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1 Indroduction

The acyclic chromatic number of a graphG, denoteda(G), is the minimum number of colors required to
properly color the vertices of a graph such that there are no bichromatic cycles. The concept of acyclic
coloring of a graph was introduced by [5] and is further studied in the lasttwo decades in several works.
Kostochka [6] proves that determining it is an NP-complete problem.

Given the computational difficulty involved in determininga(G), several authors have looked at acycli-
cally coloring particular families of graphs [5, 7, 3]. Using the probabilistic method, it was shown by Alon et
al. [2] that any graph of maximum degree∆ can be acyclically colored usingO(∆4/3) colors. Focusing on
the family of graphs with a small maximum degree∆, it was proved by Skulrattanakulchai [7] thata(G) ≤ 4
for any graph of maximum degree 3. The work of Skulrattanakulchai wasextended by Fertin and Raspaud
[4] to show that it is possible to acyclically vertex color a graphG of maximum degree∆ using at most
∆(∆ + 1)/2 colors. Recently, Yadav et al. [8] extended the work of Skulrattanakulchai [7] to show that any
graph of maximum degree 5 can be colored using at most 8 colors. Burnstein [3] showed thata(G) ≤ 5 for
any graph of degree maximum 4. In this paper we prove the same result of [3] using 5 colors using a linear
time algorithm.

Let N(v) denote the set of neighbors ofv, a partial coloring is an assignment of colors to a subset ofV (G)
such that the colored vertices induce a graph with an acyclic coloring. SupposeG has a partial coloring. Let
α, β be any two colors. An alternatingα, β-path is a path inG with each vertex colored eitherα or β. An
alternating path is an alternatingα, β path for some colorsα, β. A path is odd or even according to the parity
of number of edges it contains. Letv be an uncolored vertex. A colorα ∈ [5] is availablefor v if no neighbor
of v is coloredα. A color α ∈ [5] is feasiblefor v if assigning colorα to v still results in a partial coloring.

We derive our result by extending a partial coloring by one vertexv at a time. During this process, in some
scenarios it is required that we recolor some of the vertices already colored so as to make a color feasible for
the vertex which we try to color. However, note that this recoloring, if required, is limited to the neighborhood
of the neighbors ofv, in all cases. Thus, we show the following theorem, using Lemmata 1.2,1.3, and1.4.

Theorem 1.1 The vertices of any graphG of degree at most 4 can be acyclically colored using five colors in
O(n) time, wheren is the number of vertices.

Lemma 1.2 Letπ be any partial coloring ofG using colors in[5] and letv be any uncolored vertex. Ifv has
less than 3 colored neighbors, then there exists a colorα ∈ [5] feasible forv.

Lemma 1.3 Letπ be any partial coloring ofG using colors in[5] and letv be any uncolored vertex. Ifv has
exactly three colored neighbors, then there exists a partial coloringπ1 of G using colors in[5] and a color
α ∈ [5] so thatπ1 has the same domain asπ, π(x) 6= π1(x) impliesx ∈ N(v) andα is feasible for v under
π1.
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Lemma 1.4 Letπ be any partial coloring ofG using colors in[5] and letv be any uncolored vertex. Ifv has
four colored neighbors, then there exists a partial coloringπ1 of G using colors in[5] and a colorα ∈ [5] so
thatπ1 has the same domain asπ, π(x) 6= π1(x) impliesx ∈ N(v) or x ∈ N(N(v)), andα is feasible forv
underπ1.

Moreover, in all the above lemmata, bothπ1 andα can be found inO(1) time.

2 A Sketch of the Proofs of Lemmata 1.2, 1.3, and 1.4

Lemmata 1.2,1.3: Notice that when extending a partial coloring to a vertexv, if v has less than 3 colored
neighbors, then there always exists a feasible color out of the five colors. In the case thatv has three colored
neighbors, then we may not have a feasible color when two of these neighbors have the same color. In this
case, we recolor a neighbor ofv that is a single vertex, if such a vertex exists. Otherwise, it can be shown that
there always exists a feasible color forv.

Lemma 1.4: In the case that all the four neighbors ofv are colored, it is more difficult to see which vertices
have to be recolored so that a feasible color forv can be found. In this direction, we investigate the colors
in the 2-neighborhood ofv. Suppose that three neighbors ofv have the same color but the other neighbor is
different from these two. Assume without loss of generality thatπ(w) = π(x) = π(y) = 1, andπ(z) = 2.
Considering the number of possible dangerous1, β dangerous cycles, there may be no feasible color forv.
We consider two cases. When any of{w, x, y} is a single vertex, we recolor a single vertex from one of
w, x, y. Depending on the new color of say, w.l.o.g,w, one can find a color that is feasible forv. When none
of {w, x, y} are single vertices, then three1, β dangerous cycles must exist, for otherwise there is a feasible
color for v. This implies that{w, x, y} contain two differently colored neighbors. Assume, w.l.o.g, thatw
has neighbors colored so that color 4 appears at negihborsw1 andw2 and that color 5 appears at neighbor
w3. Then, we can recolorw if color 2 or 3 is missing in the neighbourhood ofw1 or w2. Otherwise, it can be
noticed that one ofw1 or w2 should be a single vertex. This allows us to recolorw1 from 4 to 5. This helps us
in similarly exploring the colors in the neighborhood ofw1 andw3. It then holds that eitherw3 is also single
or there exists a feasible color forv. The full report, dealing with all possible cases, is available as [10].
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