (S, X §, X {0,1}*) U { L} such that

r(61(‘91"12)’ 8,(s2,a3), f1, f3), when w(a,) = wy(ay) # 7,andf, = f, =1,
if 8,(s;,a,) € F;,

}(foreachi =1,2)

(8,(sy, ap), 8,(s5,8,), f1, f3), when mw\(a,) = m,(ay) + 7,and (fy =0V f, = 0),
l"f.ai(s",ai) e F; V_f' = 1,

} (fori =1,2)

(8,(sy,a,), 5,5, f1,0), when w(a,)) € (LN L,),a, =idle,and f, =f, =1,
if 8,(sy,a)) € Fy,

(8,(sy,ay), 85, f1, f2), when w\(a)) &€ (L, N L,),a, = idle,

l:fa](sl,al) € Fl Vfl = 1,
f1 =0 otherwise,
(51, 8,(s5,a5),0, f3), when wy(ay) & (L, N Ly),a, = idle, and f, = f, = 1,
if 8,(s,,a,) € F;,
f2 =0 otherwise,
(sy, 85(52, a3), f1, f3), when my(ay) & (L, N Ly), a, = idle,

if 8y(s3,8)) €F, V f =1,
f> =0 otherwise,
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o m:(A, U {idle} X A, U {idle}) > L, U L, U {7}
such that

(7((a;,a,)) =1 ifa; € A;,

m(a,) = my(a,) =1
w((a,,idle)) = w(a,) ifa, €A,,
w((idle, a,)) = m,(a,) ifa, € A,,
m((a;,a,)) =1 otherwise

e and F={(s],szyfl9f2)l 5 € 81732 = SZ’fl =f2=
1}. ]

We remark that processes are synchronized at
actions with the same labels in the above process
composition. This composition is similar to composi-
tion in CCS (Milner, 1989) except for its treatment
of designated nodes. The following relabeling opera-
tors are used to relabel actions so that actions which

are synchronized in composition have the same la-
bels.

Definition 8. (Relabeling Operator) For P =
(S,A,L,8,m,sy F) and a relabeling function f: L
- L' U {1}, P’ = P[f]is defined as follows.

P’ =(S,A,L",8,7,5s,, F), where w'(a) = f(7(a))

if w(a) # 7; otherwise, w'(a) = 7. [

Example 2. (Composition and Relabeling) Figure
5 shows an example process composition and rela-
beling: P,[f,]| P,[f,] where relabeling functions:
f{a;) = a, f(b;) = b, and f(I) =1 for other labels
l € {c,d}(foreachi=1,2). ]

P1: P2:

t1/a1, 2/ t1/a2 t2/b2
t5/c t3/b1 t3/b2 t5/d
N

P1[f1]|P2[t2):

(t5,idle)lc  (t1,t1)/z @ 12,2)b  (idle,5)/d
CEX L
,»g/ \_\ :-\ /

(t3.13)0 < <

(idle,t5)yd  (t5,idle)/c

{t3,13)b

Figure 5. Composition and Relabeling.
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Definition 9. (Projection) Let P, and P, be FSPs.
A left projection L(P,| P,)|left is defined as

L(P,| P,) | left = (6, /(idle}| 36 € L(P,| P,).Vi.0[i] =
(6,[i], 6,[iD}). Similarly, a right projection
L(P,| P,)| right is defined. In the same way, projec-
tions of L, L/*", and L_,, are defined. [

Lemma 3. (Reflectivity) Let P, and P, be FSPs.
If P=P|P, then L, ,(P)|leftcL,,(P) and
L, (P)] right c L ,(P,). n

Lemma 4. (Substitutivity) 7rw-bisimulation equiv-
alence is preserved by composition and relabeling;
thatis, if P =_,, Q, then VR(P|R =_,, Q| R), and
Vi(PIf] =, QLfD. L

Reflectivity and substitutivity are used in the basic
adjustment and the compositional adjustment, re-
spectively. These adjustments are described in the
next section.

3. PROGRAM ADJUSTMENT

This section proposes program adjustment of FSPs.
First, we show that a temporal logic constraint f can
be transformed to an equivalent FSP P;. For an
FCTI process P and a temporal logic constraint f,
P| P, is a composed process in which P’s behaviors
against f are disabled by P, (i.e., safety properties
are satisfied). However, P| P, is not necessarily com-
plete (i.e., liveness properties may not be satisfied).
Program adjustment means to make P| P; complete
by adding an arbiter process C (i.e., the adjusted
program = P| P/| C).

