On the Ramsey numbers for the union of graphs

I W. Sudarsana^{1,2}, E. T. Baskoro¹, H. Assiyatun¹, and S. Uttunggadewa¹

¹Combinatorial Mathematics Research Division
Faculty of Mathematics and Natural Sciences
Institut Teknologi Bandung (ITB)
Jalan Ganesha No. 10 Bandung 40132, Indonesia
yansudar@students.itb.ac.id, {ebaskoro, hilda, s_uttunggadewa }@math.itb.ac.id

²Combinatorial and Applied Mathematics Research Group Faculty of Mathematics and Natural Sciences Universitas Tadulako (UNTAD) Jalan Soekarno-Hatta Km. 8 Palu 94118, Indonesia sudarsanaiwayan@yahoo.co.id

Extended Abstract

Throughout this paper, we consider finite undirected graphs without loops and multiple edges. For given graphs G and H, a graph F is called a (G, H)-good graph if F contains no G and \overline{F} contains no H. A (G, H, n)-good graph denotes a (G, H)-good graph with n vertices. The Ramsey number R(G, H) is defined as the smallest natural number n such that no (G, H, n)-good graph exists.

Let $k \geq 1$ be an integer. For i = 1, 2, ..., k, let G_i be a connected graph with the vertex set V_i and the edge set E_i . The $union\ G = \bigcup_{i=1}^k G_i$ has the vertex set $V = \bigcup_{i=1}^k V_i$ and the edge set $E = \bigcup_{i=1}^k E_i$. In particular, if $G_1 = G_2 = ... = G_k = F$ then G = kF. The problem of determining the Ramsey number for the union of graphs has been extensively investigated, see for instances [1, 2, 4].

Let H be a graph with the chromatic number $h \geq 2$ and the chromatic surplus $s \geq 1$. The chromatic surplus of H is the minimum cardinality of a color class taken over all proper h-colorings of H. A connected graph G is said to be H-good if R(G, H) = (o(G) - 1)(h - 1) + s, where o(G) is the order of G. By using this terminology, Bielak [2] gave the exact Ramsey numbers for the union of $G = \bigcup_{i=1}^k G_i$ versus H when each component G_i is H-good with s = 1.

union of $G = \bigcup_{i=1}^k G_i$ versus H when each component G_i is H-good with s=1. Let S_n be a star on n vertices and W_n be a wheel on n+1 vertices. Note that the chromatic number and surplus of W_6 (W_8) are 3 (3) and 1 (1), respectively. Chen et al. [3] have proved that S_n is not W_6 -good for $n \geq 3$. Zhang et al. [5] also showed that S_n is not W_8 -good for even $n \geq 6$. Then, the theorem proposed by Bielak in [2] cannot be used to determine the Ramsey number of a disjoint union of stars versus W_6 or W_8 . In this paper, we will determine these Ramsey numbers, namely $R(\bigcup_{i=1}^k S_{n_i}, W_6)$ and $R(\bigcup_{i=1}^k S_{n_i}, W_8)$. We also obtain the

generalization of the theorem proposed by Hasmawati et al. in [4].

Our main results are presented in the following.

Theorem 1 Let $k \geq 2$ be an integer. Let H be a graph with the chromatic number $h \geq 2$ and the chromatic surplus $s \geq 1$. For $i = 1, 2, \dots, k$, let G_i be a connected graph satisfying $R(G_1, H) \geq R(G_2, H) \geq \dots \geq R(G_k, H)$. Let $G = \bigcup_{i=1}^k G_i$. If $o(G_i) \geq R(G_i, H) - R(G_{i+1}, H)$ for every $i = 1, 2, \dots, k-1$ then

$$R(G, H) \le R(G_k, H) + \sum_{i=1}^{k-1} o(G_i).$$
 (1)

Furthermore, if $o(G_k) = \min\{o(G_i)|i=1,2,\cdots,k\} \geq s$, and G_k is H-good then

$$R(G,H) = R(G_k,H) + \sum_{i=1}^{k-1} o(G_i).$$
 (2)

Lemma 1 For $n \ge 3$ and $k \ge 1$, $R(kS_n, W_6) = (k+1)n + 1$.

Lemma 2 For even $n \ge 6$ and $k \ge 1$, $R(kS_n, W_8) = (k+1)n + 2$.

Theorem 2 Let $k \ge 1$ be an integer. Let $n_k \ge n_{k-1} \ge ... \ge n_1 \ge 3$ be integers and $G = \bigcup_{i=1}^k l_i S_{n_i}$ with $l_i \ge 1$ for every i = 1, 2, ..., k. Then,

$$R(G, W_6) = \max_{1 \le i \le k} \left\{ (n_i + 1) + \sum_{j=i}^{k} l_j n_j \right\}.$$
 (3)

Theorem 3 Let $k \ge 1$ be an integer. Let $n_k \ge n_{k-1} \ge ... \ge n_1 \ge 6$ be integers and $G = \bigcup_{i=1}^k l_i S_{n_i}$ with $l_i \ge 1$ for every i = 1, 2, ... k. If n_i is even for every i = 1, 2, ..., k then

$$R(G, W_8) = \max_{1 \le i \le k} \left\{ (n_i + 2) + \sum_{j=i}^k l_j n_j \right\}.$$
 (4)

Keywords: (G, H)-good graph, H-good, Ramsey number, union graph, wheel.

References

- [1] E. T. Baskoro, Hasmawati, and H. Assiyatun, The Ramsey number for disjoint unions of trees, *Discrete Math.*, 306 (2006), 3297-3301.
- [2] H. Bielak, Ramsey numbers for a disjoint of some graphs, *Appl. Math. Lett.*, 22 (2009), 475-477.
- [3] Y. Chen, Y. Zhang, and K. Zhang, The Ramsey number of stars versus wheels, *European J. Combin.*, 25 (2004), 1067-1075.
- [4] Hasmawati, E. T Baskoro, and H. Assiyatun, The Ramsey number for disjoint unions of graphs, *Discrete Math.*, 308 (2008), 2046-2049.
- [5] Y. Zhang, Y. Chen, and K. Zhang, The Ramsey number for stars of even order versus a wheel of order nine, *European J. Combin.*, 29 (2008), 1744-1754.