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In a real projective space P , a pair of distinct points determines a unique
projective line passing through these points. However, there are two seg-
ments continuously joining these points because a real projective line is
homeomorphic to a circle. A natural question arises how we can introduce
a notion of convexity in P . The first introduction probably dates back to
Steinitz[1], Veblen and Young[5]. For general references of convex geometry,
see [3][4][6]. The following definition is equivalent to the one by Steinitz[2].

Definition 1. A subset S of P is simple convex if for any two points of S,
exactly one of the segments determined by these points is contained in S.

Since the intersection of simple convex sets may fail to be simple convex,
we define our notion of convexity as follows.

Definition 2. A subset of P is convex if it is expressed as the intersection
of a nonempty family of simple convex sets. The family of all convex sets in
P which is ordered by inclusion is written as C(P ).

In this setting, simple convex sets are exactly connected convex sets. Each
connected component of a convex set is a simple convex set. Let us introduce
a subclass of convex sets in P , which has somewhat a topological flavor.

Definition 3. A convex set in P is saturated if it is expressed as the inter-
section of a nonempty family of open simple convex sets. The family of all
nonempty saturated convex sets in P which is ordered by inclusion is written
as C◦

sat(P ).

Since there are nonsaturated convex sets, saturated convex sets form a
proper subclass of convex sets. For any convex set, there is the least satu-
rated convex set containing it.

In this talk, we concentrate on saturated convex sets. One notable prop-
erty is that for a dual projective space P ∗, there is a one-to-one correspon-
dence between C◦

sat(P ) and C◦
sat(P

∗), which is considered as an extension of
the projective duality between points and hyperplanes.
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Theorem 1. Let P be a real projective space and let P ∗ be a dual projective
space of P . Then the mapping Φ : C◦

sat(P ) → C◦
sat(P

∗),

Φ(C) := {δ(h) ∈ P ∗|h is a hyperplane in P which avoids C}
is an anti-order isomorphism, where δ denote a dual correspondence between
hyperplanes in P and points in P ∗.

This theorem implies that in a real projective space, a notion of linearly
convex sets, which is yet another projective convexity [7], is almost equiv-
alent to a notion of saturated convex sets. The only difference is that the
ground set P is a linearly convex but not saturated convex set.

We give an application of the projective convexity toward computational
geometry. Let us consider the following classification problem of a family of
sets in R2 by a line.

Problem 1. Let S1, ..., Sn be nonempty finite subsets of R2 each of which
is called a class. Given two distinct classes Si and Sj, decide whether there
is a line such that it separates Si and Sj, and moreover for any other class
Sk (k 6∈ {i, j}), it does not separate Sk into two nonempty subsets.

This problem in case k = 2 is well-known as the problem of linearly
separability and can be reduced to the problem of the intersection of two
convex hulls [S1] and [S2]. Although this technique is not available for k > 2,
we can transform it into the problem of the intersection of convex sets in a
projective plane in the following way.

Since R2 can be embedded in a projective plane P 2, each convex hull [Sk]
in R2 for k ≤ n is a simple convex set in P 2. Thus we can make use of the
dual mapping Φ in Theorem 1 by which for k ≤ n, the family of all lines
avoiding [Sk] is transformed into a nonempty saturated convex set Φ([Sk]) in
a dual plane. Notice that for any point in

∩
k≤n Φ([Sk]), the corresponding

line in P 2 avoids all members [Sk] (k ≤ n). Therefore for distinct two classes
Si and Sj , it suffices to decide whether there is a point in

∩
k≤n Φ([Sk]) such

that the corresponding line separates Si and Sj in R2.
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