3.1 Temporal Logic

The constraints for concurrent programs (safety
properties and liveness properties) are specified by
temporal logic. Safety properties include admissible
partial ordering of actions (i.e., transition firing), and
liveness properties include deadlock and starvation
of actions.

Definition 10. (LPTL)

Syntax: Linear time propositional temporal logic
(LPTL) formulas are built from atomic proposi-
tions Prop, Boolean connectives (A, =), and tem-
poral operators (O(“next”), U(“until”)). The for-
mation rules are as follows.

¢ An atomic proposition p € Prop is a formula.
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e If f, and f, are formulas, so are f, A f,, = f],

Ofi, fiUfs-

Semantics: The temporal operators intuitively have
the following meanings.

e Of (read next f):f is true for the next state;

o fiUf, (read f, until f,):f, is true until f, be-
comes true and f, will eventually become true.

The precise semantics are given as the Kripke
structure (Manna and Wolper, 1984). ]

We use Of (“eventually f) as an abbreviation for
true Uf and O f (“always f”) as an abbreviation for
O~ f. Also, fVf, and f, = f, represent
(= fi A = f,) and = f, V f,, respectively. Here,
we assume a single event condition under which only
one atomic proposition is true at any moment.

"Theorem 1. Given an LPTL formula f under a
single event condition?, one can build an FSP P =
(S,A,L,8,m,s,, F) such that L corresponds to a
set of atomic propositions of f, and L, (FP) is
exactly the set of behaviors whose label sequences

satisfy f°.
Proof. 1t is a restriction of a general theorem
(Wolper et al., 1983). [ |

Example 3. (Temporal Logic Constraints) Let a
label set be L = {a,, a,}.

(1) 0¥(a, V a,). Either a, or a, must infinitely
often occur.

(2) O(a, = O0O(-a,)): Whenever a, occurs, then
a, must never occur.

FSPs which are generated from (1) and (2) are
shown in Figure 6.
In the context of the following program adjust-

ment, we restrict temporal logic formulas so that P,

is deterministic with regard to synchronization la-
bels, and identify a label and an action (4 = L and
m(a) = a). In this case, some formulas, such as
<0 a, which are translated to nondeterministic FSP,
become unavailable. These formulas are suitable for
verification, but not for adjustment (synthesis) be-
cause the arbiter cannot look ahead to future behav-
iors, as indicated by Pnueli and Rosner (1989).

2Other propositional modal logics such as g-calculus are also
ap?licable to our theories.

A label sequence of a satisfiable behavior of P, corresponds to
a model of an LPTL formula.
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:>a2/a2

4)] (2
a1/a<:bi/\ a2/a2 al/al

Figure 6. FSPs P, of Temporal Logic Constraints.

3.2 Basic Adjustment

When temporal logic constraints f can be translated
to an FSP Py, we have to show how to make an FSP
P = P/| Py complete for the target FCTI program P,
by adding an arbiter process C. In other words, basic
adjustment is defined as an arbiter synthesis for
P = P/| P, (Figure 7).

In the following explanation, we assume that the
target FSP P has already composed with P, (ie.,
P =P ...) and do not mention P; explicitly.

Problem 1. (Basic Adjustment)
Input An FSP P = (S, 4, L, 8, 7, 5,4, F).

Output A maximally permissive FSP C =
(S, A.,L,8,m,s,,F,) such that P|C is com-
plete. “C is maximally permissive” means that for
every C' if P|C’ is complete then L(P|C') C
L(P|C). (]

The arbiter, C, restrains the target FSP P from
falling into unsatisfiable states by eliminating harm-
ful observable transitions.

Algorithm 1. (Single Arbiter Synthesis)

(Step 0) P' :==P.

(Step 1) Find a set of unsatisfiable states S, C S’ in
P' =(§',A"L,& w', sy F'). If there are
no unsatisfiable states, go to Step 4.

