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I. INTRODUCTION

The well-known Voronoi diagram [1] is one of the most
useful data structures in computational geometry. It helps to
solve problems, allowing the design of simple and efficient
algorithms whenever proximity informations are needed. In
particular it helps solving the following problem:

Let S be a set of two or more points in the plane. For
convenience, elements of S are called sites. A “query-point”
x, being distinct from elements of S is given. A question may
rise : What is the largest open disc centered on x, containing
no site of S in its interior ? Obviously it is equivalent to ask:
What is the largest empty circle passing through one or more
site of S ? The Voronoi regions encode the precise required
information. So using the Voronoi partition, the problem is
trivial, we simply check in which Voronoi region is x.

Now let us consider a slightly different problem. Again, S
is a set of two or more sites and a “query-point” x which
belongs not to S is chosen. Given an arbitrary configuration
of one or more overlapping circles (see Fig.1a for instance),
what is the maximal size it can take (when located on x) such
that its interior remains empty of S ?

Considering the fact there exists a nice geometric structure,
the Voronoi diagram, for solving the first problem elegantly
(paragraph 2). There may exist a variant of this diagram for
solving the second one ? A new theoretical structure has been
designed for this purpose and is presented in this paper.

While it has surprizing properties, e.g. non-covering of the
whole plane (so it is not a partition in the general case), it is
actually a generalized Voronoi diagram. We think the structure
is worth of interest because applications might be numerous,
e.g. robotics path planning problems, patterns detection, etc.

The structure could also be a unifying approach for state-
of-the-art problems. For instance: Polygon placement among
points or obstacles [2], [3]. For finding empty instances of
particular shapes, Voronoi regions can be computed normally
but using a different metric. This way, Lee [4] was able to
store empty occurences of squares. Numerous “generalized
Voronoi diagrams” use a non-Euclidean metric, therefore it
is possible to store locations of various convex empty shapes.
(the unit-ball determines the shape) as explained in [5]. Yet,
these approaches are not satisfying. It does not enable the use
of any shape, for instance: non-convex shapes, shapes with
holes, etc.

II. PRELIMINARIES

The base objects of our work; so-called shape-models,
are introduced in this section. A shape-model express more
precisely and rigorously what means “arbitrary configuration
of overlapping circles”. Thanks to these, a mathematical
definition of Regions of Point-free Shape-models can be given
in section III.

A. Notations
b(x, r) is the open disc of radius r centered on point x. Its

boundary is a circle, denoted c(x, r). Mathematically:

b(x, r) =
{
y ∈ R2

∣∣ ‖y − x‖ < r
}

c(x, r) =
{
y ∈ R2

∣∣ ‖y − x‖ = r
}

where ‖.‖ denotes the Euclidean metric.

B. Shape-models definition
We define a shape-model as a set of circles, such that one

of these is designated as being the reference circle. In order to
have simple notations, ordered lists are used and the reference
disc is the first one by agreement.

Formally, let M = (C,R) be a shape-model constituted of
m circles. The m-tuple C = (c1, c2, . . . , cm) represents the
centers of circles. Elements of R = (r1, r2, . . . , rm) represent
the associated radii (real numbers). Moreover, M must satisfy
the “overlapping circles property” if m is superior to 1 :

∀1 ≤ i ≤ m, ∃j 6= i such that b(ci, ri) ∩ b(cj , rj) 6= ∅
An example of a simple shape-model constituted of four

circles is given in Fig. 1a.

C. Handling operations
Two operations are defined on shape-models:
• The s operation (for synthesis) builds a 2D region from a

shape-model as shown on Fig. 1b. The function simply
considers open discs contained in circles composing the
shape-model, and computes the union of these discs.

• The th operation (for translation-homothety) takes
three arguments: a shape-model M = (C,R) with
C = (c1, . . . , cm) and R = (r1, . . . , rm) as said previ-
ously, a point p and a scalar λ.
It translates every circle of M by a vector −→c1p and re-
scales them by a factor (λ/r1). Hence, the resulting
shape-model is noted th(M,p, λ). An example is given
in Fig. 1c.
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(a) shape-model M0
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(b) s(M0)
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(c) th(M0, (0, 0), 1)

Figure 1: The synthesis operation, denoted s and the translation-homothety operation, denoted th

III. REGIONS OF EMPTY SHAPE-MODELS

The preliminary work allows geometric problems concern-
ing sites and shape-models to be examined algebraically.
Algebraic representation let us define the new structure and
compute it. Given a finite set of sites S and given any shape-
model M . For each p ∈ S the Region of Point-free Shape-
models generated by p ∈ S is defined by:

RM (p) =
{
x ∈ R2 | s (th(M,x, ‖x− p‖)) ∩ S = ∅

}
Intuitively, RM (p) represents the locations x ∈ R2 where M
can be translated (ie. its reference circle center becomes x)
and expanded until it has p on its boundary, while remaining
empty of sites. Thus, a Region of Point-free Shape-models is
defined for a given shape-model M (noted in subscript) and a
site p as an argument; global notation RM (p).

IV. RESULTS

In order to ease the implementation, the structure has been
decomposed (using the definitions of region and handling
operations) into m× n sub-regions of the plane (m being the
number of discs, n the number of sites in S). Each sub-region
is defined algebraically by a single inequation. Therefore
a large system of inequations can encode the Regions of
Point-free Shape-models structure. The computation of region
boundaries relies on the method of resultants [6]. Finally a
hybrid implementation has been realized based in part on C
software (using GNU Scientific Library [7] for polynomial
calculus and representation). Then, the computational software
Mathematica is automatically used for high-level regions en-
coding and plotting. Communication is made through C/C++
MathLink interface [8], [9].

An example of the produced results is shown on Fig. 2. The
computation is fast even with latence due to the interfacing.
Further work will focus on the realization of a stand-alone
program in order to enhance the execution speed and to study
full algorithm complexity.

Note that the shape-models are not limited except by the
overlapping property. A shape-model could contain holes for
example.
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Figure 2: Respective “Regions of Empty Shape-models” given
two different shape-models, and a same 3-site set S. Colors
are used to differentiate two regions associated to different
sites of S R(p) and R(p′), p, p′ two different elements of S.
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