On an empty triangle with the maximum area in planar point sets

Kiyoshi Hosono

Department of Mathematics, Tokai University
3-20-1 Orido, Shimizu, Shizuoka, 424-8610 Japan
E-mail address: hosono@scc.u-tokai.ac.jp

1 Introduction

We deal with only finite point sets \(P \) in the plane in general position. A point set is convex or in convex position if it determines a convex polygon. A convex subset \(Q \) of \(P \) is said to be empty if no point of \(P \) lies inside the convex hull of \(Q \). An empty convex subset of \(P \) with \(k \) elements is also called a \(k \)-hole of \(P \).

Let \(P \) be an \(n \) planar point set in general position. For a subset \(Q \) of \(P \), denote the area of the convex hull of \(Q \) by \(A(Q) \). In [3], we considered the ratio between the maximum area of 3-holes (empty triangles) \(T \) of \(P \) and the whole area \(A(P) \). Namely, let

\[
F(P) = \max_{T \subset P} \frac{A(T)}{A(P)}
\]

and define \(f(n) \) as the minimum value of \(F(P) \) over all sets \(P \) with \(n \) points.

Then we obtained the following result where \(c \) is some constant:

Theorem A.

\[
\frac{23}{(37 + 3\sqrt{5})n + c} \leq f(n) \leq \frac{1}{n - 1} \quad \text{for any } n \geq 25.
\]

In this talk, we improve on the lower bound of \(f(n) \). To achieve the aim we consider the existence of 5-holes of point sets in the next section.

2 The existence of 5-holes

Let \(V(P) \) be a set of vertices; a subset of \(P \) on the boundary of the convex hull of \(P \). Then we obtain the next proposition.

Proposition 1. If \(|V(P)| \geq 5 \) for any 7 or 8 point set \(P \), we have a 5-hole of \(P \).

It is well-known that Harborth [2] proves that any 10 point set contains a 5-hole and the bound is tight. The next result by using Proposition 1 shows a sufficient condition for the existence of a 5-hole of a 9 point set. An ear of \(P \) is three consecutive vertices on the convex hull boundary of \(P \).

Proposition 2. Any 9 point set \(P \) contains a 5-hole if it has an empty ear.
Figure 1 gives an 8 point set in general position with an empty ear, containing no 5-hole. And we obtain the following lemma by using Proposition 2.

Lemma 1. Any 17 point set \(P \) contains two 5-holes with disjoint interiors or one 6-hole.

We give a 12 point set in general position in Fig. 2 which contains neither two 5-holes with disjoint interiors nor one 6-hole.

3 Result

For \(n \) point sets \(P \) in convex position, the value \(f^{\text{conv}}(n) \) is defined in a similar way to \(f(n) \). The following lemma is proved in [1].

Lemma A. For point sets in convex position with 5 elements and with 6 elements,

\[
 f^{\text{conv}}(5) = \frac{1}{\sqrt{5}} \quad \text{and} \quad f^{\text{conv}}(6) = \frac{4}{9}.
\]

From the Polar Partition of \(P \) with the apex a vertex of \(P \) we have \(\left\lfloor \frac{n-2}{15} \right\rfloor \) convex cones with disjoint interiors, each of which contains exactly 17 points of \(P \). By Lemma 1 each such convex cone contains two 5-holes with disjoint interiors or one 6-hole. We improve on the lower bound by virtue of Lemma A:

Theorem 1.

\[
 f(n) \geq \frac{1}{2n-5-(6-2\sqrt{5})\left\lfloor \frac{n-2}{15} \right\rfloor} \geq \frac{15}{(24+2\sqrt{5})n+c} \quad \text{for any } n \geq 17.
\]

![Fig. 1.](image1.png)
![Fig. 2.](image2.png)

References