(Step 2) Construct a pseudo-arbiter C' from P’ as
follows. At first, 7-closure C, is defined as

C.(s, ) = {51 30(s" = 8(s, 0), 7(0) = a)}

| adjustment = arbiter synthesis |

é) Arbiter

Figure 7. Basic Adjustment.
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for Vs ede' and Va € L U {&},
(3

C-r(Ssub’ a) =U ses,u,,cr(s’ a) for Vssub <
S’ and Ya € L U {¢&}, then C’ is defined as
C'=(S,A,L,8,w,C.Usp, €), S.) where
S:=25 A ={laceLyu{lseS,
and forVa € L, Vs’ € §',

e 8,(s",t,)=C/(s",a) e S. ifC.(s",a) N S, = T,
e 8(s',t)=1 ifCAs",a) NS, + D,
o 5(s',t.) =5,

and m/(t,)) =aand w/(t,) =t forVa e L,
Vs' € S..

(Step 3) P’ := P'|C’, and return to Step 1.

(Step 4) Let the final pseudo-arbiter C’, which is
generated after applying Step 1-Step 3 re-
peatedly, be the arbiter C.

If C is empty (i.e., all behaviors are eliminated), C is
called unrealizable; otherwise, C is called realizable.

Theorem 2. (Main Theorem) If an FSP C =
(8., A, L., 8., m, sy, F,) is realizable for a given
FSP P=(S,A,L,8,m,s5, F) in the above algo-
rithm, then P|C is complete and C is maximally
permissive.

(Sketch of proof) During Step 1-Step 3, all in-
evitably unsatisfiable behaviors are eliminated in the
final P’. Therefore, P’ is complete. Because the
transition function of C’ is deterministic respecting
its labels, C' restrains no satisfiable behavior of P.
Therefore, P|C is complete and C is maximally
permissive. |

Corollary 1.
L#r(PIC) L left ¢ L, (PIC)\left c L, (P)

(Proof). This proof is derived from Lemma 1 and
Lemma 3 with Theorem 2. ]

This corollary assures that P, adjusted by C, satis-
fies its liveness constraints, whenever its behaviors
are made by random transitions over states. We
remark that an arbiter is effective in case L/"(P)
¢ L,,(P) (ie., P has some harmful nondeterminis-
tic behaviors). Finally, we have the following result.

Corollary 2. The adjusted process P;| Py| C satis-
fies the temporal logic constraint f.

(Proof). 1t is a special case of Corollary 1, that is,
LIZ (PP CY L left € L, (P). =

ugis' ) =L if C(s',a)NS, # @ means elimination
(disablement) of all behaviors that cannot be distinguished from
inevitably unsatisfiable behaviors by a label observer.

N. Uchihira and S. Honiden

Example 4. (A single arbiter synthesis) Figure 8
shows a simple single arbiter synthesis. In the target
process P, only 0 = t,t.t, is an inevitably unsatisfi-
able behavior. Because {¢5¢4¢,, 5¢,} is a set of behav-
iors that cannot be distinguished from 6 (i.e., have
the same label sequence “ab”), ¢, and ¢, are elimi-
nated. From the remainder, the arbiter C can be
constructed.

3.3 Compositional Adjustment

When a target program is composed hierarchically
with many processes and is very large, the arbiter
synthesis may cause the following problems.

1. The synthesis results in an explosion in comput-
ing cost;

2. A single arbiter is too restrictive to control the
whole program precisely.

Therefore, we propose compositional adjustment,
in which local arbiters are synthesized in each com-
position step. The reduction (minimization) of an
FSP based on w7w-bisimulation can ease the explo-
sion in computing cost in each step.

Theorem 3. If P, =__ P,, then C is an arbiter of
P, iff C is an arbiter of P,.

(Proof). From Lemma 2 and Lemma 4, C| P, is
complete iff C| P, is complete. [ |

Corollary 3. If C is an arbiter of red(P), then C
is also an arbiter of P. [ |

P (Target Program):

tila a
o
A5

e Seeos2s

S

Figure 8. Single Arbiter Synthesis.
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Algorithm 2. (Compositional Arbiter Synthesis)
For simplicity, we explain compositional adjustment
for the following target program that is constructed
by two-level composition. This algorithm can be
extended easily to arbitrary target programs.

o Target Program (Figure 2¢)
(Pyy[hy 31 Pyl DUA (Pl 11 Pplhg DIk,

where Py, P;, P,;, and P,, are FSPs, and A,
hyy, hay, hay, by and h, are relabeling functions.

e Temporal Logic Constraints
fi» f2, fo are temporal logic constraints for each
composition level.

The compositional arbiter synthesis is done in a
bottom-up way (Figure 9).

