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Given two sets of red and blue points in Rd, we say that they are linearly separable if there exists
a hyperplane, or linear separator, that partitions Rd such that each part contains only red or only
blue points. If there is no such separator, then we say that the two sets are linearly inseparable. In
this work, given inseparable sets, we seek approximate separators with the “best” approximation.
The notion of “best” is left intentionally informal as the precise properties that should be optimized
are application dependent.

Let R be a set of p red points and B a set of q blue points in Rd. Let n = p+ q and assume that
the points are in general position, that is, no d+ 1 of the points lie in the same hyperplane in Rd.
Let H denote a hyperplane which misclassifies R∪B and partitions it into two non-empty subsets:
the left subset in which the red points are well classified and the blue points are misclassified,
and the right subset which plays a complementary role. Given R ∪ B and H we may be left with
a set Ω ⊂ R ∪ B of points misclassified by H. We use s(H) to represent the quality of H as
an approximate separator, the cost of H. Our main goal is to study different criteria for finding
approximate separators that minimize the cost under one of the following assumptions:

1. s(H) is the maximum distance from H to a point in Ω: MinMax criterion.
2. s(H) is the sum of distances from H to every point in Ω: MinSum criterion.
3. s(H) is the sum of squares of distances from H to every point in Ω: MinSum2 criterion.
4. s(H) is the cardinality of Ω: MinMis criterion.
The complexities obtained in this work for computing optimal separators assuming each of the

above criteria in different dimensions are shown in Table 1. For the sake of brevity we only describe
the main ideas and results obtained for the MinSum criterion.

Table 1: Summary of results.

Dimension MinMax MinSum MinSum2 MinMis

d = 1 Θ(n) Θ(n) Θ(n) Θ(n log n)

d = 2 Θ(n log n)
O(n log n + n4/3 log1+ε

n)

O(n log n + n4/3) (∗)
O(n2) O(n2)

d = 3 O(n2) O(n5/2 log6
n) (∗) O(n3) O(n3)

d ≥ 4 O(ndd/2e) O(nd) O(nd) O(nd)
(∗) expected time

A one-dimensional algorithm for finding an optimal approximate separator offers intuitive insight
to solutions in higher dimensions. This phenomenon is easily explained by the following observation.
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Remark 1. Consider an optimal approximate separator H for P in Rd. Let P− (H−) denote
the projection of P (resp. H) to a line perpendicular to H. Then H− is an optimal approximate
separator of P− and furthermore s(H) = s(H−).

Therefore every optimal solution in higher dimensions has an equivalent one-dimensional solu-
tion, but the number of candidate solutions that have to be evaluated to determine an optimal one
usually increases with the dimension. Thus, we first consider the problem in R. Let R and B be
inseparable sets of red and blue points on a line. The following lemma characterizes the solution
of the MinSum problem for dimension d = 1.

Lemma 1. An optimal separator point a lies between two consecutive points of R ∪ B such that
the number of misclassified blue points is equal to the number of misclassified red points.

Lemma 2. Let |R| = p, |B| = q. The MinSum problem in R has infinitely many optimal solutions.
An optimal separator is any point a of the closed interval defined by the two consecutive points of
R ∪B in the positions p and p+ 1 counting from left to right.

Theorem 1. The one-dimensional MinSum problem can be solved in Θ(n) time.

We now consider the problem in R2. Let ` be an optimal separator line for R and B according
to the MinSum criterion. Let `+ (`−) be the open half-plane above (below) `. The following lemma
is a straightforward consequence of Remark 1 and Lemmas 1 and 2.

Lemma 3. The number of misclassified blue points on `+ is equal to the number of misclassified red
points on `−. The two-dimensional MinSum problem has an infinite number of optimal separators.

Theorem 2. The two-dimensional MinSum problem can be solved deterministically in time O(n log n+
n4/3 log1+ε n) for an arbitrarily small constant ε > 0 or in O(n logn+ n4/3) expected time.

We can extend the two-dimensional discussion to three dimensions obtaining the O(n5/2 log6 n)
expected time specified in Table 1.

Let A(P ) be the dual arrangement of lines obtained by dualizing the n points of the set R∪B.
By Lemmas 2 and 3 an optimal separator always exists and can be found between the p and (p+1)-
levels of A(P ). This fact holds for any dimension. Thus, for dimension d ≥ 4, the upper bound for
the size of the p-level is only slightly better than O

(
nbd/2cpdd/2e

)
[2]. More concretely, an upper

bound is O(nd−αd) for a very small αd = 1/(4d−3)d. As Agarwal et al. [1] observed, the bound can
be made sensitive to p, namely O(nbd/2cpdd/2e−αd). Matoušek et al. [3] give an O(n4−2/45) upper
bound for d = 4.

Theorem 3. The d-dimensional MinSum problem can be solved deterministically in time

O

(
nbd/2cpdd/2e

(
logn

log p

)O(1)
)

= O(nd).
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