(Step 1) Low level arbiters C; and C, are synthe-
sized for subprocesses Py,[h,,]1l| P,[h,]l
Py and P, [h,,]| Pylhy,]| Py, respectively.

def
We denote P, = (C,| Py [hy,]1 Pyylhp,)1P,)

def
%hl]] and P, = (Cy| Py byl P22[h22]|sz)
h,).

(Step 2) Reduced subprocesses red(P,) and red(P,)
are made from P, and P,.

(Step 3) A top-level arbiter C, is synthesized for a
target process red(P,)| red(P,)| P;.

Corollary 3 assures that reduction preserves all in-
formation necessary for each local arbiter synthesis.
The reduction in each step can cut down the synthe-
sis cost. As the ratio of internal actions in the
process increases, so does the effectiveness of the
reduction. It is possible to directly synthesize a sin-
gle arbiter C’ for the target programs. However, C’
is too restrictive because it has less controllable
actions compared with local arbiters, and its synthe-
sis cost is more expensive without reduction. Process
reduction by weak bisimulation equivalence has al-
ready been proposed and shown its effectiveness in
compositional verification by Clarke et al. (1989).
However, the reduction preserving liveness properties
by mrw-bisimulation is our original work.

4. MENDELS ZONE

4.1 Overview

MENDELS ZONE is a programming environment
for concurrent programs. It was developed over eight
years by a team comprising less than 10 people as a
part of the Fifth Generation Computer System
(FGCS) project. The target concurrent programming
language, MENDEL (Uchihira et al., 1992), is based
on a high-level Petri net. It is translated into the
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| Reduction |

red{P1) red(P2}

rﬁoduclkm I/aner Synthesis

Figure 9. Compositional Arbiter Synthesis.

concurrent logic programming language KL1 (Ueda
and Chikayama, 1990) and executed on the parallel
machine Multi-PSI (Taki, 1989). MENDEL is re-
garded as a macro language of KL1.

MENDELS ZONE supports (1) construction of
MENDEL atomic processes, (2) graphical process
interconnection (Uchihira et al., 1992), (3) composi-
tional adjustment of interconnected MENDEL pro-
cesses based on theories described in Section 3, and
(4) performance design (Honiden et al., 1994).

4.2 MENDEL Net

MENDEL is a concurrent programming language
based on a high-level Petri net. If a programmer
constructs a program using only the MENDELS
ZONE’s graphic editor shown in Figure 10, he does
not have to learn the detailed syntax of MENDEL.
He is required only to know a graphical representa-
tion of the high-level Petri net, called MENDEL
net. MENDEL net is extended from a Petri net in
the following aspects.

e Modularity is introduced. A module of MENDEL
net represents a process.

o Synchronous (handshake) communication between
processes is introduced, in addition to asyn-
chronous (dataflow) communication.

o Each transition can have an additional enable
condition that must be satisfied when the transi-
tion fires, and an additional action, which is exe-
cuted when it fires. Both are written by KL1°.

SKL1 codes attached to transitions are ignored in the adjust-
ment.
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D O 0 Prog e O
EXTERN attribute exit | Top Menu: bind data exscute utility oxit
ot BIND clear create tlash garnet utility oxit
ot_o
gott 3338]  refresh [T full @
put_d
put_e
deve
LTBRARY __big_soarch edit S Nyl
Robot ¢ Rebdet 3y i lﬂl
resist ¢ Resist i.put_d.
arm ¢ Arm
exposure ¢ Expesure
development ¢ Develep | & 3 Sessesens H
trans h transper _.
TSL clear save doit exit reneesd fgOt0

X empty XX

OO (get_rvput_evget_svput_d)

x: Current TSL string:iempty
tsid>ges.t

tsl>

Figure 10. MENDELS ZONE.

MENDEL net is graphically represented like a
Petri net (Figure 11). The basic conventions are as
follows.

» Each “place” is represented by a circle.
e Each “transition” is represented by a square.

|

Resist Development

Trans Exposure

Figure 11. MENDEL net.

e Each process is represented by enclosing places
and transitions belonging to the process with a
line.

e A “synchronous (handshake) communication” is
represented by a dashed line between transitions.

e An “asynchronous (dataflow) communication” is
represented by an arrow between a transition and
a place.

Our program adjustment method is only applica-
ble to finite state programs. When program adjust-
ment is applied, the target MENDEL net is re-
stricted to being a bounded one with only syn-
chronous communications between processes, which
can be translated into FSPs.

4.3 Programming in MENDELS ZONE

(Phase 1) MENDEL Net Construction. A program-
mer can construct a MENDEL net using
the graphic editor and the program library
as follows.

e (Step 1) Construct atomic MENDEL processes
basically by software reuse (Uchihira et al., 1987).

e (Step 2) Interconnect MENDEL processes with
communication links using the graphic editor to
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make a new compound MENDEL process. A
large-scale program can be constructed in this
compositional way.

Constructed programs are FCTI because a pro-
grammer reuses programs whose possible behaviors
he may not fully understand; so communication links
may be incomplete.

(Phase 2) MENDEL Net Verification and Adjust-
ment. After constructing an FCTI
MENDEL net, the programmer specifies
safety and liveness properties that must
be satisfied by MENDEL net. These prop-
erties are specified by temporal logic.

The verification and adjustment procedure (Fig-
ure 3) in MENDELS ZONE is as follows.

1. The programmer can give an LPTL formula for a
MENDEL net of some compound process.

2. MENDELS ZONE checks whether a MENDEL
net satisfies a given LPTL formula by the model
checking method for LPTL (Vardi and Wolper,
1986).

3. When it does not satisfy the LPTL formula, the
adjustment method is invoked.

(Phase 3) Compilation to KL1 and Execution. The
adjusted MENDEL program is compiled
into a KL1 program, which can be exe-
cuted on Multi-PSI. The programmer can
check visually that the adjusted program
satisfies his expectation by an execution
monitor.

5. EXAMPLE AND EXPERIMENTAL RESULT

5.1 Example: Machine Control Program

In this example, we synthesize a single arbiter using
MENDELS ZONE. The problem may be stated
informally as follows. The target program must be
designed to control machines which cooperatively
process (i.e., etch) printed circuit boards (Figure 12).

The coating machine applies resist to boards. The
exposure machine exposes boards to the light. The
development machine develops boards. The arm ma-
chine moves boards from one machine to another.
The target program is composed of 6 processes
(Resist, Exposure, Development, Arm, and Trans X
2) that control corresponding machines. Trans repre-
sents board transportation. Each process is displayed
as a MENDEL net, shown in Figure 11. With no
arbiter, this system is FCTI because it falls into
deadlock when an action label sequence of Arm
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Development

Exposure

Figure 12. Machine for processing printed circuit boards.

“get_r — put_e — get_r” occurs. We give the fol-
lowing temporal logic constraints

f=00(get_r V put_e V get_e V put_d),

which means Arm never fails into deadlock. An
arbiter C is synthesized as follows: first, FSPs repre-
senting six subprocesses are relabeled by relabeling
functions f,, f., f4, f.» f1» and f,,, and are reduced,
and FSP P, (Figure 13) representing temporal logic
constraints f is generated. The target process P
(Figure 14) is composed from these FSPs (including
Pf). Finally, the arbiter C shown in Figure 15 is
synthesized from P, according to Algorithm 1. We
can see that the adjusted program “C| P;| Resist(f,]|
Exposure| f,]| Development[ f,]1| Arm[ fa],l Trans{ fn“
Trans| f,z]” satisfies the above constraints. Figure 16
shows the adjusted program represented by
MENDEL net. You can see the target MENDEL
net in Figure 11 is adjusted by introducing the
arbiter C in Figure 16.

5.2 Experimental Result

We will show how well the compositional method
works when it is applied to a middle-scale manufac-
turing machine control software. This machine is
controlled by a concurrent (multi-task) program
which consists of 16 element processes (tasks). Table
1 shows the sizes of element processes. The state
numbers of each element process may seem small. It

get_r,put_e,
get_e,put_d

get_r i>get_e

put_d LJ put_e

Figure 13. FSP P; for LPTL formula f.
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Figure 14. Target Process P (displaying only labels).

S0/t

tSt1/z tS2/t
tput_e/put_e tget_e/get_e

<> 1S3/t

Figure 15. Synthesized Arbiter C.

Development

.

e it ———

qm—

Trans Exposure

Figure 16. Adjusted Program.
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Table 1. Middle-scale Machine Control Software
Element FSP Number of States

(P,) Distribution Arm

(P,) Testing Equipment

(P;) 1st Manufacturing Equipment

(P,) 2nd Manufacturing Equipment X 2
(Ps) 3rd Manufacturing Equipment

(P,) Set-up Arm X 2

(P;) Extracting Arm X 2

(Pg) st door x 2

(Py) 2nd door X 2

(P,,) Conveyer X 2

WwWwWNhNhOAO UMW WSR

is attributable to the fact that only synchronization
parts of systems are modeled by FSPs.

For these target processes, we give temporal logic
constraints by f; prohibition of illegal behaviors of
arms and deadlock-freedom for two symmetric pro-
cess groups (P,, Py, P;, Py, Py, P\p). Two arbiters
were synthesized after the compositional adjustment
procedure. Figure 17 shows their whole structure
(communication and synchronization among pro-
cesses).

The compositional adjustment procedure to syn-
thesize two arbiters C;, and C;, is shown as follows®.

1. P, = red(P,| Py| P,| Pg| P| P,y) (max_size = 48
states)

2. P, = red(P,| P,| P;| P;) (max_size = 85 states)

3. Py = red(P.,| P,,) (max_size = 77 states)

4. The first arbiter C;, is synthesized from f and
P., (max_size = 385 states)

5. P, = red(P| C;)) (max_size = 88 states)

6. P = red(P.,| P.) (max_size = 239 states)

7. The second arbiter C, is synthesized from f and
P.s (max_size = 112 states)

Here, the “max_size” means the maximal num-
ber of states which are temporally created during
process composition and reduction procedure at each
step, and the worst case is max_size = 385. Without
the compositional method (i.e., by the basic adjust-
ment), the naive process composition of 16 processes
would generate a far larger number of states since
the max_size is increasing monotonously without
reduction. Table 2 shows the maximum number of
states in two cases (basic adjustment and composi-
tional adjustment). It indicates that the composi-
tional method can reduce the maximum size to
about 1/150 of the basic adjustment.

In this example, only synchronization parts of the
system are modeled by FSPs. If they have a lot of

®Relabeling functions are omitted for simplicity.
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Communication and
@ Synchronization between
Processes

/
P3 P1 P5
arbiter | ——
Cci1

t
f

Figure 17. Adjusted middle-scale machine control soft-
ware.

actions unrelated to synchronization, which are re-
garded as 7 actions, the process reduction would be
more effective.

6. PROGRAM ADJUSTMENT IN STANDARD
PROGRAMMING LANGUAGES

This section briefly considers program adjustment in
standard programming languages, instead of
MENDEL net. Program adjustment is applicable to
concurrent programming languages which have a
synchronous (i.e., handshake) communication mech-
anism, like Ada and Occam. For example, Figure 18
shows a program adjustment example for the Ada
program used in the motivation section (Figure 1).
Two FSPs P, and P, are derived from the original
program, then an arbiter is synthesized by the basic
adjustment procedure, and finally an adjusted Ada
program’ is derived from FSPs and the arbiter. As
you can see in Figure 18, the arbiter controls the
target programs using a rendezvous mechanism of
Ada to remove harmful nondeterministic behaviors
(i.e., 8;) mentioned in Section 1.1.

When applying the program adjustment to Ada,
we require the following two converters.

e Ada — FSP converter: The Ada program code is
divided into basic blocks. Each basic block is as-
signed to one state of a generated FSP. Control
flows between basic blocks are represented as

Some trivial declarations are omitted.
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Table 2. Middle-scale Machine Control Software
(Effect of Process Reduction)

Adjustment Type Maximum Temporary Size of States
Basic Adjustment 61096
Compositional Adjustment 385

edges between these states. Synchronous commu-
nication commands are also represented as edges
with synchronization labels. Furthermore, the user
can put arbitrary labels on edges which are used
to specify temporal logic constraints.

o FSP — Ada converter: A synthesized arbiter rep-
resented by an FSP is converted into an Ada task
which implements state transitions using loop and
select constructs. Synchronization labels in the ar-
biter are converted into accept commands, and
synchronization labels in the target processes are
converted into entry call commands.

7. CONCLUSIONS AND RELATED WORKS

We have introduced the concept of “program ad-
justment” into concurrent programming. For compo-
sitional adjustment, we have also introduced a new
composition and equivalence for finite state pro-
cesses which can preserve liveness properties.

It is more feasible for ordinary programmers to
adopt the program adjustment approach compared
to other methods which synthesize complete pro-
grams from temporal logic specifications (Manna
and Wolper, 1984; Emerson and Clarke, 1982). The
reasons are as follows.

e It is not difficult for ordinary programmers to
produce an FCTI concurrent program, which satis-
fies at least the functional requirements. A more
difficult task is to design and debug the timing of
such programs.

e Many bugs are derived from harmful nondeter-
ministic alternatives.

o It is easy for ordinary programmers to specify only
timing constraints, such as deadlock-free and star-
vation-free constraints, as compared with specify-
ing a whole specification.

e Computing cost of program adjustment is lower
than that of program synthesis.

We also remark that our method is suited for
reactive systems which have uncontrollable and un-
observable elements in their environments because
they can be modeled by 7 actions in FSP.

We have some experience of state-transition-based
software construction, using compositional adjust-
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outl

task body pl is
begin
status := NG ;
arbiter.inl ;
if seat.read=FREE then
seat .write (OCCUPIED) ;
arbiter.outl ;
r

task body p2 is
begin
status := NG ;
arbiter.in2 ;

arbiter.out2

status := OK status := OK
else else
arbiter.outl ; arbiter.out2
end if ; end if ;
terminate ; terminate ;
end pl ; end p2 ;

Figure 18. Program Adjustment in Ada.

ment in MENDELS ZONE. For example, we have
constructed a control software for a power plant
(about 4,300 steps) which consists of 6 processes and
evaluated MENDELS ZONE (MENDELS ZONE,
1992). In this case, timing bugs between sensor in-
puts and data change detection are adjusted.

In our previous works (Uchihira et al., 1987; Uchi-
hira et al., 1990; Uchihira and Honiden, 1990) we
proposed program synthesis methods based on tem-
poral logic. However, these methods generated a
global state transition graph based on the assump-
tion that all process actions are observable (not
internal) and controllable, that is, not reactive. This
assumption is restrictive because most practical sys-
tems have some reactive features. Moreover, the
global state transition graph often becomes huge,
and its generation is costly because it cannot be
done compositionally. In this article, we introduce a
CCS-like compositional framework to deal with un-

N. Uchihira and S. Honiden

Arbiter

out2

if seat.read=FREE then
seat.write (OCCUPIED) ;

i
H

in2

task arbiter is
entry inl
entry in2
entry outl ;
entry out2 ;

end arbiter ;

-
r
.
’

task body arbiter is
N:integer:= 0 ;
begin
loop
select
when N=0
accept
when N=0
accept
when N=1
accept
when N=2 =>
accept out2 do N:=3; end out2 ;
end select ;
end loop :
end arbiter ;

=>
inl do N:=1;
=>
in2 do N:=2;
=>
outl do N:=3; end outl ;

end inl ;

end in2 ;

observable and uncontrollable actions and to achieve
compositional adjustment utilizing process reduc-
tion.

Abadi, Lamport, and Wolper (Abadi et al., 1989)
proposed a compositional program synthesis using
the CCS-like compositional framework, where fail-
ure equivalence is adopted instead of our wrw-bi-
simulation equivalence. However, their approach is
a top-down program refinement, which differs from
our bottom-up program adjustment approach. From
another view, arbiter synthesis can be regarded as a
control problem of discrete event systems which are
well surveyed by Ramadge and Wonham (Ramadge
and Wonham, 1989). However, while these works
mainly consider safety properties, they showed no
compositional synthesis methods satisfying liveness
constraints. The concurrency control of database
transactions (Bernstein and Goodman, 1981) is inti-
mately related to the program adjustment. Both are
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intended to remove harmful nondeterminism. The
program adjustment can be regarded as the ex-
tended concurrency control applied to compositional
(hierarchical) concurrent programs.
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APPENDIX A. THE NOTATIONS

Several notations which are frequently used in this
paper are summarized as follows.

e P,| P, stands for parallel composition of P, and
P,.

e P[f] stands for relabeling of P by a relabeling
function f.

e red(P) stands for process reduction of P.

e P, =_. P, means that P, and P, are nTw-
bisimulation equivalent.

o L, (P) stands for a set of all satisfiable behaviors
in P.

e L/%7(P) stands for a set of all infinite behavior in
P under the fairness condition.

e L(P,| P,)| left means a left projection of
L(P,| P)).

e Of means a formula f will eventually become
true.

e O f means a formula f as always true.



